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Lithography simulation is key to the preparation of mask

data and verification of mask patterns [1], which enhances

design-to-wafer fidelity and minimizes distortions. However,

the complexity of lithography simulation has tremendously

increased with the decrease in feature size, prolonging the

simulation cycle. Hence, an accurate and fast lithography

simulation is in great demand.

Recently, the introduction of the machine learning

method brings a new paradigm for achieving high modeling

efficacy and accuracy in lithography simulation [2]. Ref. [2]

has proposed LithoGAN to perform end-to-end simulation

for the contact shapes, which has achieved over 96% predic-

tion accuracy and orders of magnitude runtime reduction

compared with prior studies. However, there is still room to

further improve the model efficacy and speed up the simu-

lation cycle.

In this study, we have proposed an end-to-end super-

resolution lithography model, Litho-AsymVnet framework,

which uses asymmetric autoencoder neural network archi-

tecture to convert the low-resolution mask patterns to high-

resolution resist patterns by 6×. To further eliminate the

boundary errors, we have proposed the “trimming” method

and concentric weighted binary cross-entropy loss function

to achieve a good trade-off between maximizing the accu-

racy and minimizing the runtime. The experimental results

show that our Litho-AsymVnet framework achieves up to

7.5% accuracy improvement on contact/via and 2D polysil-

icon/metal datasets compared with the state-of-the-art

studies.

Litho-AsymVnet framework. Figure 1 presents the

Litho-AsymVnet framework, including the Litho-AsymVnet

model and the optimization methods (“trimming” method

and concentric weighted binary cross-entropy (CWBCE)

loss function).

Litho-AsymVnet model architecture includes two parts:

(i) encoder, and (ii) decoder, as shown in Figure 1(a). Con-

sidering the trade-off between the accuracy and speed, the

Litho-AsymVnet model takes the mask pattern images with

a lower resolution of 224 × 224 × 1 pixel as input and

outputs resist pattern images with a higher resolution of

1334 × 1334 × 1. (i) The encoder network consists of four

encoder blocks and a bridge block. Each encoder block con-

sists of two 3× 3 convolutional layers followed by a rectified

linear unit (ReLU) layer, a batch normalization (BN) layer,

and a max-pooling layer. Two 3 × 3 convolutional layers

are used as a bridge block to connect the encoder with the

decoder. The number of filters is set as 32 in the first en-

coder block, and it is doubled at the end of each encoder

block. The max-pooling layer with a kernel size of 2 × 2

halves the output size. The input tensor has been reduced

from 224× 224× 1 to 14× 14× 256 after traversing through

the encoder network. (ii) The decoder network consists of

five decoder blocks, which are asymmetrical as compared

with the encoder network. The first four decoder blocks are

composed of an up-sampling layer with the stride of 2, two

3 × 3 convolutional layers, a ReLU layer, and a BN layer.

At the end of each decoder block, the dimensions of feature

maps are doubled and the number of filters is halved. The

last decoder block is similar to the first four decoder blocks

while the stride of the up-sampling layer is 6, which expands

the resolution of the feature maps from 224 to 1344. In the

end, we adopt a 1× 1 convolutional layer with a filter num-

ber of 1, followed by a sigmoid layer to generate the output.

We employ skip connections to fully utilize the features from

different layers and resolutions for better simulation perfor-

mance [3].

Optimization methods are necessary as the neural net-

work models do not guarantee every pixel is 100% error-free,

especially near the boundary of the image [3]. In this study,

we propose the “trimming” method and CWBCE loss func-

tion to achieve a good trade-off between maximizing model

accuracy and minimizing the runtime. Figure 1(b) presents
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Figure 1 (Color online) The proposed Litho-AsymVnet framework, including (a) Litho-AsymVnet model architecture, (b) an

illustration of trimming method, and (c) an illustration of concentric weighted binary cross-entropy (CWBCE) loss.

an illustration of the “trimming” method where the dimen-

sion of the output resist pattern image with a dimension of

H×H (blue box) is trimmed to a target dimension of h×h

(red box). As illustrated in Figure 1(c), the CWBCE loss

function is a weighted pixel-wise loss function, where the

matrix dot product is applied onto the pixel-wise BCE map

with the weighted concentric map to exacerbate the error

within the target area. It is formulated as follows:

Lcwbce =
H∑

i=1

H∑

j=1

L′

i,j (1)

=
H∑

i=1

H∑

j=1

Li,j · wi,j (2)

=−
H∑

i=1

H∑

j=1

{(1− yi,j) log(1− ŷi,j) (3)

+ yi,j log(ŷi,j)} · wi,j , (4)

where L′

i,j and Li,j denote the CWBCE loss and BCE loss

for each pixel. wi,j denotes the weight for each pixel in the

weighted concentric map and yi,j and ŷi,j denote the ground

truth and the prediction result for each pixel, respectively.

The weight of the pixel in and out of the target area is set

as wc and 1− wc, respectively.

Experimental results. Our proposed Litho-AsymVnet

framework is implemented and evaluated in Python on a

Linux machine with a 2.50 GHz CPU and Nvidia GTX

2080Ti GPU. We quantify and evaluate the lithography

model’s performance using pixel accuracy, class accuracy,

and mean IOU [2]. We have used 2D polysilicon and con-

tact layers from commercial mixed-signal designs based on

55/65 nm technology nodes as our datasets. To improve

the model’s generalization ability, data augmentation tech-

niques [4] are applied in this study.

We have explored the optimal target dimensions (h) to

determine the best trade-off between accuracy and speed.

Besides, we have conducted experiments to benchmark with

the popular network architectures based on the same dataset

to verify the effectiveness of our framework. Furthermore,

we have conducted a comparison with LithoGAN [2] using

the same datasets. The experimental results show that our

framework outperforms others with the highest simulation

accuracy. Detailed experimental results can be found in Ap-

pendix A.

Conclusion. In this study, we have proposed a

Litho-AsymVnet framework to perform end-to-end super-

resolution lithography modeling. Our Litho-AsymVnet

framework with an asymmetric autoencoder architecture

takes in a lower resolution mask pattern image as input and

produces a 6× higher resolution resist pattern image as out-

put. To address the boundary pixel errors, we have proposed

a “trimming” method and concentric binary cross-entropy

loss function to achieve a good trade-off between prediction

accuracy and runtime. The experimental results show that

our proposed framework produces a high quality prediction

of resist pattern compared with the prior work.
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