
SCIENCE CHINA
Information Sciences

January 2024, Vol. 67, Iss. 1, 112101:1–112101:19

https://doi.org/10.1007/s11432-022-3727-6

c© Science China Press 2023 info.scichina.com link.springer.com

. RESEARCH PAPER .
From CAS & CAE Members

Building a domain-specific compiler for emerging
processors with a reusable approach

Mingzhen LI1,2, Yi LIU2, Bangduo CHEN2, Hailong YANG1,2*,

Zhongzhi LUAN2 & Depei QIAN2*

1State Key Laboratory of Software Development Environment, Beijing 100191, China;
2School of Computer Science and Engineering, Beihang University, Beijing 100191, China

Received 1 April 2022/Revised 28 November 2022/Accepted 17 February 2023/Published online 27 December 2023

Abstract High-performance computing and deep learning domains have been motivating the design of

domain-specific processors. Although these processors can provide promising computation capability, they

are notorious for exotic programming paradigms. To improve programming productivity and fully exploit the

performance potential of these processors, domain-specific compilers (DSCs) have been proposed. However,

building DSCs for emerging processors requires tremendous engineering efforts because the commonly used

compilation stack is difficult to be reused. Owing to the advent of multilevel intermediate representation

(MLIR), DSC developers can leverage reusable infrastructure to extend their customized functionalities

without rebuilding the entire compilation stack. In this paper, we further demonstrate the effectiveness of

MLIR by extending its reusable infrastructure to embrace a heterogeneous many-core processor (Sunway

processor). In particular, we design a new Sunway dialect and corresponding backend for the Sunway

processor, fully exploiting its architectural advantage and hiding its programming complexity. To show

the ease of building a DSC, we leverage the Sunway dialect and existing MLIR dialects to build a stencil

compiler for the Sunway processor. The experimental results show that our stencil compiler, built with a

reusable approach, can even perform better than state-of-the-art stencil compilers.

Keywords domain-specific compiler, emerging processor, reusable dialect, performance optimization,

MLIR

1 Introduction

The growing computation demands of high-performance computing (HPC) and deep learning (DL) have
been flourishing in the design of processors, especially with the slowdown of Moore’s law. Emerging pro-
cessors include general-purpose processors, such as RISC-V and Sunway [1], and domain-specific acceler-
ators, such as TPU and Graphcore [2]. These processors are usually designed with unique architectural
features different from the mainstream processors (e.g., x86 CPU and GPU). Such an architectural differ-
ence eventually leads to exotic programming paradigms and barren software ecosystems. For real-world
applications to fully utilize these emerging processors, it is mandatory for domain experts and optimiza-
tion experts to pay great efforts to adapt programming paradigms and manually optimize performance,
which tends to be time-consuming and error-prone.

The common approach to ease programming efforts and achieve high performance is the use of domain-
specific compilers (DSCs, also known as domain-specific languages (DSLs) in existing literature). For
example, DL compilers (e.g., XLA [3] and TVM [4]) perform DL-specific compilation to accelerate the
DL training/inference, whereas compilers for scientific computing (e.g., Pluto [5] and Stella [6]) perform
nested-loop optimizations to accelerate widely used computations, such as stencils. However, these com-
pilers are specialized solutions for mainstream processors with poor portability to emerging processors
because they usually leverage the compiler tool-chains (e.g., LLVM [7]) that may not be available yet
on emerging processors. Therefore, emerging processors are commonly forced to rebuild their own DSCs

*Corresponding author (email: hailong.yang@buaa.edu.cn, depeiq@buaa.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-022-3727-6&domain=pdf&date_stamp=2023-12-29
https://doi.org/10.1007/s11432-022-3727-6
info.scichina.com
link.springer.com

Li M Z, et al. Sci China Inf Sci January 2024, Vol. 67, Iss. 1, 112101:2

from scratch, and it is infeasible to reuse the existing compilation stack, which hinders the prosperity of
their software ecosystem.

The multilevel intermediate representation (MLIR) [8] is a new compiler infrastructure used to build
reusable and extensible DSCs, with its multilevel abstractions that connect the application domains and
hardware targets. It introduces dialects to represent multilevel abstractions. Currently, many DSCs [9–12]
are actively adopting MLIR in their implementations. To incorporate an emerging processor into MLIR,
one should design a hardware-specific dialect, the hardware backend, and corresponding lowering rules.
Afterward, the entire MLIR ecosystem, including dialects (defined by MLIR officially or by other DSCs),
progressive lowering rules, and optimization passes, can be reused, which eases the building of DSCs
targeting emerging processors.

Sunway processors are the principal building block of the Sunway TaihuLight supercomputer that was
the first to achieve the peak performance of 100 PFlops in double precision. The Sunway processor is a
heterogeneous many-core processor with four core groups (CGs), which offers 3.06 TFlops peak perfor-
mance in double precision. Each CG contains an MPE for computation management and 64 simplified
CPEs for computation acceleration. It has unique architecture designs to control the computation hier-
archy and memory hierarchy through a unique programming paradigm (e.g., Athread). However, even
experienced programmers shall spend a considerable amount of time adapting programs to the architec-
ture features for high performance. To our knowledge, only one DSC (MSC [13]) is available on Sunway
that targets the optimization of stencil computation. In this study, we implement a new stencil com-
piler for the Sunway processor. Different from existing studies [13], we built the stencil compiler with
a reusable approach leveraging the MLIR infrastructure. We hope that our work can enrich the MLIR
ecosystem by providing a reference dialect and backend implementation for emerging processors, such as
Sunway, and demonstrate a way to ease the development of DSCs for emerging processors.

Therefore, we propose swLego, which consists of a reusable Sunway dialect and code generation back-
end built with the MLIR infrastructure. It is designed to incorporate the Sunway processor into the
MLIR ecosystem and alleviate the burden of building DSCs on Sunway. From the point of view of MLIR,
the Sunway dialect sits at the same level as the GPU dialect, whereas the Sunway backend sits at the
same level as the LLVM backend (on the MPE side) and NVVM/ROCDL/SPIR-V backend (on the CPE
side). swLego also provides practical ways to exploit the architectural advantages through compilation
optimizations and utilization of highly optimized kernel libraries. We demonstrate the effectiveness of
swLego for building a DSC swLego-stencil, which optimizes the stencil computation on the structural
grid for Sunway processors. The experimental results show that, with such a reusable approach, the engi-
neering efforts for building a DSC can be significantly reduced while achieving a comparable performance
as existing DSCs.

Specifically, this paper makes the following contributions.

• We propose swLego, a Sunway dialect and Sunway backend, extending MLIR with the architectural
features and customized programming paradigm of Sunway processors. swLego broadens the MLIR
ecosystem with support to emerging processors, such as Sunway, and provides a reusable compilation
infrastructure for developing DSCs on Sunway.

• We implement a DSC swLego-stencil using swLego, which optimizes the stencil computation on a
structural grid to demonstrate the reusability of swLego. swLego-stencil supports complex stencils with
arbitrary shapes and inter-kernel dependency in large-scale execution and applies various performance
optimizations, leveraging the compilation stack of swLego.

• We evaluate swLego-stencil with representative benchmarks and provide a sensitivity analysis and
roofline model analysis to study the performance. In addition, we evaluate the scalability in a large-scale
execution. The experimental results demonstrate that the stencil compiler built with swLego achieves
better performance than existing stencil compilers.

The rest of this paper is organized as follows: Section 2 describes the background of the Sunway
processor, MLIR, and stencil DSCs. Section 3 presents the design overview of building a DSC based on
the MLIR infrastructure. Section 4 presents a reusable approach for implementing the Sunway dialect
and Sunway backend. Section 5 presents a case study for building a stencil compiler based on swLego-
stencil. Section 6 presents the evaluation results and compares swLego-stencil with state-of-the-art stencil
compilers. Section 7 concludes the paper.

Li M Z, et al. Sci China Inf Sci January 2024, Vol. 67, Iss. 1, 112101:3

NoC

8×8 CPE

mesh

MPE

M

C

8×8 CPE

mesh

MPE

M

C

8×8 CPE

mesh

MPE

M

C

8×8 CPE

mesh

MPE

M

C

M
em

o
ry

CPE CPE CPE

CPE CPE CPE

CPE CPE CPE

CPE

CPE

CPE

CPE CPE CPE CPE

…

…

…

…

…………
M

em
o
ry

M
em

o
ry

M
em

o
ry

Figure 1 (Color online) Architecture of the Sunway processor.

2 Background and motivation

2.1 Sunway processor and its ecosystem

The Sunway SW26010 heterogeneous many-core processor (Sunway processor for short) runs at 1.45 GHz
and offers 3.06 TFlops peak performance in double-precision floating-point operations. Figure 1 presents
the architecture of Sunway processors. It contains four CGs, where each CG consists of an MPE and 64
CPEs. Specifically, the CPE adopts the cache-less design and has no data cache. But each CPE contains
a 64 KB manually-controlled scratchpad memory (SPM), whose bandwidth and latency are similar to L1
cache. Moreover, the CPEs can transfer continuous data between SPM and main memory through direct
memory access (DMA). Programmers should use the unique programming model, Athread, to leverage
the above computation hierarchy and memory hierarchy explicitly [1].

Although the Sunway processor can provide excellent peak performance, programmers should still
make lots of efforts to utilize its maximum computing power. Firstly, they should keep the architectural
features in mind and focus on (1) managing computation parallelism and task assignment across MPE
and CPEs, (2) allocating and freeing the limited SPM space, and (3) controlling the DMA transfer
between main memory and SPM. Secondly, programmers must write C codes for CPEs carefully with
the customized Athread programming model. The general-purpose compilers for Sunway processor just
support ahead-of-time (AOT) compilation rather than just-in-time (JIT) compilation, therefore they are
customized compilers for Sunway, which can compile C++, C, and Fortran codes for MPE, but can only
compile C codes for CPE (through the sw5cc compiler). A large amount of research studies [14–24] have
been proposed to exploit the uniqueness of Sunway architecture for optimizing application performance
at different scales.

2.2 MLIR

MLIR is a production compiler infrastructure, which provides abstractions (also known as dialects) at
different levels across application domains, hardware targets, and execution environments, as well as the
transformation across these abstractions. Because of the reusable and extensible dialects, MLIR is a
well-suited basis of domain-specific compilers. The compiler developers can maximize the reuse of the
various components of the MLIR ecosystem, and just focus on their unique implementations, such as
the domain- or target-specific definitions and optimizations. Many DL frameworks and compilers (e.g.,
TensorFlow [3], PlaidML [25], ONNX [26]) have already leveraged MLIR to deploy DL models across both
high-performance and embedded CPUs/GPUs. In addition, there are research studies utilizing MLIR
to generate GPU kernels [27], build dense/sparse tensor compilers [9–12, 28], and optimize hardware
accelerator designs [29, 30].

Unfortunately, the MLIR ecosystem only supports mature hardware targets: CPUs and GPUs, includ-
ing ARM CPU, x86 CPU, Nvidia GPU, AMD GPU, and other SPIR-V compatible targets. It means
that the emerging processors cannot connect to the MLIR ecosystem and fail to share the benefits either,
while few studies aim to tackle this problem.

Li M Z, et al. Sci China Inf Sci January 2024, Vol. 67, Iss. 1, 112101:4

2.3 Stencil DSCs

The stencil computations for scientific applications have various computation patterns (i.e., shapes, point
numbers, dimensions) and diverse computation dependencies. And they are executed on various hardware
targets, such as CPU, CPU, and other emerging processors. Therefore, to execute the stencil compu-
tations efficiently with satisfying performance portability, quantities of studies resort to building stencil
DSCs [6,13,31–35]. Specifically, Halide [33] is a domain-specific compiler for image processing, including
the corresponding stencil computations. It allows users to define the stencil computation and the opti-
mizing rules (without concrete parameter settings) separately. Then Halide can perform auto-tuning to
search for the best parameter settings through the genetic algorithm automatically. There are also stud-
ies devoted to improving the auto-tuning technique [36, 37]. Lift [35] is another important programming
framework with a series of reusable parallel primitives. With extensions of two extra parallel primitives,
it has demonstrated the capability to support stencil computations [35]. Artemis [34] focuses on optimiz-
ing multiple-statement stencils with complicated dependencies and generates high-performance CUDA
codes on GPUs. MSC [13] optimizes stencil computation with multiple time dependencies on many-core
processors and generates high-performance stencil codes for large-scale execution. Notably, although
researchers have invested much effort to develop stencil DSCs from various aspects, except a few (only
MSC, to the best of our knowledge), most stencil DSCs are designed for CPU or GPU, missing support
for emerging processors.

2.4 Motivation

The MLIR infrastructure enables building domain-specific compilers across various application domains
and hardware targets through a reusable approach. However, it only provides the reusability for mature
hardware targets (e.g., CPU and GPU) through the pre-defined hardware backends. To realize the missing
support in MLIR for emerging processors such as Sunway, in this paper, we provide a reusable compi-
lation infrastructure on Sunway processor by designing reusable dialect (Sunway dialect) and reusable
backend (Sunway backend) through extending MLIR. Then to demonstrate the effectiveness for easing
the development for domain-specific compiler with the proposed compilation infrastructure, we build a
domain-specific compiler for stencil computation by reusing the Sunway dialect and Sunway backend
as well as existing dialects within MLIR. The contribution of this paper comes from two folds: (1) it
enriches the ecosystem of MLIR by providing a reusable dialect and backend for emerging processors
such as Sunway, and (2) it provides a reusable compilation infrastructure for building domain-specific
compilers with better productivity on Sunway processor. The most relevant work to us is the multi-level
IR rewriting [38]. Although both studies focus on building reusable domain-specific compilers, they are
orthogonal and complementary. Because multi-level IR rewriting [38] adopts the top-down approach by
designing reusable domain-specific frontends based on the existing hardware-specific dialects and back-
ends, whereas our work adopts the bottom-up approach by building a reusable dialect and backend for
all the above frontends.

3 Design overview

Based on the MLIR infrastructure, building domain-specific compilers on emerging processors can be
simplified through many reusable components, including various dialects, conversions within a single
dialect, and optimization passes between dialects. Many mature hardware backends (mainly CPU and
GPU backends) are already connected to the MLIR. They can take the hardware-specific dialects as the
input and generate the executable codes. Generally, a domain-specific compiler contains three parts,
as shown in Figure 2. The frontend takes the domain-specific definition as the input, and converts the
definition to domain-specific dialects. It should provide a programming model design for this application
domain, considering the trade-off between expressibility and efficiency. The intermediate representa-
tion (IR) abstracts the computation with MLIR dialects. The dialects contain domain-specific dialects,
generic dialects, and hardware-specific IR. Various transformations and compilation optimizations across
these dialects are provided, and finally, these dialects are lowered into hardware-specific dialects (e.g.,
llvm/gpu/nvvm dialects). The backend takes the hardware-specific dialects as the input, and generates
executable codes on corresponding hardware targets.

Li M Z, et al. Sci China Inf Sci January 2024, Vol. 67, Iss. 1, 112101:5

std

dialect

scf

dialect

affine

dialect

linalg

dialect

vector

dialect

gpu

dialect
Host

module
Device module

llvm

dialect

x86 CPU

ARM CPU

llvm

runtime

llvm static

compiler

llvmIR

llvm backend

nvvm

dialect

NV GPU

nvvm

compiler

cuda

runtime

Assembly

nvvm backend

rocdl

dialect

AMD GPU

rocm

compiler

rocmhip

runtime

Assembly

rocm backend

spv

dialect

Khronos

targets

…

spir-v backend

not

converged

yet

Sunway

dialect

C code

printer

sw5cc

-slave

sw5cc

-host

MPE

Sunway runtime

C codes

Sunway backend

Sunway processor

swLego

Application

domain

Application

domain

…

…

…
Domain-specific

dialects

Application

domain

Stencil

dialect

swLego
-stencil

Domain-specific

dialects

MLIR infrastructure

CPE CPE …

F
ro

n
te

n
d

B
ac

k
en

d
IR

Figure 2 (Color online) Design overview of building a domain-specific compiler based on the MLIR infrastructure and the

extension of our work (shaded rectangle) to incorporate the Sunway processor.

As shown in Figure 2, there are two kinds of hardware-specific dialects: for CPU and GPU. On CPU,
the llvm dialect is compiled into llvm IR and then passed to the llvm backend, including llvm runtime
(JIT) and the llvm static compiler (AOT), and finally executed on CPUs. On GPU, the gpu dialect
separates the host module to llvm dialect and the device module to the dedicated platform-specific
dialects (nvvm dialect for Nvidia GPU, rocdl dialect for AMD GPU, and spv dialect for OpenCL/Vulkan
targets). The dedicated dialects are then passed to nvvm/rocm/spv backend to compile. In this paper,
we design Sunway dialect and Sunway backend to add support to the Sunway processor into the MLIR
infrastructure and enable easy and efficient construction of domain-specific compilers for this emerging
processor.

4 swLego, a reusable approach

swLego is implemented as a Sunway dialect together with a Sunway backend in the MLIR compiler
infrastructure. Therefore it inherits the benefits provided by the MLIR infrastructure. The core concepts
in MLIR include operations, attributes, regions, blocks, values, and types [8]. An operation is a unit of
semantics in MLIR, and the instructions, functions, and modules can be modeled as operations. The
operations are not fixed, and the user-defined operations are encouraged. The attributes contain the

Li M Z, et al. Sci China Inf Sci January 2024, Vol. 67, Iss. 1, 112101:6

compiler-time information about operations, and their associated operation semantics determines their
meanings. An instance of an operation may contain a list of attached regions, and each region contains a
list of blocks. Each block contains a list of operations, which forms the nesting mechanism in MLIR. A
value represents the data at runtime, and during compile time, its information is stored in a type. Then
a set of relevant operations, attributes, and types can be logically grouped into a dialect and then share
a unique namespace. The dialects are visible to each other, and the dialects can be intermixed, which
provides reusability and extensibility of MLIR. Therefore, we port the Sunway processor to the MLIR
ecosystem by adding a Sunway dialect with customized operations, attributes, and types. After that, the
Sunway dialect is reusable and extensible, similar to other dialects within the MLIR ecosystem.

4.1 Sunway dialect

Sunway dialect provides complete control of MPE and CPE on the Sunway processor while still providing
high-level abstractions. This dialect is abstracted and designed following the programming models and the
programming principles summarized by the optimization experts. The common approach of implementing
high-performance kernels or applications on Sunway processors can be summarized into the following
steps.

(S1) Offloading. Do performance profiling on MPE and identify the time-consuming parts. Then
consider offloading these time-consuming parts to CPEs in the same CG. The CPEs can only run in
the user model and not support interrupt functions. Therefore, they should be explicitly invoked from
the MPE because CPEs aim to provide maximum aggregated performance with simplified architectural
design.

(S2) Task assignment. Decompose the computation task into several sub-tasks and assign the sub-
tasks to CPEs. The granularity of sub-tasks should be coarse enough to make full use of computation
capability, SPM space, and DMA bandwidth. Besides, the programmers should carefully determine the
number of sub-tasks to achieve load balance among CPEs.

(S3) Performance optimizations. Manage the SPM space and DMA transfer to utilize the memory
hierarchy, and apply SIMD vectorization to maximize the computation power. The implementations of
optimizations are tightly coupled with the original algorithms. Sometimes, programmers should develop
new algorithms for extreme performance to apply more optimization.

(S4) Compilation. Compile MPE and CPE codes separately with different compiler options (–host
and –slave), and then link them together to get the executable binary.

The Sunway dialect contains the MPE- and CPE-specific abstractions designed with respect to the
approach described above. Specifically, the Sunway dialect can be classified into data types and six
categories of operations, as shown in Table 1.

Data types. The data types supported by the Sunway dialect include 32-bit integer (i32), 64-bit
integer (i64), 32-bit float (f32), 64-bit float (f64), and pointer (sw.memref, a pointer/reference to a
multi-dimensional tensor), as well as 256-bit vector (because the Sunway processor only supports 256-
bit vectors). Both the main memory shared between MPE and CPEs as well as the SPM on CPEs is
referenced by sw.memref.

Module/function operations. Modules and functions help to form the IR structure of Sunway IR,
and they are implemented as operations in Sunway dialects, which follow the similar design of the builtin
dialect. sw.module contains the code that is intended to be run on Sunway and wraps a set of MPE
and CPE kernels (following (S1) & (S4)). sw.func specifies a kernel executed on CPEs. Each sw.func

has a block. The block arguments specify the values to be passed to the kernel, and the block body
contains the kernel implementation represented by control-flow operations, computation operations, and
MPE operations. Similarly, sw.main func and sw.main iteration func specify the MPE kernels. And
sw.main iteration func simplifies the iterative MPE kernels by calling sw.main func multiple times.

Launching operations. These operations are responsible for launching MPE and CPE kernel (follow-
ing (S2)). Because CPEs should be explicitly invoked from the MPE, the sw.launch and sw.launch func

should only exist inside the blocks of sw.launch main func (corresponding to (S1)).
Control-flow operations. These operations are designed to express the “if-then-else” and “if”

branches and the “for” loops.
Computation operations. Both the arithmetic and logical operations are supported. The arithmetic

operations can take values with scalar type and vector type as the input (corresponding to (S3)), whereas
logical operations can only take values with scalar type as the input.

Li M Z, et al. Sci China Inf Sci January 2024, Vol. 67, Iss. 1, 112101:7

Table 1 Types and operations of Sunway dialect

Category Examples

Data types
i32, i64, f32, f64,

sw.memref (2D, 3D), vector (256 bits)

Module/Func

operations

sw.module, sw.module end,

sw.func, sw.main func

sw.main iteration func, sw.func return

Launching

operations

sw.launch, sw.launch func,

sw.launch main func

Control-flow

operations

sw.for, sw.if,

sw.else, sw.yield

Computation

operations

sw.add, sw.sub, sw.mul, sw.div,

sw.land, sw.lor, sw.lnot, sw.cmp

MPE

operations

sw.alloc, sw.dealloc,

sw.getMpiRank, sw.mpiExchangeHalo

CPE

operations

sw.getID, sw.constant,

sw.load, sw.store, sw.broadcast

sw.vectorLoad, sw.vectorStore

sw.memcpyToSPM, sw.memcpyToMEM

MPE operations. These operations are specific to MPE, including operations that malloc/free the
main memory space and operations responsible for MPI communication (corresponding to (S1)).

CPE operations. These operations are specific to CPEs. sw.getID gets the id of a CPE within the
located CG. sw.constant defines a constant number in SPM. sw.load/sw.store reads/writes scalar val-
ues in SPM. sw.broadcast broadcasts a scalar value to a vector value. sw.vectorLoad/sw.vectorStore
reads/writes aligned and unaligned vector values in SPM, and can be further lowered to aligned/unaligned
instructions according to the starting address. sw.memcpyToSPM and sw.memcpyToMEM are responsible for
DMA transfers between SPM and main memory, targeting for utilizing the memory bandwidth (corre-
sponding to (S3)).

4.2 Sunway backend

The Sunway backend is responsible for executing the Sunway dialects. It takes the Sunway dialect as the
input, separates the MPE modules and the CPE modules, and then lowers them to C codes following the
Athread programming model (as shown in Figure 3). Finally, it leverages the native C compiler, sw5cc
–host/slave to compile the codes for MPE and CPE, respectively (as shown in Figure 2). Notably, Sunway
processor does not support LLVM for now. Therefore, we lower the Sunway dialect to C codes and use
Sunway’s native compiler to generate executable binaries. If Sunway supports LLVM in the future, we
can lower Sunway dialect to LLVM IR and utilize LLVM runtime to generate the optimized binaries.

The first step to lower Sunway dialect to C codes is outlining. The CPE kernel is defined within
the sw.launch operation and exists in the MPE module. So it should be outlined to a separate kernel
function, sw.func, into a dedicated module, sw.module. As for the MPE module, the sw.launch is
replaced by launching operation, sw.launch func, to invoke the outlined CPE function, sw.func.

As shown in Figure 3(a), the MPE module usually manages the main memory and invokes CPE
functions. The block arguments (sw.memref) specified in the basic block of sw.main func are lowered
to the stack arguments in main memory, and the sw.alloc/sw.dealloc is lowered to the calloc/free
instructions to manage the heap arguments in main memory. Then the parameters of a CPE function
are packed into a structure, which contains the required parameters. Because CPE functions can only
receive one parameter as the input, the sw.launch func is lowered to the athread spawn instruction with
the kernel name and the packed structure.

As shown in Figure 3(b), the CPE module specifies the computation-intensive or bandwidth-intensive
kernels to achieve high performance. The block arguments of sw.func are lowered to the main memory
reference and SPM allocation according to the attributes of sw.func. Each CPE should have its ID, that
is my id, for task assignment, and the sw.getID is lowered to the athread get id instruction. And the
sw.for is lowered to standard for loop with upper bound, lower bound, and stride. Note that programmers
should control the loop counters and the stride to control the task assignment among CPEs. In Figure 3,

Li M Z, et al. Sci China Inf Sci January 2024, Vol. 67, Iss. 1, 112101:8

"sw.module"() ({

"sw.func"() ({

^bb0(%arg0 ... %arg2, %arg3: !sw<"memref<7x6x4xf64">,

%arg4: !sw<"memref<7x6x4xf64">,

%arg5: !sw<"memref<5x4x4xf64">)

%0 = "sw.getID"() : ()

...

"sw.memcpyToSPM"(%arg1, %arg4, %18) {...}

"sw.for"(%0, %2, %1) ({// nested for ...

"sw.memcpyToSPM"(%arg0, %arg3, %22, %24, %26) {...}

"sw.for"(%9, %10, %11) ({

"sw.for"(%12, %13, %14) ({

"sw.for"(%15, %16, %17) ({

%51 = "sw.load"(%arg3, %46, %48, %50)

%52 = "sw.mulf"(%44, %51)

"sw.store"(%96, %arg5, %100, %102, %104)

}) }) })

"sw.memcpyToMEM"(%arg5, %arg2, %31, %35, %39) {...}

})

}) {cacheReadAttrNum = 2 : i64, cacheWriteAttrNum = 1 : i64,

sym_name = “stencil_kernel0", type = (...) }

}) {sym_name = “stencil_kernel0"}

struct stencil_kernel0_arg {

double *arg0; double *arg1; double *arg2; };

void stencil_kernel0(struct stencil_kernel0_arg * arg) {

double v0_arg3[7][6][4], v0_arg4[5]; // cacheRead

double v0_arg5[5][4][4]; // cacheWrite

double (*v0_arg0)[18][16] = (double (*)[18][16])(arg->arg0);

double (*v0_arg1) = (double (*))(arg->arg1);

double (*v0_arg2)[18][16] = (double (*)[18][16])(arg->arg2);

long v0_0 = athread_get_id(-1);

...

athread_get(...); while (get_reply != 1);

for (v0_arg6 = v0_0 ; … ; v0_arg6 += v0_1) {

// nested for loops ...

athread_get (...); while (get_reply != 1);

for (v0_arg9 = … ; … ; v0_arg9 += v0_11) {

// nested for loops ...

double v0_51 = v0_arg3[v0_46][v0_48][v0_50];

double v0_52 = v0_44 * v0_51;

...

v0_arg5[v0_100][v0_102][v0_104] = v0_96;

}

...

athread_put (...); while (put_reply != 1);

}

}

void stencil(

double v2_arg0[322][18][16],

double v2_arg1[322][18][16],

double v2_arg2[5]) {

double * v2_0 = calloc(92736,sizeof(double));

struct stencil_kernel0_arg

stencil_kernel0_param;

stencil_kernel0_param.arg0=v2_arg0;

stencil_kernel0_param.arg1=v2_arg2;

stencil_kernel0_param.arg2=v2_0;

athread_spawn(stencil_kernel0,

&stencil_kernel0_param);

athread_join();

...

free(v2_0);

}

"sw.main_func"() ({

^bb0(%arg0: !sw<"memref<322x18x16xf64">,

%arg1: !sw<"memref<322x18x16xf64">,

%arg2: !sw<"memref<5xf64">):

%0 = "sw.alloc"() : () ->

!sw<"memref<322x18x16xf64">

"sw.launch_func"(%arg0, %arg2, %0)

{kernel = @stencil_kernel0}

"sw.launch_func"(%arg0, %0, %arg1)

{kernel = @stencil_kernel1}

"sw.dealloc"(%0)

}) {sym_name = “stencil", type = (...)}

"module"() ({

})

Task

assignment

Pack arguments

Invoke CPE kernel

Pass arguments

Malloc SPM

Unpack arguments

Main mem ref

Malloc main mem

SPM ref

DMA

For loops

Outlined from "sw.launch"(...) {...} sw5cc --host

Lowering to CPE codes

 Lowering to MPE codes

sw5cc --slave

(a)

(b)

Figure 3 (Color online) Lowering Sunway dialect to C codes for MPE and CPEs. The Sunway dialect in this example is generated

from the stencil example described in Subsection 5.1.

the tasks whose task id satisfies mod(task id, 64) = my id are assigned to CPE my id. Besides, the
sw.memcpyToSPM/MEM operations are lowered the DMA transfer instructions, athread get/put, and the
sw.load/store operations are lowered to direct SPM reference.

5 Building a stencil compiler

With the reusable swLego (i.e., Sunway dialect and Sunway backend), we can build domain-specific
compilers on Sunway processors. As an example, we decide to build a stencil compiler, swLego-stencil on
Sunway as a case study. We first design the programming language and develop a compiler frontend to
parse the input (e.g., the definition of stencil computation) and transform it into domain-specific dialect
(e.g., stencil dialect). Then we leverage the pattern rewriting mechanism provided by MLIR and transform
the domain-specific dialect into other reusable dialects. At the same time, we also perform several
compilation optimizations with domain-specific knowledge. Finally, we lower the above-transformed
dialects to the Sunway dialect. Once passing the Sunway dialect to the Sunway backend, the final C
codes can be derived through AOT compilation.

5.1 Programming language

To better illustrate the programming language of swLego-stencil, Figure 4 presents the example of a
complex stencil computation, which contains time iteration and kernel dependency. The stencil name,
the input grid, and coefficients are defined in Line 1, and the input grid is in-place updated during the
computation. swLego-stencil supports stencils with time iterations, and the concrete number of iteration
steps is defined through iteration (Line 2). Since multiple stencil kernels can be defined inside a stencil
computation, the program should determine taking the output of which kernel to be the final output
through operation (Line 3). The grid of MPI processes for large-scale execution is defined in Line 4, and
the halo region’s width in each spatial dimension is defined in Line 5.

Two stencil kernels, 3d5pt and element-wise add (3d1pt) are defined through the kernel function.
The tile size of subsequent loop tiling optimization can be explicitly defined through tile (Line 8/17).
The computation domain of a kernel can be smaller than the input grid, and its boundary is defined
through domain (Line 9/18). The computation pattern of a kernel is defined through expr with enclosed
curly braces, which updates the element (e.g., (x, y, z)) of the grid with the neighboring elements (e.g.,

Li M Z, et al. Sci China Inf Sci January 2024, Vol. 67, Iss. 1, 112101:9

Figure 4 Programming language of swLego-stencil.

(x− 1, y, z), (x+1, y, z)). And the neighboring elements can locate on both the input grid (e.g., Line 11)
and the output grid of other kernels (e.g., Line 20).

Then the frontend of swLego-stencil will parse the stencil definitions and transform them into the
stencil dialect while preserving the domain-specific knowledge of stencils, such as the stencil kernels and
the kernel dependency.

5.2 Reused dialects

Due to the reusable MLIR infrastructure, all components (e.g., dialects, transformations between di-
alects) can be reused to build a new domain-specific compiler. In swLego-stencil, we extend the stencil
dialect, which is firstly proposed in the Open Earth Compiler [38], and reuse the std dialect, scf dialect, as
well as the vector dialect, which belong to builtin MLIR dialects. And we extend MLIR by supplement-
ing the Sunway dialect (described in Section 4) that represents the many-core and cache-less hardware
architecture.

Specifically, we extend the stencil dialect with two operations: (1) stencil.tile, which allows parti-
tioning the stencil computation of the whole grid into computation inside smaller tiles to exploit the data
locality with improved parallelism. And (2) stencil.iteration, which allows expression of complex
stencil computation with time iterations. Specifically, due to the complex stencil patterns and cache-less
architecture of Sunway processor (i.e., manually controlled SPM on each CPE), the tile size can sig-
nificantly impact the performance of generated stencil codes. Specifically, the tile size should be large
enough to utilize the SPM for better data locality, but not too large otherwise more DMA bandwidth
is wasted by larger halo regions, in addition to idle CPEs due to decreased parallelism. Therefore, we
trade off the ease of programming for the performance of generated codes in the design of swLego-stencil,
where we leave the setting of tile size to the programmer, which can be tuned with some auto-tuning
algorithms.

We mix the std/scf/vector dialects with stencil dialect to express the arithmetic operations, control-flow
operations, and vectorization operations. Since MLIR supports the mixing of dialects and progressive
lowering, they can be lowered selectively after several optimization passes. And all of them are lowered
into the Sunway dialect finally.

5.3 Optimizations

Two compilation optimizations are supported in swLego-stencil.
Kernel fusion. The complex stencils usually contain multiple stencil kernels, where the output of

one kernel is used as the input of another kernel. In such a scenario, the dependent stencil kernels can
be optimized through kernel fusion so that the fused kernel can just load the input grid once, and thus
avoid the redundant intermediate data movement, such as storing the intermediate data in main memory
and loading it into SPM. Besides, the kernel fusion reduces the number of kernel launching on CPEs, and
thus reduces significant kernel launching overhead.

Li M Z, et al. Sci China Inf Sci January 2024, Vol. 67, Iss. 1, 112101:10

Vectorization. We apply vectorization to utilize the SIMD units on the Sunway processor. The
arithmetic operations (+ − ×÷) (from std dialect) and memory reference (load and store) existing in
stencil dialect are converted to vectorized operation in vector dialect, and then lowered to the vectorized
operation in Sunway dialect. Specifically, the corresponding load/store and computation operations (e.g.,
stencil.mulf) are transformed as follows.

• stencil.load (load a f64 scalar from SPM) → stencil.load (load a scalar from SPM) +
vector.broadcast (broadcast this scalar into a memref〈4xf64〉 vector) → sw.load + sw.broadcast

• stencil.store (store a f64 scalar to SPM) → stencil.store (store a memref〈4xf64〉 vector to
SPM) → sw.vectorStore

• stencil.mulf (multiply two f64 scalars) → stencil.mulf (multiply two memref〈4xf64〉 vectors)
→ sw.mul (can accept both scalars and vectors)

We have attempted to use shuffle operations for better data reuse. However, the shuffle parameters
are tightly coupled with the stencil shape and the memory address of the center point. Determining
these parameters to generate correct stencil codes is quite complicated, and thus we leave the support of
shuffle for future work. Note that we only apply vectorization optimization to large stencils (with more
than 50 points) to collaborate with the native Sunway compiler. Because the native Sunway compiler fails
to apply automatic vectorization when tackling the complex data access patterns. Besides, the generic
optimizations of LLVM have not been adopted in swLego-stencil, because the Sunway processor does not
support LLVM currently.

For the optimizations adopted in swLego-stencil, the kernel fusion can be reused on other hardware
platforms, since it only transforms the stencil dialect and is hardware agnostic. The vectorization op-
timization is specific to the Sunway processor, since it transforms the stencil dialect and vector dialect
to the Sunway dialect. Therefore, it can only be reused on hardware platforms similar to Sunway (e.g.,
many-core and cache-less), or by other domain-specific compilers on Sunway processor.

Besides, swLego-stencil is feasible to invoke other optimized libraries, to reuse the state-of-the-art high-
performance implementations. We reuse the communication library of MSC to handle the data exchange
of halo regions when generating stencil codes running on multiple nodes. And we further improve this
library to eliminate the redundant data transfer of irregular stencils with inconsistent halo sizes (e.g.,
halo = 0 in (−1, 0, 0) direction while halo = 1 in (1, 0, 0) direction).

As far as we know, there is no MPI dialect in MLIR. Since MPI itself is a complicated software, designing
MPI dialect to support large-scale communication in general would inevitably increase the complexity of
managing the compilation stack. The community is more agreed on supporting MPI through external
library calls tailored for DSCs, in such a way the complexity of maintaining MLIR is isolated. So that
MLIR can provide a loosely coupled compilation infrastructure for building DSCs. In swLego-stencil,
we adopt the above principle by reusing an MPI communication library optimized for large-scale stencil
computation from MSC and integrating it through external library calls during compilation.

6 Evaluation

6.1 Experiment setup

We collect various representative stencil benchmarks (shown in Table 2), including stencils with general
patterns, stencils with arbitrary patterns, and the nested stencils, for performance evaluation. On a single
Sunway processor, we compare the stencil codes generated by swLego-stencil with the codes manually
optimized through OpenACC and Athread, as well as the code generated by the state-of-the-art stencil
compiler MSC [13]. The OpenACC baseline, Athread, and MSC adopt the same optimization techniques
(utilizing the CPE parallelism, SPM, and DMA) as swLego-stencil for a fair comparison. We then apply
sensitivity analysis and roofline model analysis to study the performance of swLego-stencil. We measure
the scalability on multiple Sunway processors using up to 66560 cores (including both MPE and CPE).
Specifically, we evaluate the above codes ten times and report their average execution time in case of
performance fluctuation. We also measure the relative errors between the swLego-stencil-generated codes
and the serial codes. Across all benchmarks, the relative errors of swLego-stencil-generated codes are less
than 10−10 in double precision, which indicates swLego-stencil can ensure the correctness of the stencil
computation [38].

Li M Z, et al. Sci China Inf Sci January 2024, Vol. 67, Iss. 1, 112101:11

Table 2 Stencil benchmarks used in the evaluation

Benchmark Read (Byte) Write (Byte) Ops (+ − × · · ·)

2d9pt star 72 8 26

2d81pt box 648 8 242

2d121pt box 968 8 363

2d5pt arbitrary 40 8 14

2d5pt5pt nested 80 16 28

3d13pt star 104 8 38

3d27pt box 216 8 80

3d125pt box 1000 8 374

3d7pt arbitrary 56 8 20

3d7pt9pt nested 128 16 46

Table 3 Parameter settings of swLego-stencil across the stencil benchmarks on a Sunway (a CG) processor

Stencil Grid size Tile size

2d9pt star

2d81pt box

2d121pt box

2d5pt arbitrary

40962 (32, 64)

2d5pt5pt nested 40962 (32, 64)/(16, 32)

3d13pt star

3d27pt box

3d125pt box

3d7pt arbitrary

2563 (2, 8, 64)

3d7pt9pt nested 2563 (8, 4, 4)/(4, 8, 8)

6.2 Overall performance on a single node

On the Sunway platform, we execute the swLego-stencil compiler on the login nodes (equipped with x86
CPU) to generate the optimized stencil codes, then evaluate them on a Sunway node (equipped with
Sunway processors). The grid size of 3D stencils is set to 2563, which is the same as Physis [32]. The
grid size of 2D stencils is set to 40962, so the 2D/3D stencils have the same number of points in the
input grid. Table 3 shows the parameter settings of swLego-stencil across the benchmarks. Note that
the nested stencil benchmarks (2d5pt5pt nested and 3d7pt9pt nested) have two tile sizes for their two
nested kernels, respectively.

On Sunway, the users can adopt OpenACC and Athread to optimize the stencils manually. (1) We use
codes optimized by OpenACC as the baseline. We select the directives (#pragma acc ...) of data caching
(acc copyin/copyout), loop splitting (acc tile), and multi-threading (acc parallel) to accelerate the stencil
codes. (2) The Athread instructions provide a more fine-grained approach to optimizing stencil codes
than OpenACC, which requires more lines of codes. We also optimize the stencil codes with Athread for
comparison. We also compare swLego-stencil with the state-of-the-art stencil compiler, MSC. However,
MSC does not support nested stencils, and we give up MSC on the nested benchmarks. Figure 5 presents
the execution time of OpenACC, Athread, MSC, and swLego-stencil codes under double precision.

The performance of swLego-stencil-generated codes and manual Athread codes outperforms the Ope-
nACC baseline in all cases. Compared with the baseline, swLego-stencil-generated codes achieve 1.72×
speedup on average, whereas manual Athread codes achieve 1.33× speedup on average. And the MSC-
generated codes have 1.19× speedup on average compared with the baseline. Without applying the kernel
fusion and vectorization, swLego-stencil achieves 1.33× speedup on average, which is similar to Athread
codes. This is because both swLego-stencil and Athread can leverage the customized programming model
of Sunway, to exploit the fine-grained control of architectural features, such as SPM and DMA transfer.
Besides, thanks to the MLIR infrastructure, it is convenient to implement peephole optimizations rather
than complicated loop transformations. Thus swLego-stencil can further accelerate the nested stencils
with kernel fusion optimization and accelerate the large stencils with vectorization optimization, for supe-
rior performance. With kernel fusion, the nested stencils (e.g., 2d5pt nested and 3d7pt9pt nested) achieve
an additional performance improvement, since the fused kernels can avoid redundant intermediate data
movement and minimize the kernel launching overhead on CPEs. For vectorization, the native Sunway

Li M Z, et al. Sci China Inf Sci January 2024, Vol. 67, Iss. 1, 112101:12

2.5

2.0

1.5

1.0

0.5

S
p
ee

d
u
p

2d9pt_star 2d81pt_box 2d121pt_box 2d5pt_arbitrary 2d5pt5pt_nested 3d13pt_star 3d27pt_box 3d125pt_box 3d7pt_arbitrary 3d7pt9pt_nested

OpenACC

Athread

MSC

swLego-stencil

+ fusion

+ vector

0.05 s

2.07× 2.07×

1.88×

0.12 s
1.09×1.05×

2.24×

0.17 s
1.08×

0.90×

2.23×

1.62×

1.46×

1.61×

0.04 s 0.14 s1.01×

2.12×

0.07 s

1.55×
1.47×

1.56×

0.04 s

1.18×1.19× 1.21×

0.20 s

1.25×

0.78×

1.41×

0.04 s

1.23×

0.81×

1.23×

0.38 s

1.17×

1.49×

Figure 5 (Color online) Performance comparison between swLego-stencil-generated codes, MSC-generated codes, and manually

optimized OpenACC/Athread codes on a Sunway CG, where OpenACC is set as the baseline.

compiler can apply more aggressive vectorization optimization than swLego-stencil on small stencils (e.g.,
2d9pt star), and thus swLego-stencil achieves few performance improvements on these stencils. However,
on large stencils (e.g., 2d81pt box and 2d121pt box), the native Sunway compiler fails to apply automatic
vectorization due to the complex data access patterns, whereas swLego-stencil can better handle such
stencils to generate vectorized codes with considerable performance improvements. Although these op-
timizations can also be manually implemented through Athread, implementing them for various stencils
seems to be tedious and error-prone, while swLego-stencil alleviates the burden of hand-tuning.

Compared with MSC, swLego-stencil achieves 1.44× speedup on average. The MSC-generated codes
are slower than the OpenACC codes in some stencil benchmarks, especially on large stencils (2d81pt box,
2d121pt box, 3d125pt box) and arbitrary stencils (3d7pt arbitrary). On large stencils, the slowdown is
attributed to the redundant data indexing codes of the neighboring elements, which introduces more
useless computation. In contrast, swLego-stencil avoids this redundancy by introducing common subex-
pression elimination (CSE). On arbitrary stencils, the slowdown is attributed to the redundant data in
halo regions caused by the overlapped tiling. The halo size can be different in different directions, but
MSC assumes all halo sizes are equal and forces to fix the halo size to the maximum. While swLego-stencil
considers the difference of halo sizes and thus avoids this redundancy.

6.3 Sensitivity to tile size

The tile size of a stencil kernel should be defined explicitly through tile(tile x, tile y, tile z) (3D stencils)
and tile(tile x, tile y) (2D stencils). If the tile size is too small, the elements within a tile would be
restricted, and the overlapped (useless) regions between tiles would be too large. Therefore, the efficiency
of DMA transfer is harmed due to the small transfer size and the low-proportional useful data. If the tile
size is too large, more SPM space of a CPE is required, which may lead to the over-subscription of SPM,
and fewer tasks are available to be assigned to CPEs, which may lead to the load imbalance across CPEs.
To evaluate the performance sensitivity of swLego-stencil to the tile size, we measure the performance of
swLego-stencil-generated codes under different tile size configurations. As the nested stencils have more
than one stencil kernels, which can have different configurations, we omit the nested stencils here.

Figure 6 shows the performance heatmap under different tile size configurations. It is clear that with
the increasing tile size, the generated stencil codes tend to achieve better performance. Besides, the
large stencils (e.g., 2d81pt box, 2d121pt box, and 3d125pt box) are less sensitive compared with other
small stencils. Because large stencils have higher computation intensity, the DMA transfer time and the
computation time can be overlapped better, which restricts the impact of the decreased DMA efficiency.
However, if the tile size is too large (e.g., tile x×tile y = 32, tile z = 64 on 3d13pt box and 3d125pt box),
the generated codes fail to execute on the Sunway processor due to over-subscription of SPM, and thus
the corresponding blocks on the heatmap are left blank. Therefore, we configure the tile size of all stencil
benchmarks to the value as large as possible for superior performance.

6.4 Roofline model analysis

The roofline model analysis helps us to better understand the swLego-stencil-generated codes. As shown
in Figure 7, all stencil benchmarks lie on the left of the ridge point, meaning that their performance is all
bounded by the memory bandwidth. The large stencils with box shapes (e.g., 2d81pt box, 2d121pt box,
and 3d125pt box) have higher operational intensity and achieve better performance than others. Because
they access the input grid for more times and benefit from the data reuse. Similarly, this observation can

Li M Z, et al. Sci China Inf Sci January 2024, Vol. 67, Iss. 1, 112101:13

1.0

0.9

0.8

0.7

0.6

0.5

0.4

1.0

0.9

0.8

0.7

0.6

0.5

0.4

4

8

16

32

4

8

16

32

4

8

16

32

4

8

16

32

4

8

16

32

4

8

16

32

4

8

16

32

T
h
e

v
al

u
e

o
f

ti
le

_
x

4

8

16

32

T
h
e

v
al

u
e

o
f

ti
le

_
x
 *

 t
il

e_
y

8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64

The value of tile_z

8 16 32 64

The value of tile_y

8 16 32 64

The value of tile_y

8 16 32 64

The value of tile_y

8 16 32 64

The value of tile_y

The value of tile_z The value of tile_z The value of tile_z

3d13pt_star 3d27pt_box 3d125pt_box 3d7pt9pt_arbitrary

2d5pt5pt_arbitrary2d121pt_box2d81pt_box2d9pt_star

0.19 0.34 0.54 0.76 0.74

0.85

0.81

0.570.210.17 0.28 0.43 0.57

0.23 0.38 0.59 0.79

0.28 0.48

0.36 0.61

0.74

0.33 0.53

0.67

0.79

0.550.32

0.29

0.25 0.41

0.49

0.74

0.79

0.22 0.37 0.6

0.66

0.69

0.710.440.27

0.16 0.27 0.41 0.56

0.2 0.34 0.54 0.76

0.24 0.4 0.63 0.88

0.27 0.46 0.72 1

0.26

0.25 0.41

0.43

0.86

0.23 0.39 0.63 0.89

0.26 0.43 0.68 0.96

0.27 0.45 0.71 1

0.97 0.99

0.98

0.98 0.99

0.94

0.98

0.990.94

0.95

0.96

0.99

0.99

0.980.91

0.93 0.99

1

11

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

110.99

0.99 0.990.94

0.93

0.93

0.99

0.890.96 0.99

1

11

1

Figure 6 (Color online) Performance sensitivity of swLego-stencil to the tile size. Each cell in the heatmap is the performance

deviations to the optimal configurations.

103

102

101

100 101 10210−1

P
er

fo
rm

an
ce

 (
G

F
lo

p
s,

 l
o
g
 s

ca
le

)

Theoretical peak 765.6 GFlops

2d9pt_star

2d81pt_box

2d121pt_box

2d5pt_arbitrary

2d5pt5pt_nested

3d13pt_star

3d27pt_box

3d125pt_box

3d7pt_arbitrary

3d7pt9pt_nested

Memory

bound
Compute

bound

Pea
k st

re
am

 b
an

dwid
th

 2
2.5

 G
B/s

34.0

Operational intensity (Flops/Byte, log scale)

Figure 7 (Color online) Roofline analysis of all stencil benchmarks optimized by swLego-stencil on a CG of Sunway processor.

apply to the stencils with star shapes. The stencil with arbitrary shapes and the nested stencils containing
stencils with arbitrary shapes can also suffer from a similar problem when their shapes are relatively
sparse. In addition, the stencils with larger neighboring regions (e.g., 3d125pt box versus 2d121pt box,
2d9pt star versus 3d13pt star) show lower performance, because they have larger halo regions and thus
more redundant data transfer via DMA, which further degrades the bound of memory bandwidth.

Therefore, the stencil compilers should pay more attention to optimizing the memory reference patterns
and improving data locality. They can leverage the polyhedral transformations and other techniques
from deep learning domains to accelerate stencil computation. Based on the MLIR infrastructure, these
optimization techniques can be reused by stencil compilers on Sunway processors in less complex ways.

Li M Z, et al. Sci China Inf Sci January 2024, Vol. 67, Iss. 1, 112101:14

Table 4 Configuration of scalability experiments of swLego-stencil

Dimension
Strong Scalability Weak Scalability

MPI Grid Processes
Sub grid per MPI Sub grid per MPI

2D

4096 × 4096 40962 16 × 8 128

4096 × 2048 40962 16 × 16 256

2048 × 2048 40962 32 × 16 512

2048 × 1024 40962 32 × 32 1024

3D

256 × 256 × 256 2563 8 × 4 × 4 128

256 × 256 × 128 2563 8 × 4 × 8 256

256 × 128 × 128 2563 8 × 8 × 8 512

128 × 128 × 128 2563 16 × 8 × 8 1024

25.6K

6.4K

1.6K

400

100

G
F

lo
p
s

(L
o
g
 s

ca
le

)

128 256 512 1024 128 256 512 1024 128 256 512 1024 128 256 512 1024 128 256 512 1024 128 256 512 1024 128 256 512 1024 128 256 512 1024 128 256 512 1024 128 256 512 1024

2d9pt_star 2d81pt_box 2d121pt_box 2d5pt_arbitrary 2d5pt5pt_nested 3d13pt_star 3d27pt_box 3d125pt_box 3d7pt_arbitrary 3d7pt9pt_nested

Ideal

Strong

Weak

Figure 8 (Color online) Strong and weak scalability of swLego-stencil with 128, 256, 512, and 1024 MPI processes.

6.5 Scaling to multiple nodes

We evaluate the scalability of swLego-stencil-generated codes on multiple Sunway processors. The con-
figurations are shown in Table 4. We assign a CG to each MPI process, and execute the swLego-stencil-
generated codes using 128–1024 MPI processes, that is, from 8320 cores (128 processes × 65 cores per
CG) to 66560 cores (1024 processes × 65 cores per CG). For strong scalability, we keep the size of the
input grid constant. When doubling the number of MPI processes, the size of the sub-grid per process is
cut by half. For weak scalability, we keep the size of the sub-grid per process constant. When doubling
the number of MPI processes, the input grid’s size is consequently doubled.

Figure 8 shows the scalability results on all stencil benchmarks. As for strong scalability, swLego-
stencil-generated codes achieve the scaling efficiency of 88.9%, 84.3%, and 72.6% on average with 2×,
4×, and 8× MPI processes, respectively. However, the scaling efficiency of stencils with star shapes and
arbitrary shapes is lower than the average, especially with more MPI processes. This is because these
stencils have larger halo regions and thus more MPI data transfer, which cannot overlap with the stencil
computation. As for weak scalability, swLego-stencil-generated codes achieve the scaling efficiency of
99.6%, 98.9%, and 98.6% on average with 2×, 4×, and 8× MPI processes, respectively. It indicates that
the weak scaling efficiency is almost ideal.

Note that the communication library embedded in swLego-stencil is borrowed from the pluggable
library of the MSC compiler, and we perform several modifications on it to support 3D stencils with
box shapes and stencils with arbitrary shapes. swLego-stencil still keeps the ability to leverage other
communication libraries and even various kinds of kernel libraries, based on the Sunway dialect and
Sunway backend.

7 Conclusion

In this paper, we propose swLego, a new dialect and backend for the Sunway processor, fully exploiting
its architectural advantage and hiding its programming complexity. swLego is built on top of the MLIR
infrastructure and then leverages reusable MLIR dialects to facilitate the development of DSCs for Sunway
processors. The Sunway dialect abstracts a specific programming paradigm and unique optimization
strategies that exploit the architectural advantage of the Sunway processor. Moreover, the Sunway
backend executes the Sunway dialect by lowering to MPE and CPE codes and then compiles the codes
in an ahead-of-time manner. To show the easiness of building a DSC, we implement swLego-stencil, a
stencil compiler based on swLego for Sunway processors. It supports complex stencil computation with
arbitrary shapes and inter-kernel dependency. Furthermore, by implementing tiling optimization, kernel
fusion, and vectorization within swLego reusable compilation stacks, it can generate high-performance

Li M Z, et al. Sci China Inf Sci January 2024, Vol. 67, Iss. 1, 112101:15

stencil codes tailored for Sunway processors. The experimental results show that the code generated by
swLego-stencil can achieve comparable performance with an expert-tuned stencil code and achieve even
superior performance than the code generated by the state-of-the-art stencil compiler. We hope that our
work could demonstrate a way to ease the development of DSCs on emerging processors.

Acknowledgements This work was supported by National Key Research and Development Program of China (Grant No.

2020YFB1506703), National Natural Science Foundation of China (Grant Nos. 62072018, 61732002, U22A2028), State Key Labo-

ratory of Software Development Environment (Grant No. SKLSDE-2021ZX-06), and Fundamental Research Funds for the Central

Universities (Grant No. YWF-22-L-1127).

References

1 Fu H H, Liao J F, Yang J Z, et al. The Sunway TaihuLight supercomputer: system and applications. Sci China Inf Sci, 2016,

59: 072001

2 Li M Z, Liu Y, Liu X Y, et al. The deep learning compiler: a comprehensive survey. IEEE Trans Parallel Distrib Syst, 2021,

32: 708–727

3 Leary C, Wang T. XLA: TensorFlow, compiled. TensorFlow Dev Summit, 2017. https://developers.googleblog.com/2017/

03/xla-tensorflow-compiled.html

4 Chen T Q, Moreau T, Jiang Z H, et al. TVM: an automated end-to-end optimizing compiler for deep learning. In: Proceedings

of USENIX Symposium on Operating Systems Design and Implementation, Carlsbad, 2018. 578–594

5 Bondhugula U, Hartono A, Ramanujam J, et al. A practical automatic polyhedral parallelizer and locality optimizer.

In: Proceedings of ACM SIGPLAN Conference on Programming Language Design and Implementation, New York, 2008.

101–113

6 Gysi T, Osuna C, Fuhrer O, et al. STELLA: a domain-specific tool for structured grid methods in weather and climate models.

In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, New

York, 2015. 1–12

7 Lattner C, Adve V. LLVM: a compilation framework for lifelong program analysis & transformation. In: Proceedings of

International Symposium on Code Generation and Optimization, San Jose, 2004. 75–86

8 Lattner C, Amini M, Bondhugula U, et al. MLIR: scaling compiler infrastructure for domain specific computation.

In: Proceedings of International Symposium on Code Generation and Optimization, Seoul, 2021. 2–14

9 Vasilache N, Zinenko O, Bik A J C. Composable and modular code generation in MLIR: a structured and retargetable approach

to tensor compiler construction. 2022. ArXiv:2202.03293

10 Bik A J C, Koanantakool P, Shpeisman T, et al. Compiler support for sparse tensor computations in MLIR. ACM Trans

Archit Code Optim, 2022, 19: 1–25

11 Tian R Q, Guo L Z, Li, J J, et al. A high performance sparse tensor algebra compiler in MLIR. In: Proceedings of Workshop

on the LLVM Compiler Infrastructure in HPC, St. Louis, 2021. 27–38

12 Jeong G, Kestor G, Chatarasi P, et al. Union: a unified HW-SW co-design ecosystem in MLIR for evaluating tensor operations

on spatial accelerators. In: Proceedings of the 30th International Conference on Parallel Architectures and Compilation

Techniques, Atlanta, 2021. 30–44

13 Li M Z, Liu Y, Hu Y M, et al. Automatic code generation and optimization of large-scale stencil computation on many-core

processors. In: Proceedings of the International Conference on Parallel Processing, Lemont, 2021. 1–12

14 Yang C, Xue W, Fu H H, et al. 10M-core scalable fully-implicit solver for nonhydrostatic atmospheric dynamics. In: Pro-

ceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, Salt Lake City,

2016. 57–68

15 Chen B W, Fu H H, Wei Y W, et al. Simulating the Wenchuan earthquake with accurate surface topography on Sunway

TaihuLight. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage, and

Analysis, Dallas, 2018. 517–528

16 Duan X H, Gao P, Zhang T J, et al. Redesigning LAMMPS for peta-scale and hundred-billion-atom simulation on Sunway

TaihuLight. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage, and

Analysis, Dallas, 2018. 148–159

17 Liu Y, Liu X, Li F, et al. Closing the “Quantum Supremacy” gap: achieving real-time simulation of a random quantum

circuit using a new Sunway supercomputer. In: Proceedings of the International Conference for High Performance Computing,

Networking, Storage, and Analysis, New York, 2021. 1–12

18 Liu C X, Xie B W, Liu X, et al. Towards efficient SpMV on Sunway Manycore architectures. In: Proceedings of the

International Conference on Supercomputing, Beijing, 2018. 363–373

19 Li M Z, Liu Y, Yang H L, et al. Multi-role SpTRSV on Sunway many-core architecture. In: Proceedings of International

Conference on High Performance Computing and Communications, Exeter, 2018. 594–601

20 Wang X L, Liu W F, Xue W, et al. SwSpTRSV: a fast sparse triangular solve with sparse level tile layout on Sunway

architectures. In: Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,

Vienna, 2018. 338–353

21 Li M Z, Liu Y, Yang H L, et al. Accelerating sparse Cholesky factorization on Sunway Manycore architecture. IEEE Trans

Parallel Distrib Syst, 2020, 31: 1636–1650

22 Fang J R, Fu H H, Zhao W L, et al. swDNN: a library for accelerating deep learning applications on Sunway TaihuLight.

In: Proceedings of International Parallel and Distributed Processing Symposium, Orlando, 2017. 615–624

23 Han Q C, Yang H L, Dun M, et al. Towards efficient tile low-rank GEMM computation on Sunway many-core processors. J

Supercomput, 2021, 77: 4533–4564

24 Zhong X G, Li M Z, Yang H L, et al. swMR: a framework for accelerating MapReduce applications on Sunway Taihulight.

IEEE Trans Emerg Top Comput, 2018, 9: 1020–1030

25 Zerrell T, Bruestle J. Stripe: tensor compilation via the nested polyhedral model. 2019. ArXiv:1903.06498

26 Jin T, Bercea G T, Le T D. Compiling ONNX neural network models using MLIR. 2020. ArXiv:2008.08272

27 Katel N, Khandelwal V, Bondhugula U. High performance GPU code generation for matrix-matrix multiplication using MLIR:

some early results. 2021. ArXiv:2108.13191

28 Komisarczyk K, Chelini L, Vadivel K, et al. PET-to-MLIR: a polyhedral front-end for MLIR. In: Proceedings of Euromicro

Conference on Digital System Design, Kranj, 2020. 551–556

https://doi.org/10.1007/s11432-016-5588-7
https://doi.org/10.1109/TPDS.2020.3030548
https://developers.googleblog.com/2017/03/xla-tensorflow-compiled.html
https://arxiv.org/abs/2202.03293
https://doi.org/10.1145/3544559
https://doi.org/10.1109/TPDS.2019.2953852
https://doi.org/10.1007/s11227-020-03444-2
https://doi.org/10.1109/TETC.2018.2881265
https://arxiv.org/abs/1903.06498
https://arxiv.org/abs/2008.08272
https://arxiv.org/abs/2108.13191

Li M Z, et al. Sci China Inf Sci January 2024, Vol. 67, Iss. 1, 112101:16

29 Majumder K, Bondhugula U. HIR: an MLIR-based intermediate representation for hardware accelerator description. 2021.

ArXiv:2103.00194

30 Zhao R Z, Cheng J Y. Phism: polyhedral high-level synthesis in MLIR. 2021. ArXiv:2103.15103

31 Yount C, Tobin J, Breuer A, et al. YASK-Yet another stencil kernel: a framework for HPC stencil code-generation and tuning.

In: Proceedings of International Workshop on Domain-Specific Languages and High-Level Frameworks for High Performance

Computing, Salt Lake City, 2016. 30–39

32 Maruyama N, Nomura T, Sato K, et al. Physis: an implicitly parallel programming model for stencil computations on

large-scale GPU-accelerated supercomputers. In: Proceedings of International Conference for High Performance Computing,

Networking, Storage and Analysis, Seattle, 2011. 1–12

33 Ragan-Kelley J, Barnes C, Adams A, et al. Halide: a language and compiler for optimizing parallelism, locality, and recom-

putation in image processing pipelines. In: Proceedings of the ACM SIGPLAN Conference on Programming Language Design

and Implementation, Seattle, 2013. 519–530

34 Rawat P S, Vaidya M, Sukumaran-Rajam A, et al. On optimizing complex stencils on GPUs. In: Proceedings of International

Parallel and Distributed Processing Symposium, Rio de Janeiro, 2019. 641–652

35 Hagedorn B, Stoltzfus L, Steuwer M, et al. High performance stencil code generation with lift. In: Proceedings of the

International Symposium on Code Generation and Optimization, Vienna, 2018. 100–112

36 Ansel J, Kamil S, Veeramachaneni K, et al. OpenTuner: an extensible framework for program autotuning. In: Proceedings

of the International Conference on Parallel Architectures and Compilation Techniques, Edmonton, 2014. 303–316

37 Sun Q X, Liu Y, Yang H L, et al. csTuner: scalable auto-tuning framework for complex stencil computation on GPUs.

In: Proceedings of International Conference on Cluster Computing, Portland, 2021. 192–203

38 Gysi T, Müller C, Zinenko O, et al. Domain-specific multi-level IR rewriting for GPU: the open earth compiler for GPU-

accelerated climate simulation. ACM Trans Archit Code Optim, 2021, 18: 1–23

https://arxiv.org/abs/2103.00194
https://arxiv.org/abs/2103.15103
https://doi.org/10.1145/3469030

Li M Z, et al. Sci China Inf Sci January 2024, Vol. 67, Iss. 1, 112101:17

Profile of Depei QIAN

Prof. Depei QIAN graduated from Xi’an Jiaotong Uni-

versity in 1977, majoring in computer science. He was sup-

ported by the Chinese government to pursue graduate study

in the United States from 1982 to 1984 and received an M.S.

degree from North Texas State University. He was a senior

visiting scholar at Hanover University in Germany from June

1991 to March 1992. He worked at Xi’an Jiaotong Univer-

sity from 1977 to 2010. In April 2000, he joined Beihang

University and has been working at the university as a pro-

fessor since then. He was invited by Sun Yat-sen University

to serve as the dean of the School of Data and Computer

Science from November 2015 to December 2019.

He has been working on computer architectures and sys-

tems for 45 years. In the 1980s, he participated in the devel-

opment of China’s first Lisp machine for AI applications, the

Lips-M1 system. He was also involved in the development

of a fault-tolerant computer for power grid stability control

and several general-purpose micro-controllers (GMC family)

for the control of automatic machine tools and other indus-

trial applications. Since his visit to Hanover University, his

research interests have shifted to parallel computer architec-

tures. He developed two simulators (ArchSim and ParaSim)

for parallel computer architecture research. In 1996, he

was selected as the expert for the National High-tech R&D

Program (the 863 Program). Since then, he has devoted

more than 25 years of work to national research programs

on information technologies. He has served as the director

of the expert group of four national key projects on high-

performance computing (HPC). Some of the achievements

of these key projects include the national HPC environment

(CNGrid) and several world-leading-class high-performance

computers, such as Tianhe, Sunway, and Sugon. He has

served as the editorial board member of several academic

journals, including National Science Review, Chinese Jour-

nal of Computers, Journal of Computer Research and De-

velopment, and Journal of Frontiers of Computer Science

and Technology. He is the editor-in-chief of CCF Trans-

actions on High Performance Computing and Frontiers of

Data and Computing.

Prof. Qian has received several awards for achieve-

ments in science and technology, including three national-

level second-class awards (2007, 2009, and 2020), two

provincial-level first-class awards (2007 and 2014), and four

ministerial/provincial-level second-class awards (1988, 1889,

1993, and 2007). He is a fellow of the China Computer Fed-

eration. In 2021, he was elected as an academician of the

Chinese Academy of Sciences. His current research interests

include parallel computer architectures, performance evalu-

ation and optimization, parallel programming support, and

novel architectures for deep learning.

Improve parallel programming with a
holistic approach

With the advent of multi-/many-core processors, parallel

programming has become an essential issue in all domains

using computing as a tool. The huge scale, complex struc-

ture, and heterogeneous nature of modern supercomputers

make parallel programming a highly formidable task. Prof.

Qian and his team have proposed a holistic approach to

attack the difficulties in parallel programming from the as-

pects of the program model, language/compiler, debugging,

runtime, and architectural support.

(1) Programming models. Emerging workloads on

GPUs involve more dynamic data sharing among threads.

However, dynamic data sharing implemented with locks

tends to have poor scalability and introduces livelocks

caused by the SIMT execution paradigm of GPUs. Ac-

cordingly, a novel software transactional memory mecha-

nism for GPU (GPU-STM) is proposed. It uses hierar-

chical validation and encounter-time lock-sorting to deal

with the two challenges, respectively (Xu et al., 2014).

The GPU-STM prototype is implemented on the commer-

cial GPU platform. The evaluation shows that the GPU-

STM outperforms coarse-grain locks on GPUs by up to 20×.

To adapt to more emerging applications, a software-based

thread-level synchronization mechanism called lock steal-

ing for GPUs is proposed to avoid livelocks (Gao et al.,

2020). The mechanism is implemented as a thread-level

locking library (TLLL) for commercial GPUs. The evalu-

ation results show that, compared with the state-of-the-art

ad-hoc GPU synchronization for Delaunay mesh refinement,

the TLLL improves the performance by 22% on average

on a GTX970 GPU and shows up to 11% performance im-

provement on a Volta V100 GPU. Online transaction pro-

cessing (OLTP) on GPUs is also facing the challenges of

branch divergences caused by the SIMT execution paradigm

and lack of fine-grained synchronization mechanisms and

pointer-based dynamic data structures. A high-performance

in-memory transaction processing system GPU-TPS is pro-

posed to perform synchronization among transactions and

optimize indexing structures in OLTP systems (Gao et al.,

2019). The experiment results show that the GPU-TPS out-

performs the state-of-the-art CPU implementation DrTM

by 3.8× for SmallBank and by 1.9× for TPCC and outper-

forms the GPU implementation by 1.6× for SmallBank and

by 1.8× for TPCC.

(2) Parallel debugging. Sequential consistency (SC)

is the most intuitive memory model used to guarantee the

correctness of parallel program execution. For performance,

most modern processors adopt relaxed SC models and

rely on the correct placement of synchronizations, such as

FENCE, to maintain SC execution. Record and determin-

istic replay (R&R) of multithreaded programs on relaxed-

consistency multiprocessors has been a long-standing open

problem. Volition, the first hardware R&R scheme, was pro-

posed to address this problem (Qian et al., 2013). Volition

leverages cache coherence protocol transactions to dynam-

ically detect cycles in memory-access orders across threads

and precisely detects SCVs in a relaxed-consistency machine

in a scalable manner for an arbitrary number of processors in

Li M Z, et al. Sci China Inf Sci January 2024, Vol. 67, Iss. 1, 112101:18

the cycle. Based on Volition, two hardware R&R schemes,

Pacifier (Qian et al., 2014) and Rainbow (Qian et al., 2013),

were proposed for the distributed directory-based protocol

and snoopy protocol, respectively. These schemes signifi-

cantly reduce the log size and overhead of R&R. An evalu-

ation with simulations of 16, 32, and 64 processors with re-

lease consistency running SPLASH-2 applications indicates

that Pacifier incurs only 3.9%–16% larger logs and 10.1%–

30.5% slowdown compared with native execution. Simula-

tions with 10 SPLASH-2 benchmarks show that Rainbow

reduces the log size by 26.6% and improves the replay speed

by 26.8% compared with Strata, another hardware R&R

scheme.

(3) Runtime optimization. Current distributed graph

processing frameworks cannot precisely enforce the seman-

tics of user-defined functions, leading to unnecessary com-

putation and communication. SympleGraph (Zhuo et al.,

2020), a novel distributed graph processing framework, was

proposed to deal with this issue. It precisely enforces loop-

carried dependency; i.e., when a condition is satisfied by

a neighbor, all following neighbors can be skipped. En-

forcing loop-carried dependency requires the sequential pro-

cessing of the neighbors of each vertex distributed in differ-

ent nodes. Circulant scheduling is adopted by the frame-

work to allow different machines to process disjoint sets of

edges/vertices in parallel while satisfying the sequential re-

quirement. In a 16-node cluster, SympleGraph outperforms

the state-of-the-art system Gemini on average by 1.42× and

up to 2.30×. The communication reduction compared with

Gemini is 40.95% on average and up to 67.48%. Redundant

zeros cause inefficiencies, in which the zero values are loaded

and computed repeatedly, resulting in unnecessary memory

traffic and identity computation. A fine-grained profiler, Ze-

roSpy (You et al., 2020), was developed to identify redun-

dant zeros caused by the inappropriate use of data structures

and useless computation. ZeroSpy provides intuitive opti-

mization guidance by revealing locations where redundant

zeros happen in source lines and calling contexts. The ex-

perimental results demonstrate ZeroSpy can identify redun-

dant zeros in programs that have been highly optimized for

years. Based on the optimization guidance revealed by Ze-

roSpy, a significant speedup can be achieved after eliminat-

ing redundant zeros. SpTFS, a framework for the automatic

prediction of the optimal storage format for input sparse

tensors, was developed (Sun et al., 2020). SpTFS lowers

high-dimensional sparse tensors into fix-sized matrices and

accurately predicts the optimal format. The experimental

results show that SpTFS achieves a prediction accuracy of

92.7% and 96% on the CPU and GPU, respectively.

(4) Architectural support. A hardware-enhanced

cache coherence protocol is proposed to improve the per-

formance of traditional directory-based protocols (Wang et

al., 2015). The protocol is motivated by the observation

that many referenced memory blocks were only accessed by

a single core and can be treated as private memory blocks.

A novel hardware approach is adopted to dynamically iden-

tify the shared memory blocks at the cache block level and

bypass the coherence procedure for private memory blocks.

Experimental results show that this approach can, on av-

erage, (1) avoid the coherence tracking of ∼54% referenced

memory blocks, (2) reduce the coherence overhead by 77%,

(3) avoid 8% L2 cache misses, and (4) shorten the execution

time of parallel applications by 13%. Processors allowing

continuous execution of atomic blocks of instructions called

chunks can achieve high parallelism while keeping the cor-

rectness of the SC model. However, checking whether con-

flicts occurred in the chunk at the commit point of a chunk

becomes the bottleneck. BulkCommit, a scheme providing

a scalable and fast chunk commit for a large many-core sys-

tem, is proposed (Qian et al., 2013). The scheme achieves

a fast and scalable commit through (1) the serialization of

the write sets of output-dependent chunks to avoid squashes

and (2) the full parallelization of directory module ownership

by the committing chunks. Simulations with PARSEC and

SPLASH-2 codes for 64 processors show that BulkCommit

eliminates most squashes and commit stall times, speeding

up the codes by an average of 40% and 18% compared with

previously proposed schemes.

Selected publications

• Sun Q X, Liu Y, Yang H L, et al. CoGNN: effi-

cient scheduling for concurrent GNN training on GPUs.

In: Proceedings of International Conference for High Perfor-

mance Computing, Networking, Storage and Analysis, Dal-

las, 2022. 538–552

• Li M Z, Liu Y, Liu X Y, et al. The deep learning

compiler: a comprehensive survey. IEEE Trans Parall Distr

Syst, 2021, 32: 708–727

• Sun Q X, Liu Y, Yang H L, et al. Input-aware sparse

tensor storage format selection for optimizing MTTKRP.

IEEE Trans Comput, 2021, 71: 1968–1981

• Sun Q X, Liu Y, Dun M, et al. SpTFS: sparse ten-

sor format selection for MTTKRP via deep learning. In:

Proceedings of International Conference for High Perfor-

mance Computing, Networking, Storage and Analysis, At-

lanta, 2020. 1–14

• You X, Yang H L, Luan Z Z, et al. ZeroSpy: exploring

software inefficiency with redundant zeros. In: Proceedings

of International Conference for High Performance Comput-

ing, Networking, Storage and Analysis, Atlanta, 2020. 1–14

• Zhuo Y W, Chen J J, Luo Q Y, et al. SympleGraph:

distributed graph processing with precise loop-carried de-

pendency guarantee. In: Proceedings of ACM SIGPLAN

Conference on Programming Language Design and Imple-

mentation, London, 2020. 592–607

• Gao L, Xu Y L, Wang R, Luan Z Z, et al. Thread-Level

Locking for SIMT Architectures. IEEE Trans Parall Distr

Syst, 2020, 31: 1121–1136

• Gao L, Xu Y L, Wang R, et al. Accelerating in-memory

transaction processing using general purpose graphics pro-

cessing units. Future Gener Comput Syst, 2019, 97: 836–848

• Wang H, Wang R, Luan Z Z, et al. Improving multi-

processor performance with fine-grain coherence bypass. Sci

China Inf Sci, 2015, 58: 012104

• Xu Y L, Wang R, Goswami N, et al. Software trans-

actional memory for GPU architectures. In: Proceedings

of International Symposium on Code Generation and Opti-

mization, Orlando, 2014. 1–10

• Qian X H, Sahelices B, Qian D P. Pacifier: record

and replay for relaxed-consistency multiprocessors with dis-

tributed directory protocol. In: Proceedings of International

Symposium on Computer Architecture, Minneapolis, 2014.

433–444

• Qian X H, Torrellas J, Sahelices B, et al. Volition: scal-

able and precise sequential consistency violation detection.

In: Proceedings of International Conference on Architec-

tural Support for Programming Languages and Operating

Systems, Houston, 2013. 535–548

• Qian X H, Huang H, Sahelices B, et al. Rainbow: ef-

ficient memory dependence recording with high replay par-

Li M Z, et al. Sci China Inf Sci January 2024, Vol. 67, Iss. 1, 112101:19

allelism for relaxed memory model. In: Proceedings of In-

ternational Symposium on High Performance Computer Ar-

chitecture, Shenzhen, 2013. 554–565

• Qian X H, Torrellas J, Sahelices B, et al. BulkCommit:

scalable and fast commit of atomic blocks in a lazy multi-

processor environment. In: Proceedings of IEEE/ACM In-

ternational Symposium on Microarchitecture, Davis, 2013.

371–382

	Introduction
	Background and motivation
	Sunway processor and its ecosystem
	MLIR
	Stencil DSCs
	Motivation

	Design overview
	swLego, a reusable approach
	Sunway dialect
	Sunway backend

	Building a stencil compiler
	Programming language
	Reused dialects
	Optimizations

	Evaluation
	Experiment setup
	Overall performance on a single node
	Sensitivity to tile size
	Roofline model analysis
	Scaling to multiple nodes

	Conclusion
	Profile of Depei QIAN
	Improve parallel programming with a holistic approach
	Selected publications

