
SCIENCE CHINA
Information Sciences

January 2024, Vol. 67, Iss. 1, 112104:1–112104:17

https://doi.org/10.1007/s11432-022-3657-3

c© Science China Press 2023 info.scichina.com link.springer.com

. RESEARCH PAPER .

HTDcr: a job execution framework for
high-throughput computing on supercomputers

Jiazhi JIANG1, Dan HUANG1*, Hu CHEN2*, Yutong LU1 & Xiangke LIAO1

1School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China;
2School of Software Engineering, South China University of Technology, Guangzhou 510006, China

Received 27 July 2022/Revised 13 October 2022/Accepted 6 December 2022/Published online 22 December 2023

Abstract High-throughput computing (HTC) is a computing paradigm that aims to accomplish jobs by

easily breaking them into smaller, independent components. However, it requires a large amount of computing

power for a long time. Most existing HTC frameworks are job-oriented without support for coscheduling

with hardware architecture and task-level execution. Also, most of the frameworks reach a limited scale,

and their usability needs further improvement. Herein, we present HTDcr, a job execution framework for

the HTC on supercomputers. This study aims to improve the throughput, task dispatching, and usability of

the framework. In detail, the throughput optimizations include a sophisticated designed task management

system, a hierarchical scheduler, and the co-optimization of the task-scheduling strategy with the application

and hardware characteristics. The optimizations for usability include a programable execution workflow,

mechanisms for more robust and reliable service qualities, and a fine-grained resource allocation system for the

colocation of multiple jobs. According to our evaluations, HTDcr can achieve outstanding scalability and high

throughput on large-scale clusters for the HTC workload. We evaluate HTDcr with several microbenchmarks

and real-world applications on Tianhe-2 and Sunway TaihuLight to demonstrate its effects on existing design

mechanisms. For instance, the task scheduling for two real-world applications integrated with the application

and hardware characteristics achieves 1.7× and 1.9× speedups over the basic task-scheduling strategy.

Keywords high-throughput computing, supercomputer, task scheduling, middleware, password guessing

1 Introduction

High-throughput computing (HTC) is a computing paradigm that focuses on efficiently executing jobs
that are easily broken up into enormous loosely-coupled tasks. While high-performance computing (HPC)
sounds interchangeable with HTC, they represent distinct computing paradigms. The scientific progress
of research studies on HTC applications is strongly linked to computing throughput, which requires a
computing environment that delivers enormous amounts of computational power over a long period. The
HPC focuses on large workflows comprising highly closely-coupled tasks and uses floating-point operations
per second as the yardstick to evaluate the system. HTC applications are gradually increasing in various
fields, such as gene sequencing in biomedical fields [1], offline password guessing in information security
field [2], and emerging machine-learning-based steering of ensemble simulations for therapeutics against
diseases such as COVID-19 [3, 4].

Existing efforts on implementing HTC implementations can be divided into two categories. The first
category entails implementing domain-specific systems, such as HiSeq 2000, in gene sequencing [5]. They
are often built by companies or research institutes in related fields, which can meet all the needs of a
certain application type. However, these systems apply to a narrow range of applications and are difficult
to be extended to other domains. The second category is oriented to multiple applications in various
fields and has a wide range of applicability. The representative system is HTCondor [6]. However, these
frameworks for HTC applications still suffer from several shortcomings. Three limitations of existing
HTC job execution frameworks can be described as follows. (1) Most of the existing frameworks reach
limited scale. For instance, the ALPS (application level placement scheduler) executes a limited number

*Corresponding author (email: huangd79@mail.sysu.edu.cn, chenhu@scut.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-022-3657-3&domain=pdf&date_stamp=2023-12-22
https://doi.org/10.1007/s11432-022-3657-3
info.scichina.com
link.springer.com

Jiang J Z, et al. Sci China Inf Sci January 2024, Vol. 67, Iss. 1, 112104:2

of different executables simultaneously on a cray system [7]. HTCondor encounters performance bottle-
necks and challenges when a burst of short-time tasks is to be processed efficiently [8]. To improve the
throughput of the HTDcr framework, HTDcr should manage numerous tasks and results more efficiently
and manage as many computing resources as possible. (2) The task distribution of existing HTC frame-
work lacks optimization for common architectural features of supercomputers such as heterogeneity and
shared storage. Heterogeneity is common in supercomputers. Applications with multiple phases with
distinct resource necessities can take advantage of this internode heterogeneity to improve performance
and reduce resource idleness. Jobs comprising multiple tasks with different resource requirements can
take advantage of the hardware heterogeneity to reduce resource idling and improve performance. The
correct use of all available resources by the dispatching strategy of the framework requires certain free-
dom to execute the phases concurrently. Shared storage is a common architecture for supercomputers.
For jobs that require frequent access to data from storage, an appropriate task distribution strategy
can leverage on-node storage and reduce data access from remote shared storage. (3) The usability of
the current system needs to be further improved. First, most of the existing HTC frameworks, such
as HTCondor, require users to parallelize the workflow through file splitting or parameter passing and
decompose the job before submission. However, many HTC workloads are actually nontrivial for manual
splitting. A user-friendly programming workflow is required in the HTC framework. Second, there are
some MPI-based frameworks that lack robustness and fault tolerance characteristics to provide reliable
services. Various mechanisms to deal with situations such as task loss and node downtime should be
provided in the framework. Thus, there is much room for improvement concerning the ease of use of
these frameworks.

To run HTC applications more efficiently on supercomputers and provide robust and reliable HTC
services, we propose the HTDcr framework. We propose a job execution framework HTDcr targeting
enhancement of HTC applications on supercomputers. Our contributions are summarized as follows.

• Increasing the capability of HTDcr to achieve higher throughput, including an efficient task man-
agement system, hierarchical scheduling, and multidispatcher mechanisms.

• Several task scheduling strategies are designed for coscheduling tasks with the architectural features
of supercomputers, including strategies for shared storage and strategy for heterogeneous architecture.

• Various mechanisms are designed to improve the usability of the framework. In detail, (a) it im-
plements a programmable workflow to decompose and execute HTC applications more flexibly. (b) It
achieves fault tolerance for both scheduling and computing modules. (c) It implements a fine-grained
resource allocation system for the colocation of multiple jobs.

We conduct extensive experiments for our implementation. Microbenchmarks show that the task
throughput of HTDcr can outperform SLURM by 4× and HTCondor by 1.3× on average. HTDcr can
reach the scale of 20000 nodes with average throughput of 1300 tasks/s for 44 h. Our task-scheduling
policy achieves 1.7× and 1.9× speedups over the basic task scheduling. It is stipulated herein that ap-
plications submitted and executed through SLURM, HTCondor and our implemented system (HTDcr)
are called jobs, and multiple execution steps are contained in a job. Task-parallel executions of an
applications involve dividing a workload into a set of self-contained units of task. These tasks can be
independent, have no intertask communication, or are loosely coupled with low degrees of data depen-
dencies. For instance, the brute-force password-guessing application tries to determine the password (H
is the Hash function, such as MD5). The whole process of trying all the possible password candidates is
a job. The computation to verify if H(pwdi) = cipher for one specific password candidate pwdi is seen
as a task.

2 Related work

HTCondor is an open-source HTC framework for coarse-grained distributed parallelization of computa-
tionally intensive tasks [9]. It requires users to parallelize workflows through file splitting or parameter
passing and decomposes the job statically before submission. Dynamic decomposition and scheduling of
tasks according to the cluster load during job execution are unsupported by HTCondor. SLURM [10,11]
is equipped with excellent scalability and is widely adopted as the resource management and job schedul-
ing system on supercomputers. It uses an exclusive resource-scheduling strategy to allocate resources
in the node unit. The SLURM system cannot manage and monitor the job at the task level and de-
tect the task execution status. In the event of a system crash or node downtime, the running job is

Jiang J Z, et al. Sci China Inf Sci January 2024, Vol. 67, Iss. 1, 112104:3

Network

module

JobManager

JobParser

Monitor

TaskManager

Reducers

TaskDispatchers

……

CnTable

D1

D2

D3

D4

R4

R4

R3

R2

Decomposers

BackUpModule

Group1

Group2

Group3

Scheduling
module

Computing

module
Computing

module

Computing

module

Result

Tasks

Tasks

Tasks

Node info

Final result

Job description files

Jobs

Nodestatus

Lost task

Execution context

Job groups

Figure 1 (Color online) Architecture of the scheduling module.

also terminated. The user can only rerun the entire HTC job, which wastes computing resources and
time. Raicu et al. [12] designed and implemented a lightweight task-execution framework called Falkon.
Falkon’s design focuses on multilevel scheduling strategies and streamlined task dispatchers. A multilevel
scheduling strategy ensures full utilization of resources and efficient execution of tasks. The streamlined
task dispatcher reduces communication overhead and the idle time of computing resources. Raicu et
al. [13] optimized Falkon and used C language to replace some functions. Although Falkon has tried to
improve the throughput of the framework, it does not schedule the task according to the application and
hardware features. Also, Falkon does not effectively address fairness and resource allocation to support
multiple users submitting various jobs to a collection of distributed computing resources. Merzky et
al. [14] designed and introduced RADICAL-Pilot as a portable, modular and extensible pilot-enabled
runtime system for high-throughput scientific applications. The system is implemented in Python, and
can be used stand-alone, as well as the runtime for third-party workflow systems. Currently, it is difficult
if not impossible to compare their system performance characteristics to ours due to the lack of analogous
task implementations and common metrics [14].

3 HTDcr framework design

In general, HTDcr adopts a master-worker architecture similar to HTCondor. The modules deployed on
master and worker nodes are called the scheduling and computing modules, respectively.

3.1 Scheduling module

The scheduling module is the cornerstone of the entire system. Its architecture is shown in Figure 1.
The data flow on the scheduling module is described as follows. First, the JobParser converts the
job description files submitted by users into job groups. Next, the JobManager uses the breadth-first
algorithm of directed acyclic graph to traverse all jobs in a job group and submits jobs to decomposers
according to their priorities and dependencies. Then, the Decomposers decompose jobs from Job-

Manager into tasks and add them to TaskManager. Afterward, the TaskManager carefully designs
various sophisticated queues to maintain and manage numerous tasks and results generated during the
execution of jobs. Furthermore, the TaskDispachers load the tasks from the task manager and dispatch
tasks to worker nodes managed by CnTable. Additionally, CnTable manages all worker nodes by di-
viding them into groups. Reducers accept results returned from worker nodes, and perform reduction
and post-processing according to the user-implemented function.

Task-level execution is mainly supported by the decomposer and task manager. For instance, in a
brute-force password guessing application, the user submits a job description file to find a password
candidate for a ciphertext generated by MD5. The job search space is all the string composed of 10
lower case letters, upper case letters and digits. In a job-oriented framework, this job, which contains

Jiang J Z, et al. Sci China Inf Sci January 2024, Vol. 67, Iss. 1, 112104:4

TaskBuffer

Caculators

C3

C1
C4

C2

Executors

……

Result buffer

Devices

Network

module

Monitor

Scheduling

module

Computing

module

Computing

module

Computing

module

Tasks

Result

User-defined
function

Device status

Task type

Figure 2 (Color online) Architecture of the computing module.

5210 computations of MD5, is assigned to a node or device for computation. In the HTDcr framework,
the decomposer divides the whole search space into numerous subspaces. For instance, each subspace
contains MD5 computations for 100 different password candidates. Each subspace is called a task. These
numerous tasks generated by the decomposer are managed through the task manager. The scheduling
module can decide how to dispatch tasks in task manager per scheduling cycle based on the number and
status of the computing nodes and devices. In this way, DCR (decompose, compute, reduce) achieves
task-parallel execution of the job.

Monitor and BackUpModule are designed to improve the system’s robustness. The Monitor

module monitors the executions of all tasks and statuses of worker nodes. It notifies HTDcr to resend
tasks when they are lost or node failures occur. By employing task-level monitoring, lost tasks can be
automatically resubmitted and calculated. The BackUpModule saves the execution context on the
scheduling module regularly. All information can be restored after scheduling module is restarted.

3.2 Computing module

The computing module is designed for efficiently executing tasks assigned by the scheduling module.
Its architecture is shown in Figure 2. The data flow on the computing module is described as follows.
The network module receives tasks sent by the scheduling module and puts them into a task buffer.
When tasks are to be executed, Executors fetch them from the task buffer and find their corresponding
calculator. The calculator is a user-implemented module describing the computational logic. Users can
customize the calculation process through the API provided by HTDcr. The device Monitor collects
the usage information of each computing device and sends heartbeat messages to the scheduling module
regularly. With this information, the scheduling module can better schedule tasks.

The decomposer, reducer and calculator are the essential components for concurrently executing pro-
grammable execution workflow and are introduced in Subsection 6.1. The task dispatcher is designed
for integrating cluster task scheduling with the application and hardware introduced in Section 5. The
task manager and the CnTable are implemented for the throughput enhancement and are detailed in
Section 4. More details about Monitor and BackUpModule in the scheduling module are explained in
the recalculation and checkpoint mechanism for fault tolerance in Subsection 6.2.

4 Throughput improvement

To improve the throughput of the HTDcr framework, there are two major challenges. (a) The inability
of the scheduling module to manage numerous tasks and results more efficiently. (b) The inability of
the scheduling module to manage many computing resources. To solve these problems, the following was
actualized by HTDcr.

4.1 Fine-tuned task management system

The HTC framework creates and terminates numerous tasks and results while executing large-scale and
loosely-coupled applications. This operation may cause significant performance degradation and limit the
throughput increment of the system. The HTDcr task management system has the following advantages.
(a) Task/results preallocation. Since the memory on a single supercomputer node is sufficient (32 GB on
Tianhe), the maximum memory space required by the workload is preallocated instead of allocating space

Jiang J Z, et al. Sci China Inf Sci January 2024, Vol. 67, Iss. 1, 112104:5

during execution. This preallocation eliminates frequent use of the system memory allocator, which is
not so efficient according to our measurements in Subsection 7.3.1. (b) Global task pool. HTDcr adopts
a global task pool for objects that are frequently allocated and deallocated. This component puts the
recently released objects in the list instead of actually releasing them. If the tasks are reused soon, they
are just moved out of the global task buffer. Different types of task queues in the framework are organized
as static lists [15] in the task management system. This organization can avoid the time-consuming object
initialization and finalization overhead. (c) Contention is usually the highest cost in the massively parallel
environment. All operations (such as create, terminate, move, modify, and read) on tasks and results are
designed to avoid lock and unlock contention as much as possible.

The task management system of HTDcr is highlighted by two optimization techniques, such as the
private task and two-step movement mechanisms for a massively parallel environment. The frequent
lock and unlock operations lead to significant performance penalties or even deadlock. To address this
issue, the private task and two-step mechanisms leverage a local temporary buffer to act as an intermediary
between different threads. The tasks stored in the temp buffer are called private tasks and are only
operated by a thread simultaneously. With the private task mechanism, HTDcr can avoid the following
overhead when managing tasks in a massively parallel environment. (a) Since a private task is exclusive
to a thread, no thread competition occurs. Therefore, no lock is required when the HTDcr framework
operates the private task. (b) Data exchange between the temp buffer and a task queue only needs
to lock the task queue without considering the priority order of the lock (only one lock) and deadlock
occurrence. (c) Moving multiple elements between a temp buffer and a task queue has a performance
gain. The operation may involve the modification of multiple elements. HTDcr modifies the temp buffer
instead of the task queue. This way, it decreases contention for critical sections on task queues and
alleviates resource competition.

When the tasks are moved and modified between the two task queues (i.e., the source and destination
queues) in the global task pool, it is usually divided into three steps. (a) The tasks of the source queue
are moved to a temp buffer. (b) The attribute value of the private task is modified in the temp buffer.
The private tasks in the temp buffer are moved to the destination queue. The above task movement
scheme is called a two-step movement. Moving the data in three steps adds some extra operation
compared to moving the data directly. However, all the task queues in the global pool are organized
as a static list [15], and only the cursor and several attribute values of the task queue are modified
to complete the movement. There is zero memory copy in the above operations, so the overhead is
almost negligible. Compared to direct data movement, two-step movement has the following advantages.
(a) Two-step movement makes it possible to lock step-by-step. In the first and third steps, only the
source and destination queues need to be locked, respectively. In the second step, no lock is required.
The two-step movement does not cause the deadlock problem. (b) The modification of the task values
only in the second step shortens the race condition time of the source and destination queues.

4.2 Hierarchical scheduling and multidispatcher

HTDcr adopts the master-worker architecture. However, this classic architecture has a drawback that
the master node may become the bottleneck of the entire system. Especially when the scale of computing
resources is huge, the master node manages them inefficiently. This may cause many worker nodes to
stay idle for a long time because they cannot obtain tasks from the master node. The main ideas of
the HTDcr resource management system are as follows. (a) Hierarchical scheduling. After a job
is submitted through the HTDcr framework, the scheduling module determines the node the task is
distributed to, and the computing modules are used to implement fine-grained resource management
in the units of CPU cores/GPU/I/O resources on worker nodes. Hierarchical management avoids the
direct management of numerous fine-grained resources and reduces the burden of scheduling modules. (b)
Multi-dispatcher. Although HTDcr adopts a hierarchical management scheme for computing resources,
the scheduling module may become a bottleneck when the number of computing nodes increases to a
certain scale. This hinders the further improvement of system throughput. To address this issue, the
scheduling module divides the worker nodes into G groups (Figure 1). The value of G can be configured
and adjusted according to the total number of nodes. HTDcr launches G threads to generate G dispatcher
instances on the scheduling module. Each dispatcher instance manages one node group. This way, each
task dispatcher only has to manage 1/G of the total nodes, which enables the scheduling module to
support more worker nodes participating in task executions. The rough processes of task dispatching on

Jiang J Z, et al. Sci China Inf Sci January 2024, Vol. 67, Iss. 1, 112104:6

the scheduling and computing modules are shown shown in Algorithms 1 and 2.

Algorithm 1 Task dispatching on scheduling module

Require: G: number of node group;

jobID: the ID of a job;

sendNum: the number of tasks to be sent;

1: sendPerGroup = sendNum
G

;

2: cnTable[] = GetNodes();

3: strategy = GetDispatchStrategy();

4: for all pThread in dispatchThread do

5: pid = pThread.id;

6: nodeGroup = CnTable[pid];

7: dispatcher = Dispatchers[pid];

8: tasks[] = LoadTasks(sendPerGroup, JobID);

9: for all node in nodeGroup do

10: taskType = GetTaskType(task[i]);

11: status = CheckNodeStatus(node, taskType);

12: if status == IDLE then

13: SendTask(node, tasks, strategy);

14: end if

15: if tasks == ∅ then

16: Break;

17: end if

18: end for

19: end for

Algorithm 2 Task dispatching on computing module

Require: Task: task received from scheduling module;

1: taskType = GetTaskType(task);

2: PutTaskInBuffer(taskType, task);

3: for all pThread in CPUThread do

4: if CPUPool is not empty then

5: computeTask = LoadTaskFromCPUBuffer();

6: SubmmitTask(computeTask);

7: SendStatusToScheduling();

8: end if

9: end for

10: for all pThread in GPUThread do

11: if GPUPool is not empty then

12: computeTask = LoadTaskFromGPUBuffer();

13: SubmmitTask(computeTask);

14: else

15: SendStatusToScheduling();

16: end if

17: end for

18: for all pThread in IOThread do

19: if IOPool is not empty then

20: computeTask = LoadTaskFromIOBuffer();

21: SubmmitTask(computeTask);

22: SendStatusToScheduling();

23: end if

24: end for

5 Task-scheduling improvement

Different workloads can have different behavioral characteristics. Therefore, one-size-fits-all cluster task
scheduling may degrade the performance of different applications deployed on the HTC framework. To
enable customization and adaptation, HTDcr integrates cluster task scheduling with the application
and hardware. HTC applications can achieve higher throughput with more suitable task-scheduling
policies. The default scheduling policy on HTDcr is the shortest queue first (SQF) policy. The heartbeat
message sent from the computing module to the scheduling module contains the task queue length on
the computing module. The SQF policy prioritizes sending tasks to workers with shorter task queues
because of the lighter load on these nodes. Through the SQF policy, HTDcr can achieve load balancing.

5.1 Strategy for the shared storage cluster

On a shared storage cluster (such as Tianhe-2), all nodes share storage but not memory. Some applications
need to load data from the shared storage into memory, and different tasks may require common data.
Reducing data loading from storage and reusing data in memory significantly improve the efficiency of
the system. The strategy for shared storage clusters sends tasks that require common data to the same
node for computing as much as possible. This way, the data loaded into the memory by the previous
task can still be used when the next task arrives. This can avoid unnecessary data loading. The shared
storage strategy is suitable for applications that exhibit spatial locality.

As shown in Figure 3, the data accessed by tasks are divided into three parts: datasets 1, 2, and 3.
Tasks 1, 3, and 5 access dataset 1. Task 4 accesses dataset 3, and tasks 2 and 6 access dataset 2. First,
task 1 is scheduled to node 1, and node 1 loads dataset 1 into the memory simultaneously. Since the data
accessed by task 2 differs from the dataset accessed by task 1, task 2 is scheduled to node 2, and it loads
dataset 2. Task 3 accesses dataset 1. Dataset 1 has been loaded on node 1, and the data locality can
improve the performance of task 3. Thus, task 3 is scheduled for node 1. Task 4 is scheduled to node 3
since dataset 3 is not accessed by any previous task. Tasks 5 and 6 are scheduled to nodes 1 and 2,
respectively, since datasets 1 and 2 have been loaded.

Jiang J Z, et al. Sci China Inf Sci January 2024, Vol. 67, Iss. 1, 112104:7

1 2 3 4 5 6

I/O typeCPU typeGPU type

Node1 Node2 Node3

1 GPU

2 CPU

3 I/O

Node

Decomposer Task 1 2 3 4 5 6

D3 typeD2 typeD1 type

Node1 Node2 Node3

D1

Task

D2

Share storage

Resource

D3

(a) (b)

Figure 3 (Color online) Task-scheduling strategy integrating with application and hardware characteristics. (a) Strategy for the

heterogeneous architecture; (b) strategy for the share storage architecture.

5.2 Strategy for heterogeneous architecture cluster

This strategy is suitable for jobs comprising different tasks. These tasks can be executed simultaneously
on different devices. To execute these different tasks on the best-fit device, each task is assigned a
task type according to its required resources by the decomposer. Each task is assigned by the user
when the decomposer is implemented. There are three task types available currently: CPU-intensive,
GPU-intensive, and I/O-intensive types.

As shown in Figure 3, the job is broken down into three types of tasks by the decomposer. Tasks 1,
3, and 5 are GPU-intensive tasks. Task 4 is an I/O-intensive task, and tasks 2 and 6 are CPU-intensive
tasks. The GPU/CPU/I/O load statuses of the worker nodes are regularly fed back to the scheduling
module and recorded in a table. Since the GPU load on node 1 is not heavy according to the node
information presented in the table, GPU-intensive tasks 1, 3, and 5 are scheduled for node 1. Tasks 2
and 6 are CPU-intensive tasks. The CPU load on node 2 is not heavy, so tasks 2 and 6 are scheduled for
node 2. Task 4 is scheduled for node 3 for a similar reason.

The worker nodes on supercomputers are commonly equipped with heterogeneous computing devices,
such as CPUs and GPUs. When the computing module is started, it spawns separate threads for each
device on the worker node (Figure 2). Suppose there is a worker node equipped with an 8-core CPU
and 4 GPUs, the computing module on the worker node generates 13 threads: eight threads are used
to execute CPU-intensive tasks, four threads are used to execute GPU-intensive tasks, and a thread is
used to execute I/O-intensive tasks. These 13 threads fetch tasks matching their device types from the
task buffer continuously. If any resource is available, the threads submit the fetched task for execution
immediately. This way, the computing module has 13 tasks executed on one worker node in parallel.
With a heterogeneous architecture policy, HTDcr can fully use various resources on the worker node.

6 Improvement of usability

HTDcr needs to do more than execute HTC applications efficiently on supercomputers. The usability of
the system is also critical. It needs to provide robust and reliable HTC services, user-friendly programming
workflow, and multiuser/multijob support. The following efforts are taken to improve usability.

6.1 Programmable execution workflow

Like HTCondor, deploying HTC applications on HTDcr comprises four phases: (1) discretize the job
into smaller tasks; (2) preprocess the inputs; (3) execute tasks on the HTC framework; (4) postprocess
the results. Many HTC workloads are actually nontrivial for manual splitting. HTCondor requires users
to parallelize the workflow through file splitting or parameter passing and decomposes the job before
submission. However, a key difference from HTCondor is that all these phases in the workflow of HTDcr
are programmable via the programming model and concise API provided by HTDcr. This design offers
two advantages. First, HTDcr has more flexibility in determining how jobs should be decomposed.
Second, it allows HTDcr to dynamically decompose and schedule tasks according to the load of the
cluster during job execution. To develop applications based on the programming model, users must

Jiang J Z, et al. Sci China Inf Sci January 2024, Vol. 67, Iss. 1, 112104:8

DCQ NQ

DQ

Decomposer

CnTable

Group1

Group2

Group3

Node1

Node2

RQ

HeartBeat

6. Notice to delete T1

T1

R1

HeartBeat

Nodes info 3. Send tasks

Overtime task put back to DCQ

1. Decompose job

2. Task scheduling

4. Transfer tasks to DQ

5. Get result R1

Figure 4 (Color online) Overall architecture of the recalculation mechanism.

define the following three contents. (1) Describe the data members in the task and result. (2) Implement
decomposition, calculation and reduction APIs in the decomposer, calculator, and reducer. (3) Create job
templates and integrate all involved classes into HTDcr. First, the information required for calculation as
the data member of the computation task class is defined. Afterward, the information of the calculation
results required for reducing is defined as the data member of the result, similar to how the mapper and
reducer [16] are implemented in the Hadoop [17], inherit and implement the decomposer, calculator, and
reducer classes predefined by HTDcr.

6.2 Mechanisms for more robust and reliable service

6.2.1 Recalculation mechanism

Recalculation mechanism for computing module failure and task loss. The recalculation mechanism is
used for computing the module failure and task loss. In a long-term executing process on the large-scale
cluster, worker node failures are common. Even if all nodes run without failure, peripheral device failures
(e.g., network) may occur, resulting in packet loss of tasks. To solve this problem, HTDcr manages tasks
in the scheduling module (Figure 4). The DCQ (decompose queue), NQ (node queue), and DQ (deleted
queue) are task queues at different stages in the task management system. The RQ (received queue) is
the result queue used for receiving the calculation results from the worker nodes. The scheduling module
maintains a task buffer NQ, DQ, and RQ for each worker node.

The task dispatch process is as follows. (a) Decomposers decompose jobs from the job manager into
tasks and add them to the DCQ. The decomposer works periodically; the number of tasks decomposed
in each cycle depends on the system load. The task management system puts the DCQ tasks into the
NQ and sends them to the worker nodes according to the scheduling strategy and the load of each node.
(b) When the scheduling module sends a task to the worker node from the NQ, it does not directly
discard the task but transfers it to the DQ and saves the current timestamp. (c) After the scheduling
module receives results from worker nodes, it deletes the corresponding tasks in the DQ. Therefore, each
task will only stay in the DQ before receiving the result. If the residence time of a task in the DQ
exceeds the threshold, the monitor determines that the task is lost and moves it from the DQ back to
the DCQ. In the DCQ, the task is resent to the worker node. The threshold for the task timeout is
estimated as follows: T is the execution time of a task, which can be obtained after the first few results
are returned. L is the maximum length of the task queue on the worker node. N is the number of
devices on the worker node. Additionally, there is an ongoing task on each device. So, a task can be
completed at most Tmax = TL

N + 1 time on the worker node. Considering some other overheads (such
as the performance degradation caused by the overheating of devices and communication delays), the
threshold for task timeout is set as Tloss = αTmax. (d) If a worker node loses connection to the scheduling
module, the monitor confirms that the worker node is unavailable and deletes it from the CnTable. At
the same time, all tasks of the lost node in the DQ (regardless of whether they are timeout or not) and
NQ of the worker node are considered invalid, and all tasks are moved back to DCQ. This way, incorrect
workload results on HTDcr due to the loss of tasks and worker node failure are eliminated.

Jiang J Z, et al. Sci China Inf Sci January 2024, Vol. 67, Iss. 1, 112104:9

6.2.2 Checkpoint mechanism

Check-point mechanism for the scheduling module failure. The checkpoint mechanism is used for inves-
tigating the failure of the scheduling module. The checkpoint mechanism is a relatively mature fault-
tolerant mechanism [18]. Different systems have their specific implementations. During the execution
of workloads on large-scale clusters, the failure of the scheduling module can result in the collapse of
the entire computing system. HTDcr sets up a backup thread on the scheduling module to save the
current execution context regularly. The saved context mainly includes as following. (a) Job information
submitted by users, including job identification, specific content, and type. (b) Status of all decomposers:
large jobs cannot be completely decomposed at once. The submitted job may be in the waiting (not yet
decomposed), running (partially decomposed), or decomposed states. Therefore, the context of each job
in the decomposer must be retained. (c) Tasks in the buffer of the scheduling module are decomposed,
including tasks in the DCQ, NQ, and DQ of each node. The backup information is loaded and checked
after restarting the scheduling module. The execution context before failure can be restored, which may
lose at most one backup cycle of computing results for the job in progress. The computing module on
worker nodes reconnects to the scheduling module and resends its current status.

6.3 Fine-grained resource allocation system

When multiple jobs are deployed on a cluster, the framework can allocate computing resources among
different workloads. HTDcr does not use the traditional method of isolating the hardware to each job for
resource allocation (entire-occupied allocation). Instead, it controls the proportion of computing resources
each job uses by adjusting the dispatching speed of tasks. This way, different jobs can be allocated and
scheduled on the shared nodes at a task level. The design principle of resource allocation algorithms is
that the more computing resources a job requires, the more tasks of the job are sent in a cycle.

If the number of tasks (total compute resources) that can be sent in a scheduling cycle exceeds the
sum of the lower bound of all jobs, the lower bound of each job is first guaranteed. Then, the remaining
computer resources are divided equally (resources enough allocation). Otherwise, the computational
resources are divided according to the ratio of the lower bound of each job (resources limited allocation).
In Algorithm 3, the number of free slots of task buffer on all worker nodes is denoted as C. The job list is
denoted as A, and the i-th job is represented as A[i]. The maximum and minimum numbers of tasks that
a job can send in each cycle are denoted as lb and ub, respectively. The sum of lb of all jobs is denoted
as S. If C exceeds S, the computing resources in the system are sufficient to meet the requirements of all
jobs. In this case, HTDcr adopts Algorithm 3 for resource allocation; otherwise, it adopts Algorithm 4.
In Algorithm 3, HTDcr first meets the minimum resource requirements lb of each job when allocating
resources. The remaining resource C − S is equally distributed among all jobs. The resources obtained
for each task cannot exceed ub at most. In Algorithm 4, the summation of lb from A[0] to A[i] is denoted
as S1[i], the ratio of S1[i] to S is denoted as P [i], and the number of resources allocated to A[i] is denoted
as N [i]. The scheduling module first generates a random number between [0, 1]. The computing resource
is allocated to A[i] corresponding to the P [i] interval where the random number is located. That is, the
Monte Carlo method [19] is used to determine the job to which each computing resource is allocated.
Consequently, all computing resources are allocated according to the proportion of lb of each job in S.

Algorithm 3 Resources enough allocation

Require: C: total amount of computing resources;

S: sum of lb for all jobs;

AL: length of the job list;

A[t0, . . . , tAL−1]: job list;

Ensure: M = {〈ti, ni〉|0 6 i 6 AL − 1}: Jobs and resources

allocate to Jobs;

1: M = ∅, i = 0;

2: benefit = (C − S)/AL;

3: while i < AL do

4: t = A[i];

5: n = min(lb(t) + benefit,ub(t));

6: M = M ∪ {〈t, n〉};
7: C = C − n;

8: i = i+ 1;

9: end while

Jiang J Z, et al. Sci China Inf Sci January 2024, Vol. 67, Iss. 1, 112104:10

Algorithm 4 Resources limited allocation

Require: C: total amount of computing resources;

S: sum of lb for all jobs;

AL: length of the job list;

A[t0, . . . , tAL−1]: job list;

Ensure: M = {〈ti, ni〉|0 6 i 6 AL − 1}: Jobs and resources

allocate to Jobs;

1: M = ∅;
2: for i = 0 to AL do

3: N [i] = {0};

4: S1[i] =
∑

i

0 lb(A[i]), P [i] =
S1[i]

S
;

5: end for

6: while C > 0 do

7: Generate a random number r in [0, 1];

8: i = 0;

9: while P [i] < r do

10: i = i + 1;

11: end while

12: t = A[i];

13: if N [i] == ub(t) then

14: Continue;

15: end if

16: N [i] = N [i] + 1;

17: C = C − 1;

18: end while

19: for i = 0 to AL do

20: M = M ∪ {〈A[i], N [i]〉};

21: end for

Table 1 A brief introduction to the workloads in the experiments

Workload Applications Usage Platform

T1 Microbenchmark (diffrent time tasks) Throughput evaluation Tianhe-2

T2 Microbenchmark (diffrent time tasks) Throughput evaluation Tianhe-2

E1 Microbenchmark (1 s tasks) Efficiency evaluation Tianhe-2

E2 Microbenchmark (8 s tasks) Efficiency evaluation Tianhe-2

E3 Microbenchmark (64 s tasks) Efficiency evaluation Tianhe-2

S1 Brute-force password guessing Maximum nodes evaluation Sunway TaihuLight

S2 Microbenchmark (1 s tasks) Maximum throughput evaluation Tianhe-2

S3 Microbenchmark (1 s tasks) Task management system evaluation Tianhe-2

F1 Brute-force password guessing Fault tolerance system evaluation Tianhe-2

R1 Brute-force password guessing Multi-job resource allocation evaluation GPU cluster with 4 nodes

7 Experiment

7.1 Experimental setup

7.1.1 Configuration

Most of the experiments are conducted on the Tianhe-2 [20]. Each node has two Intel Xeon E2-2692v2
CPUs (i.e., 12 cores each and a total of 24 cores) running at 2.2 GHz. Each node has 64 GB of mem-
ory. The nodes are connected with Tianhe Express-2. The scalability test is conducted on the Sunway
TaihuLight supercomputer [21] equipped with SW26010 many-core processors. The master node has
one Xeon E5-2680 v3 CPU (12 cores) running at 2.50 GHz and 32 GB of memory. The worker nodes
have an SW26010 CPU (65 cores) running at 1.25 GHz. Each node has 8 GB of memory. The experi-
mental data for comparison of HTCondor and SLURM is adopted from our previous work [8]. Besides,
microbenchmarks are performed with the same configuration for HTDcr.

7.1.2 Workload

A brief introduction to the workloads used in the experiments is presented in Table 1. Each section has a
more detailed description of the workload configurations. Microbenchmark refers to programs that run
for a specified time and have no practical use, such as the sleep system call, and are used for performance
testing. Multiple microbenchmarks are designed for evaluation.

Brute-force password guessing can be described as follows: in offline password guessing, researchers
typically possess a known Hash function H() (such as MD5) and a ciphertext cipher. To determine if
the password satisfies H(pwd) = cipher, a set of password candidates, pwd1, . . . , pwds, to be tried in the
Hash function should be generated according to some specific methods first. Then, researchers Hash the
generated password candidates in turn and compare the Hash results with the knowing cipher. If the
Hash result of pwdi matches with cipher, the origin password is considered pwdi.

BLAST [22] is a gene sequence query program that can search in the designated gene database
according to the submitted gene sequence and output the sequence number and similarity of the most
matching gene sequence. BLAST can query different database shards in parallel by splitting the gene
database. The entire query job for the gene database is broken down into several small tasks for querying

Jiang J Z, et al. Sci China Inf Sci January 2024, Vol. 67, Iss. 1, 112104:11

the data blocks. The BLAST experiment chooses the wgs gene and the other genomic gene databases
with sizes of 195.7 and 239 GB, respectively. The wgs and other genomic databases are divided into 1957
and 2390 data blocks with sizes of 100 MB, respectively, with 4347 tasks in total.

Rainbow table search [23] adopts a precalculated table for password guessing. It includes four steps
and can be roughly divided into two stages. The first stage includes step 1 and step 2, the GPU-intensive
chain calculation and CPU-intensive endpoint merging. Because of the different computing types, the two
types of tasks can be executed in parallel. The second stage includes step 3 and step 4, the I/O-intensive
file reading and the GPU-intensive endpoint matching. Steps in the second stage can only be started after
the first stage is completed. In the first stage of executing the rainbow table search with heterogeneous
architecture strategy, GPU-intensive step 1 and CPU-intensive step 2 can be executed in parallel and the
execution time covers each other. In the second stage, I/O-intensive step 3 tasks are executed in parallel
with the GPU-intensive step 4 tasks. The execution time can be covered.

Tasks with running times of 1 and 2 s are defined as task1 and task2. (1) T1 comprises task1, task2,
task4, task8, task16, and task32, with a total of 60000 tasks. T1 is chosen to evaluate the system’s
throughput because it contains various tasks with different execution times, which can simulate the
multijob execution in reality. T2 has no calculations and I/O operations and comprises 10000000 “sleep
0” tasks. Essentially, execution overhead per task in T2 is about 0.08 s. T2 was chosen to evaluate the
performance of HTDcr when encountering a burst of short-time tasks. (2) The test workloads E1, E2,
and E3 comprise task1, task8, and task64, respectively. Each job contains 100000 tasks. E1, E2, and E3
are chosen to evaluate the efficiency of HTDcr. Different execution time tasks are set to observe whether
the execution time impacts efficiency. The execution time of each task in E2 is 1 s, the execution time
of each task in E2 is 8 s, and the execution time of each task in E3 is 64 s. This covers short-duration
tasks, medium-duration tasks, longer-duration tasks, and the evaluation results are more comprehensive.
(3) Brute-force password guessing is used as the workload S1. Since S1 is used for evaluating the maximum
number of nodes the system can manage, a real-world application has to be used. This way, the user
of this application can provide financial support for running the HTDcr for long periods of time on tens
of thousands of nodes. The configuration of the workload S2 in this experiment is the same as the
configuration of workload T2. S2 is chosen to evaluate the maximum task throughput of HTDcr, very
short-time tasks are needed to push the system to the limit of HTDcr. S3 comprises 1000000 short-time
tasks to evaluate the performance of the task management system. (4) Since F1 is used for evaluating fault
tolerance mechanism of HTDcr, a real-world application must be used in order to verify the correctness
of the final result. Brute-force password guessing application is used as the workload F1. (5) BLAST
is a gene query program that requires frequent data loading from the storage system. It is suitable for
the evaluating lifting effect of the task dispatching strategy designed for shared storage cluster. Rainbow
table search is an application with multiple phases having distinct resource necessities. It is suitable for
evaluating lifting effect of task dispatch strategy designed for heterogeneous clusters.

7.2 Overall evaluation of HTDcr

7.2.1 Throughput comparison

Task throughput can reflect the advantages and disadvantages of the distributed system architecture
and the optimization effect. It is an important indicator of the system’s ability to handle large-scale
HTC applications. In the face of large-scale computing clusters, an inefficient task scheduler significantly
degrades the HTC system performance. To compare the throughput of HTDcr with that of HTCondor
and SLURM, tests were conducted on Tianhe-2 with 60 nodes and 1200 cores (20 cores per node, and each
executor is assigned to a core on a worker node). T1 and T2 are adopted as the experimental workload in
this section. The experimental data of HTCondor and SLURM are adopted from our previous work [8].

The results are shown in Figure 5. The theoretical maximum throughput refers to the task throughput
achieved under the assumption that the job is executed on a single worker node with 1200 CPUs. The
theoretical maximum throughput is calculated as Throughputmax = Nt/Tbest, Tbest = Tc/Nc. Nt rep-
resents the total number of tasks, Tbest represents the theoretical optimal execution time of the job, Tc

represents the time required for one core to execute Nt task, and Nc represents the number of processors.
When T1 is submitted through SLURM, the task throughput is 26.74 tasks/s, which is much lower

than that of HTCondor and HTDcr. The rationale behind this is that the tasks executed on each node
are randomly allocated by SLURM rather than based on the load of nodes and task time, which causes
a serious load imbalance. When T1 is submitted to HTCondor and HTDcr, the task throughput is 81.23

Jiang J Z, et al. Sci China Inf Sci January 2024, Vol. 67, Iss. 1, 112104:12

0

20

40

60

80

100

120

140

160

T
as

k
 t

h
ro

u
g
h
p
u
t

(s
)

Job T1 throughput comparison

SLURM

HTCondor

HTDcr

Theoretical maximum

0

2000

4000

6000

8000

10000

12000

14000

16000

T
as

k
 t

h
ro

u
g
h
p
u
t

(s
)

Job T2 throughput comparison

SLURM

HTCondor

HTDcr

Theoretical maximum

(a) (b)

Figure 5 (Color online) Throughput comparison. (a) Job T1; (b) job T2.

0.92
0.91

0.92

0.91

0.91
0.94

0.94

0.93 0.92 0.93

0.95

0.95

0.94 0.94 0.94

0.6

0.7

0.8

0.9

1.0

1.1

1.2

128 256 512 1024 2048

E
ff

ic
ie

n
cy

Number of executors

E1

E2

E3

Figure 6 (Color online) HTDcr efficiency.

and 105.15 tasks/s, respectively. The HTDcr throughput is 1.3 times that of HTCondor, which is closer
to the theoretical maximum throughput.

Since SLURM cannot directly run such a large-scale job, the experiment is adjusted when submitting
the T2 job through SLURM. The task is randomly assigned to each worker node for parallel execution
in advance, which is equivalent to concurrently executing the “sleep 0” program on a single worker node.
So the SLURM throughput seems to be relatively high when running T2. SLURM frequently creates
and destroys processes when performing tasks. However, HTDcr only needs to use threads in the thread
pool to obtain tasks from the task buffer, which has a small overhead. Therefore, the HTDcr throughput
still slightly exceeds that of SLURM. When T2 is submitted to HTCondor, the task throughput is only
346.26 tasks/s. It is only 1/40 of HTDcr. This trend is mainly because the task scheduler of HTCondor
suffers from a severe performance bottleneck when the computing cluster is expanded to a certain scale
and the execution time of the task is short. Consequently, many computing processes cannot obtain
tasks.

7.2.2 Comparison of efficiency

To further explore how task execution time and the number of worker nodes impact the HTDcr perfor-
mance, efficiency is used to show the evaluation results. The calculation formula for efficiency is given as
follows: Ep = Sp/N . Speedup is defined as Sp = T1/Tn. Here Tn is the execution time using n executors,
and N is the total number of executors. The test workloads E1, E2, and E3 are used herein. The worker
nodes gradually increase from 16 to 256 nodes (8 cores per node, and each executor is assigned to a core
on a worker node). The number of worker nodes doubles each time.

The experimental results are shown in Figure 6. HTDcr can achieve high efficiencies even with short
tasks (91% in the worst case with 2048 executors and 1-s tasks). There is less than a 5% loss in efficiency
when the number of executors increases from 128 to 2048. In the worst-case scenario, HTDcr achieves
a speedup of 1863 with 2048 executors and task1. With task64 (64-s tasks) and 2048 executors, the
speedup is 1905. In contrast, it can be roughly inferred from Figure 5 that HTCondor is inefficient when

Jiang J Z, et al. Sci China Inf Sci January 2024, Vol. 67, Iss. 1, 112104:13

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

110.00

0
12

0
24

0
48

0
60

0
72

0
84

0
96

0
10

80
12

00
13

20
14

40
15

60
16

80
18

00
19

20
20

40

N
o
rm

al
iz

ed
 C

P
U

 u
sa

g
e

(%
)

Elapse of time (s)

SLURM and HTCondor CPU usages

SLURM

HTCondor

600 s

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

110.00

0
12

0
24

0
48

0
60

0
72

0
84

0
96

0
10

80
12

00
13

20
14

40
15

60
16

80
18

00
19

20
20

40

N
o
rm

al
iz

ed
 C

P
U

 u
sa

g
e

(%
)

Elapse of time (s)

HTDcr CPU usage

HTDcr

120 s

(a)

(b)

Figure 7 (Color online) Normalized CPU usage of different frameworks during job execution. (a) SLURM and HTCondor CPU

usage; (b) HTDcr CPU usage.

facing large-scale and very short tasks. This is also mentioned in Falkon [12].
Figure 7 shows the CPU usage when the E2 load is submitted to HTDcr. The CPU usage information

of HTCondor and SLURM in Figure 7 is measured in our previous work [8]. The CPU usage curve of the
HTDcr framework is relatively steep, whereas the CPU usage curves of HTCondor and SLURM are more
gradual. This is because HTCondor and SLURM have some idle worker nodes before the execution or
after the completion of all tasks, respectively. The HTDcr framework uses worker nodes more efficiently.
In the later stage of job execution, the CPU usage of all three frameworks is extremely low because most
of the tasks are completed, and only a few tasks are still waiting to be executed.

7.3 Evaluations of optimizations for throughput enhancement

7.3.1 Evaluation on task management system

To evaluate the performance gains of the task management system, workload S3 is used. Experiments
are conducted on 10 worker nodes. The time spent on basic task operation functions (such as creating,
terminating, and moving tasks) is measured, and task operations of the designed task management system
and naive task operations are compared. The result is shown in Figure 8. The overall task operation
time of the task management system is only 1/3 of the naive task operation time. This greatly improves
the affordable throughput of the HTDcr scheduling module.

The maximum task throughput of HTDcr is also evaluated. The configuration of the workload S2

in this experiment is the same as that of workload T2 in Subsection 4.1. The experiment is conducted
on Tianhe-2. Twenty cores are allocated on each node, and the number of nodes is scaled up until
HTDcr suffers from a severe performance issue. The worker nodes managed by HTDcr show an obvious
load imbalance when the task throughput of HTDcr reaches 30000 tasks/s. This trend means that the
scheduling node of HTDcr is the performance bottleneck of the entire system. Therefore, the throughput
limit of the HTDcr framework is 30000 tasks/s.

Jiang J Z, et al. Sci China Inf Sci January 2024, Vol. 67, Iss. 1, 112104:14

0

500

1000

1500

2000

2500

3000

3500

4000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

T
as

k
 m

an
ag

em
en

t
o
v
er

h
ea

d
 t

im
e

(n
s)

Task ID

Naive operation Operation through task management system

Figure 8 (Color online) Comparison of task operation time. The red and green lines are the latencies of naive task operation

and task management systems, respectively.

0

500

1000

1500

2000

2500

3000

0

5000

10000

15000

20000

25000

0
80

0
16

00
24

00
32

00
40

00
48

00
56

00
64

00
72

00
80

00
88

00
96

00

10
40

0

11
20

0

12
00

0

12
80

0

13
60

0

14
40

0

15
20

0

16
00

0

T
h
ro

u
g
h
p
u
t

(s
)

N
u
m

b
er

 o
f

n
o
d
es

Job execution time (s)

Number of nodes Decompose task throughput

Dispatch task throughput Receive result throughput

Figure 9 (Color online) Long running on the Sunway TaihuLight.

7.3.2 Evaluation of scalability of HTDcr

To test the scalability and robustness of HTDcr, experiments are conducted to push HTDcr to its limits.
First, the maximum number of nodes that HTDcr can handle is evaluated. The brute-force password-
guessing application is used as the workload S1 here. The experiment is conducted on the Sunway
TaihuLight with 20000 nodes of eight executors per node, giving a total of 20000× 8 = 160000 executors.
S1 comprises 29 different jobs. Each job calculates and matches a batch of passwords using different Hash
functions (such as MD5 [24] and SHA1 [25]). Every job is broken down into 100-s tasks.

Figure 9 shows that the tasks sent by the HTDcr distributor (green line) are roughly equivalent to the
number of tasks decomposed by the decomposer (purple line). After the number of nodes managed by
HTDcr stabilizes, the results received by HTDcr (orange line) are at about the same rate as the tasks sent
and decomposed by the distributor and decomposer, respectively. The throughput is 1300 tasks/s. The
red line represents the number of worker nodes managed by HTDcr, which increases from 0 to 20000 in
1600 s. According to our measurement, the memory usage of the scheduling module is kept at 4 GB, and
the memory of a single node on the Sunway TaihuLight is 32 GB. This shows that HTDcr can manage
at least 20000 nodes, and there is room for further increase.

7.4 Evaluation of scheduling strategy

Here, two real-world applications are used to evaluate the performance gain of cluster task scheduling,
which integrates with application and hardware. The first test is conducted on Tianhe-2 with eight nodes
(one executor per node). As shown in Figure 10, for applications, such as BLAST, that require frequent
data loading from the storage system, the strategy designed for shared storage has obvious performance
improvement over the SQF policy. According to our experiments, the task-scheduling integration with
the application and cluster architecture (share storage strategy) increases the performance of the blast
application by 1.7×. This is because a shared storage strategy can effectively leverage the memory as a

Jiang J Z, et al. Sci China Inf Sci January 2024, Vol. 67, Iss. 1, 112104:15

0

200

400

600

800

1000

1200

Node 1 Node 2 Node 3

F
in

is
h
 t

im
e

(s
)

F
in

is
h
 t

im
e

(s
)

Comparison of rainbow table search

adopting heterogeneous and SQF policy

Heterogeneous policy SQF policy

0

1000

2000

3000

4000

5000

6000

Data Group2 Data Group1

Comparison of BLAST adopting

shared storage and SQF policy

SQF policy Shared storage policy

(a) (b)

Figure 10 (Color online) Evaluation of task scheduling policy of HTDcr. (a) Evaluation on heterogenerous policy; (b) evaluation

on shared storage policy.

33483
32320 32173 32110

20000

22000

24000

26000

28000

30000

32000

34000

36000

F
in

is
h
 t

im
e

(s
)

Job completed time when node

failure or task loss happens

Scheduler node failed Compute node failed

Task loss Normal finish

26634

24066

23318 2329823308 2329823298 23298

21000

22000

23000

24000

25000

26000

27000

Send tasks Receive results

T
h
e

am
o
u
n
t

o
f

ta
sk

s
an

d
 r

es
u
lt

s

Tasks sent and results received to complete job

when node failure or task loss happens

Scheduler node failed

Compute node failed

Task loss

Normal finish

(a) (b)

Figure 11 (Color online) Evaluation of fault tolerance mechanism. (a) Evaluation on job completed time; (b) evaluation on tasks

sent and result received.

cache for redundant data on the shared storage cluster, which mitigates the performance penalty brought
by the I/O. The second test is conducted on Tianhe-2 with three nodes and 24 executors (eight executors
per node). The result is shown in Figure 10. The heterogeneous cluster strategy helps the performance of
the rainbow table search application increase by 1.9× over the default SQF policy. For applications, such
as the rainbow table search, which comprises different types of tasks, the integration of task scheduling
with application and hardware has several performance benefits.

7.5 Evaluation of usability of the framework

7.5.1 Evaluation of fault tolerance mechanism

This experiment tests the fault tolerance mechanism of HTDcr. The brute-force password-guessing
application is used as the workload F1 in the experiment. The experiment uses F1 as a workload to
compute the MD5 Hash function on Tianhe-2 with 256 worker nodes (1 executor per node, and the
executor is assigned to run on the V100 GPU of the worker node). Job F1 is divided into 23298 tasks,
and the approximate running time of each task is 300 s. The faults are manually simulated and created.

As shown in Figure 11, (1) if no failure or packet loss occurs, the number of tasks sent by HTDcr is
equal to the number of results returned, both being 23298. (2) The timeout threshold for 10 tasks is set
to 100 s, which is shorter than the preset task loss time. When these tasks are incomplete on the worker
nodes, the scheduling module judges these 10 tasks as lost and resends them. So 10 more tasks are sent
compared with all results received (23308 vs. 23298) when the job is completed. (3) The computing
module processes on two worker nodes are killed and restarted after 30 s. When the scheduling module
does not receive heartbeat packets from the computing module processes, these two worker nodes are
judged to be down. Furthermore, the uncompleted tasks on these two nodes are resent to other nodes.
Since the task buffer size on each node is 10, the final number of tasks sent by HTDcr is 20 more than
the number of results received (23318 vs. 23298). (4) The scheduling module process is killed in half
of the backup cycle (15 min). When the process is restarted, all tasks in the task buffer of the worker
nodes are resent (256× 10). The completed tasks (256× 3) in the first 15 min of the latest backup cycle

Jiang J Z, et al. Sci China Inf Sci January 2024, Vol. 67, Iss. 1, 112104:16

Table 2 Test cases to verify the multijob resource allocation system

Cases Case1 Case2

Group G1 G2 G3 G4 G5 G6 G7 G8

lb 800 800 400 400 800 800 400 400

P (s) 4096 4096 4096 4096 4096 20480 4096 4096

Estimated time (s) 12228 12228 16384 16384 12288 32768 20480 20480

Actual finish time (s) 11033 10759 15000 14917 10668 29530 18485 18675

Relative error (%) 11 14 9 10 15 11 11 10

are recalculated because the results have not been saved into a file. Thus, 3328 tasks are resent, and 768
results are received again, coinciding roughly with the test results (26634 vs. 24066).

The completion time of the F1 workload in four experiments is shown in Figure 11. The task loss
and worker node failure slightly affect the job completion time because lost tasks are quickly reassigned
to other worker nodes. The time loss caused by the failure of the scheduling module is 1300 s. These
include the time loss of unsaved results in the first 15 min of the backup cycle and the time consumption
of manually restarting the process. The time loss only accounts for 4% of the total execution time.

7.5.2 Evaluation of multi-job resource allocation of HTDcr

This subsection mainly focuses on resource allocation among multiple jobs. The experiment is designed to
verify whether the resource allocation mechanism for multiple jobs works well. The brute-force password-
guessing application is used as the workload R1 in the experiment. MD5 is the Hash function used by
R1. R1 is deployed on a cluster with four nodes; each node is equipped with 8 NVIDIA GTX 1080, and
each executor is assigned to run on the GPU of a worker node. Each worker node has two Xeon E5-2609
v3 CPUs running at 1.90 GHz. Each worker node has 128 GB of memory.

Table 2 shows the test cases in the experiment. The first test case contains four jobs with exactly
the same content. Also, lb is the minimum number of tasks that a job can send in a scheduling cycle,
which is discussed in Subsection 3.5. P is the time required when a job is performed using all computing
resources. The computational complexity of a job can be seen from the value of P . The P value of each
job is 4096 s in the first test case. Each job is divided into 2185 tasks, and the approximate running time
of each task is 60 s. The second test case also contains four jobs. The P value of G6 in the second test
case is five times that of other jobs, which takes 20480 s. G6 is divided into 4370 tasks; the approximate
running time of each task is 120 s. The other jobs are the same as the jobs in test case 1. The relative
error between the actual (act) and estimated (est) execution times can be calculated as |est − act|/act.
The smaller the relative error between estimated and actual execution times, the better the performance
of our resource allocation mechanism. The estimated execution time is estimated using Algorithms 3
and 4.

The results of our experiments are presented in Table 2. The actual execution time is quite close to
our estimated time in all test cases: the maximum relative error is 15%, and the average relative error
is 11%. The experiment results of the multijob resource allocation system show that HTDcr can support
the simultaneous execution of multiple jobs, and the efficiency loss of the multijob execution is small,
which meets the requirement of an HTC framework to deploy multiple jobs.

8 Conclusion

Herein, we propose a job execution framework HTDcr targeting high-throughput applications. We focus
on improving the throughput and usability of the framework. Various optimizations and designs are im-
plemented to improve the throughput, including a fine-tuned task management system and hierarchical
scheduling. The efforts to improve usability include a programmable workflow (decompose, compute,
and reduce) and task-level fault tolerance. The evaluations on both microbenchmarks and real-world
applications show that HTDcr can achieve outstanding throughput and scalability on the Tianhe-2 and
TaihuLight supercomputers. The evaluation of usability also yields results in line with design expecta-
tions.

Acknowledgements This work was supported by National Key R&D Program of China (Grant No. 2021YFB0301300), Na-

tional Natural Science Foundation of China (Grant No. U1811461), Zhejiang Lab (Grant No. 2021KC0AB04), Major Program

Jiang J Z, et al. Sci China Inf Sci January 2024, Vol. 67, Iss. 1, 112104:17

of Guangdong Basic and Applied Research (Grant No. 2019B030302002), Program for Guangdong Introducing Innovative and

Entrepreneurial Teams (Grant No. 2016ZT06D211).

References

1 Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol, 2008, 26: 1135–1145

2 Houshmand S, Aggarwal S, Flood R. Next gen PCFG password cracking. IEEE Trans Inform Forensic Secur, 2015, 10:

1776–1791

3 Ward L, Sivaraman G, Pauloski J G, et al. Colmena: scalable machine-learning-based steering of ensemble simulations for high

performance computing. In: Proceedings of the IEEE/ACM Workshop on Machine Learning in High Performance Computing

Environments (MLHPC), 2021. 9–20

4 Casalino L, Dommer A C, Gaieb Z, et al. AI-driven multiscale simulations illuminate mechanisms of SARS-CoV-2 spike

dynamics. Int J High Perform Comput Appl, 2021, 35: 432–451

5 Caporaso J G, Lauber C L, Walters W A, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq

and MiSeq platforms. ISME J, 2012, 6: 1621–1624

6 Fajardo E M, Dost J M, Holzman B, et al. How much higher can HTCondor fly? J Phys-Conf Ser, 2015, 664: 062014

7 Karo M, Lagerstrom R, Kohnke M, et al. The application level placement scheduler. Cray User Group, 2006, 1–7

8 Yu W, Shen Y X, Li L, et al. Teno: an efficient high-throughput computing job execution framework on Tianhe-2.

In: Proceedings of the 20th International Conference on High Performance Computing and Communications, 2018. 408–

415

9 Thain D, Tannenbaum T, Livny M. Distributed computing in practice: the Condor experience. Concurr Comput-Pract Exper,

2005, 17: 323–356

10 Yoo A B, Jette M A, Grondona M. SLURM: simple Linux utility for resource management. In: Proceedings of the Workshop

on Job Scheduling Strategies for Parallel Processing, 2003. 44–60

11 Goiri ı́, Le K, Haque M E, et al. Greenslot: scheduling energy consumption in green datacenters. In: Proceedings of the

International Conference for High Performance Computing, Networking, Storage and Analysis, 2011. 1–11

12 Raicu I, Zhao Y, Dumitrescu C, et al. Falkon: a fast and light-weight task execution framework. In: Proceedings of the

ACM/IEEE Conference on Supercomputing, 2007. 1–12

13 Raicu I, Zhang Z, Wilde M, et al. Enabling loosely-coupled serial job execution on the IBM BlueGene/P supercomputer and

the SiCortex SC5832. 2008. ArXiv:0808.3536

14 Merzky A, Turilli M, Titov M, et al. Design and performance characterization of RADICAL-Pilot on leadership-class platforms.

IEEE Trans Parallel Distrib Syst, 2021, 33: 818–829

15 Hagras T, Janeček J. Static vs. Dynamic list-scheduling performance comparison. Acta Polytech, 2003, 43: 6

16 Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. Commun ACM, 2008, 51: 107–113

17 Shvachko K, Kuang H, Radia S, et al. The hadoop distributed file system. In: Proceedings of the 26th Symposium on Mass

Storage Systems and Technologies (MSST), 2010. 1–10

18 Hursey J, Squyres J M, Mattox T I, et al. The design and implementation of checkpoint/restart process fault tolerance for

open MPI. In: Proceedings of the IEEE International Parallel and Distributed Processing Symposium, 2007. 1–8

19 Hammersley J. Monte Carlo Methods. Berlin: Springer, 2013

20 Liao X, Xiao L, Yang C, et al. MilkyWay-2 supercomputer: system and application. Front Comput Sci, 2014, 8: 345–356

21 Fu H, Liao J, Yang J, et al. The Sunway TaihuLight supercomputer: system and applications. Sci China Inf Sci, 2016, 59:

072001

22 Ye J, McGinnis S, Madden T L. BLAST: improvements for better sequence analysis. Nucleic Acids Res, 2006, 34: 6–9

23 Hellman M. A cryptanalytic time-memory trade-off. IEEE Trans Inform Theor, 1980, 26: 401–406

24 Rivest R. RFC1321: The MD5 Message-digest Algorithm. RFC Editor, 1992

25 Eastlake D, Jones P. RFC3174: US Secure Hash Algorithm 1 (SHA1). RFC Editor, 2001

https://doi.org/10.1038/nbt1486
https://doi.org/10.1109/TIFS.2015.2428671
https://doi.org/10.1177/10943420211006452
https://doi.org/10.1038/ismej.2012.8
https://doi.org/10.1088/1742-6596/664/6/062014
https://doi.org/10.1002/cpe.938
https://arxiv.org/abs/0808.3536
https://doi.org/10.1109/TPDS.2021.3105994
https://doi.org/10.14311/490
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1007/s11704-014-3501-3
https://doi.org/10.1007/s11432-016-5588-7
https://doi.org/10.1093/nar/gkl164
https://doi.org/10.1109/TIT.1980.1056220

	Introduction
	Related work
	HTDcr framework design
	Scheduling module
	Computing module

	Throughput improvement
	Fine-tuned task management system
	Hierarchical scheduling and multidispatcher

	Task-scheduling improvement
	Strategy for the shared storage cluster
	Strategy for heterogeneous architecture cluster

	Improvement of usability
	Programmable execution workflow
	Mechanisms for more robust and reliable service
	Recalculation mechanism
	Checkpoint mechanism

	Fine-grained resource allocation system

	Experiment
	Experimental setup
	Configuration
	Workload

	Overall evaluation of HTDcr
	Throughput comparison
	Comparison of efficiency

	Evaluations of optimizations for throughput enhancement
	Evaluation on task management system
	Evaluation of scalability of HTDcr

	Evaluation of scheduling strategy
	Evaluation of usability of the framework
	Evaluation of fault tolerance mechanism
	Evaluation of multi-job resource allocation of HTDcr

	Conclusion

