# A Reconfigurable Wilkinson Power Divider Based on Transmission-Line Phase Shifter for 5G New Radio 

Yiming YU, Xiaoning ZHANG, Chenxi ZHAO, Huihua LIU, Yunqiu WU \& Kai KANG*<br>School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

## Appendix A Isolation bandwidth analysis of the proposed WPDs

According to Figure 2(b) in the letter, the total electrical length $\left(\theta_{\Sigma}\right)$ of the two-bit ideal TL-PS is acquired by

$$
\begin{equation*}
\theta_{\Sigma}=90^{\circ} \times\left(1 / f_{1 C L / H}+1 / f_{2 C L / H}\right) \times f, \tag{A1}
\end{equation*}
$$

where $f_{i C L / H}$ represents the center frequency with $90^{\circ}$ phase delay in State $0 / 1$ of the $i^{t h}$ cell of the TL-PS. Let $\theta_{\Sigma}=90^{\circ}$, the effective center frequency $\left(f_{\Sigma}\right)$ of the TL-PS can be calculated by

$$
\begin{equation*}
f_{\Sigma}=\frac{1}{1 / f_{1 C L / H}+1 / f_{2 C L / H}} \tag{A2}
\end{equation*}
$$

To facilitate the isolation-bandwidth analysis, the center-frequency ratio of PS1 and PS2 at States 0 and $1(\alpha)$ is defined as

$$
\begin{equation*}
\alpha=f_{1 C H} / f_{1 C L}=f_{2 C H} / f_{2 C L} \tag{A3}
\end{equation*}
$$

While the ratio of the PS1's and PS2's center frequencies $(\beta)$ when they function in the same state (0 or 1) is defined by

$$
\begin{equation*}
\beta=f_{1 C H} / f_{2 C H}=f_{1 C L} / f_{2 C L} . \tag{A4}
\end{equation*}
$$

Based on (A2)-(A4), the maximum and minimum effective center frequencies ( $f_{\Sigma \max }$ and $f_{\Sigma \min }$ ) of the reconfigurable WPD can be learned by

$$
\left\{\begin{array}{l}
f_{\Sigma \max }=\alpha \times f_{1 C L} /(1+\beta)  \tag{A5}\\
f_{\Sigma \min }=f_{1 C L} /(1+\beta)
\end{array}\right.
$$

respectively. To ensure the isolation coefficient higher than 20 dB in the targeting frequency band of $24 \sim 43.5 \mathrm{GHz}, f_{\Sigma \max }$ and $f_{\Sigma \text { min }}$ should satisfy

$$
\begin{equation*}
f_{\Sigma_{\max }} \geqslant \frac{43.5}{f_{H}}, \quad f_{\Sigma \min } \leqslant \frac{24}{f_{L}} \tag{A6}
\end{equation*}
$$

According to Figure 1(a) in the letter, $f_{L}$ and $f_{H}$ can be learned, which are 0.82 and 1.18 , respectively. Therefore, we can obtain that $\alpha=f_{\Sigma_{\max }} / f_{\Sigma_{\min }} \geqslant 1.26$ based on (A6). Considering the impact of the processing variation and simulation deviation, $\alpha$ is selected as 1.38 to have $10 \%$ bandwidth margin.

Due to the used two-bit TL-PSs, the proposed WPD has four modes, and the corresponding $f_{\Sigma} \mathrm{s}$ can be calculated by

$$
\begin{equation*}
\left.f_{\Sigma i}\right|_{i=1 \sim 4} \in\left\{\frac{f_{1 C L}}{1+\beta}, \frac{f_{1 C L}}{1 / \alpha+\beta}, \frac{f_{1 C L}}{1+\beta / \alpha}, \frac{f_{1 C L}}{1 / \alpha+\beta / \alpha}\right\} . \tag{A7}
\end{equation*}
$$

To avoid the WPD encounter operating bandwidth gap of $>20-\mathrm{dB}$ isolation among different modes, each two adjacent $f_{\Sigma} \mathrm{s}$ need to satisfy

$$
\begin{equation*}
\frac{f_{\Sigma(i+1)}}{f_{\Sigma i}} \leqslant \frac{f_{N U p p e r}}{f_{N \text { Lower }}}=1.439, i=1,2,3 . \tag{A8}
\end{equation*}
$$

From (A8), the bounds for $\beta$ can be derived as

$$
\left\{\begin{array}{l}
\max \left\{\frac{1-M / \alpha}{M-1}, \frac{\alpha-M}{M-1}\right\} \leqslant \beta \leqslant \frac{\alpha M-1}{\alpha-M}, \quad \alpha>M=\frac{f_{\text {NUpper }}}{f_{\text {NLower }}}  \tag{A9}\\
\beta>0, \quad \alpha \leqslant M
\end{array}\right.
$$

In this design, $f_{1 C L}$ and $\beta$ are set as 87 GHz and 2. And the corresponding $f_{\Sigma} \mathrm{S}$ in the four modes of the reconfigurable WPD locate at $29,31.9,35.5$, and 40 GHz , respectively. Since the WPD has the best isolation performance at the center frequencies, as shown in Figure A1, the zero points of the circuit's $S_{23}$ in the four modes are evenly separated in the targeting frequency band. It guarantees the circuit's theoretical isolation is higher than 20 dB from 23.8 to 47.2 GHz .


Figure A1 Isolation of the WPD with the ideal TL-PS in four operating states.


Figure B1 TL-PS's equivalent-circuit model which is based on a $\pi$-type network.

## Appendix B Bandwidth enhancement of impedance matching

To facilitate the analysis of the frequency response of the TL-PS, as illustrated in Figure B1, a $\pi$-type network which is composed of a variable inductor and two tunable capacitors is adopted to model the TL-PS. According to Figure B1, the ABCD matrix is derived by

$$
\left[\begin{array}{cc}
A & B  \tag{B1}\\
C & D
\end{array}\right]_{P S}=\left[\begin{array}{cc}
1-\omega^{2} L_{L / H} C_{L / H} & j \omega L_{L / H} \\
j \omega C_{L / H}\left(2-\omega^{2} L_{L / H} C_{L / H}\right) & 1-\omega^{2} L_{L / H} C_{L / H}
\end{array}\right] .
$$

Where $\omega$ is the angular frequency; $L_{L / H}$ and $C_{L / H}$ represent the equivalent inductance and capacitance when $P Q$ is set as Low/High, respectively.

Assuming the $\pi$-type network perfectly matches with $Z_{T}$ at a frequency $f_{m}$, from (B1), $L_{L / H}$ and $C_{L / H}$ can be calculated by

$$
\begin{gather*}
L_{L / H}=Z_{T} \times \sin \left(\theta_{m}\right) / \omega_{m}  \tag{B2}\\
C_{L / H}=\tan \left(\theta_{m} / 2\right) / Z_{T} / \omega_{m} \tag{B3}
\end{gather*}
$$

respectively. $\omega_{m}=2 \pi f_{m}$, and $\theta_{m}$ denotes the electrical length of the TL at $f_{m}$. Based on (B2) and (B3), the ABCD matrix can be modified as

$$
\left\{\begin{array}{l}
A=D=1-\frac{\omega^{2}\left(1-\cos \left(\theta_{m}\right)\right)}{\omega_{m}^{2}}  \tag{B4}\\
B=\frac{j \omega Z_{T} \sin \left(\theta_{m}\right)}{\omega_{m}} \\
C=\frac{j \omega\left(-\omega^{2}+2 \omega_{m}^{2}+\omega^{2} \cos \left(\theta_{m}\right)\right) \tan \left(\theta_{m} / 2\right)}{\omega_{m}^{3} Z_{T}}
\end{array}\right.
$$

To learn the characteristic of the input impedance matching of the TL, the reflection coefficient ( $S_{11}$ ) is derived based on (B4) which is equal to

$$
\begin{equation*}
S_{11}=\frac{A+B / Z_{T}-C Z_{T}-D}{A+B / Z_{T}+C Z_{T}+D}=\frac{N u m}{R_{-} D e n+j I_{-} D e n}, \tag{B5}
\end{equation*}
$$

of which,

$$
\begin{gather*}
N u m=-\omega \times\left(\omega^{2}-\omega_{m}^{2}\right) \times \tan ^{2}\left(\frac{\theta_{m}}{2}\right)  \tag{B6}\\
R_{-} \text {Den }=\frac{\omega^{3} \times\left(1-\cos \left(\theta_{m}\right)\right)-\omega \omega_{m}^{2} \times\left(3+\cos \left(\theta_{m}\right)\right)}{1+\cos \left(\theta_{m}\right)}  \tag{B7}\\
I_{-} \text {Den }=\frac{\omega^{2} \times 2 \times\left(\cos \left(\theta_{m}\right)-1\right) \times \omega_{m}+2 \times \omega_{m}^{3}}{\sin \left(\theta_{m}\right)} \tag{B8}
\end{gather*}
$$

The magnitude of $S_{11}$ is given by

$$
\begin{equation*}
A_{S 11}=\sqrt{\frac{|N u m|^{2}}{\mid R_{-} \text {Den }\left.\right|^{2}+\mid I_{-} \text {Den }\left.\right|^{2}}} \tag{B9}
\end{equation*}
$$

To simplify the analysis, the working angular frequency is normalized to $\omega_{m}$. Figure B2(a) shows the calculated amplitude of $S_{11}$ against the normalized frequency when $\theta_{m}$ is set as $30^{\circ}, 60^{\circ}$, and $90^{\circ}$, respectively. It can be seen that the frequency points ( $\omega_{\Gamma \max }$ ) of the maximum $R L$ between 0 and $\omega_{m}$ locates at $\omega_{m} / 3$ which can be calculated by letting $d A_{S 11} / d \omega_{m}=0$. Substitute $\omega_{\Gamma \max }$ into (B9), the local maximum amplitude of $S_{11}\left(A_{S 11-\max }\right)$ is derived as

$$
\begin{equation*}
A_{S 11-\max }=2 \sqrt{\frac{2}{\cos \left(\theta_{m}\right)-7}} \times \frac{\sin ^{3}\left(\theta_{m} / 2\right)}{2+\cos \left(\theta_{m}\right)} . \tag{B10}
\end{equation*}
$$



Figure B2 (a) $S_{11}$ 's amplitude of a phase-shifting cell with the $\theta_{m}$ s of $30^{\circ}, 60^{\circ}$, and $90^{\circ}$, (b) theoretical $A_{S 11-\max }$ versus $\theta_{m}$.

| Table B1 Calculated Parameters of PS1 and PS2 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | PS 1 |  | PS2 |  |  |  |
| $P Q$ | 1 | 0 | 1 | 0 | 0 |  |
| $f_{m}$ | 40 GHz | 40 GHz | 40 GHz | 31.9 GHz | 40 GHz |  |
| $\theta_{m}$ | $30^{\circ}$ | $41.4^{\circ}$ | $60^{\circ}$ | $66.4^{\circ}$ | $82.76^{\circ}$ |  |
|  | 141 pH | 186 pH | 246 pH | 323.2 pH | 279.1 pH |  |
| Ind. $(Q)$ | $(3)$ | $(8)$ | $(4)$ | $(9)$ | $(-)$ |  |
|  | $15.1 f \mathrm{~F}$ | $21.3 f \mathrm{~F}$ | $33.2 f \mathrm{~F}$ | $46.2 f \mathrm{~F}$ | 49.6 fF |  |
| Cap. $(Q)$ | $(40)$ | $(21)$ | $(23)$ | $(10)$ | $(-)$ |  |



Figure B3 Theoretical reflection coefficients of the TL-PS in different working states.

The relationship between $d A_{S 11-\max }$ and $\theta_{m}$ is plotted in Figure B2(b). With increasing $\theta_{m}$ from $30^{\circ}$ to $90^{\circ}$, $A_{S 11-\max }$ changes from -40 to -14 dB . Therefore, $\theta_{m}$ should be chosen as small as possible to minimize the $R L$. In this design, the $f_{m} \mathrm{~s}$ of the four working states are chosen according to the zero points of the isolation coefficient ( $S_{23}$ ) for both wideband isolation and impedance-matching performances. The related $\theta_{m}, L_{L, H}$, and $C_{L, H}$ of this design are calculated based on (A6), (B2), and (B3), which are summarized in Table B1. Among them, PS2 in State 0 has the largest electrical length, which is the bottleneck of the TL-PS to achieve wideband input impedance matching. Therefore, its $f_{m}$ is set as 31.9 GHz in State 0 , which is as same as the frequency of the second zero point of $S_{23}\left(f_{z 2}\right)$. And the corresponding equivalent electrical length $\theta_{m}$ is decreased to $66.4^{\circ 1)}$. This strategy minimizes the required electrical length and balances the input impedance matching and isolation bandwidths. The other states whose equivalent electrical lengths are less than $60^{\circ}$ are designed with the $f_{m}$ of 40 GHz which is the same as the fourth zero point of $S_{23}\left(f_{z 4}\right)$ [Figure A1]. It ensures the WPD has good return loss in the entire frequency band. Figure B3 shows the calculated reflection coefficients of the entire 2-bit TL-PS based on the theoretical analysis. Two perfectly matched points are at 31.9 and 40 GHz , and the reflection coefficient is less than -20 dB in the frequency band of $10 \sim 50 \mathrm{GHz}$. However, if adopting the gray values in Table B1 for PS2's State 0 which are calculated by setting the $f_{m}$ at 40 GHz , the reflection coefficients of States $\langle 0,0\rangle$ and $\langle 0,1\rangle$ are up to -13 dB at the upper edge of the frequency band and deteriorates by 7 dB at least.

[^0]
[^0]:    * Corresponding author (email: kangkai@uestc.edu.cn)

    1) If the $f_{m}$ of the PS2 in State 0 is also set as 40 GHz like others, the required equivalent electrical length should be increased to $82.76^{\circ}$ to maintain the total phase delay of $90^{\circ}$ in the low-frequency band (State $\langle 0,0\rangle$ ) as shown in Table B1 (gray italic ones), and its theoretical return loss will be worsened by $7 \sim 10 \mathrm{~dB}$ [Figure B2(b)].
