
SCIENCE CHINA
Information Sciences

. Supplementary File .

CLEAR: A Full-Stack Chip-in-Loop Emulator for
Analog RRAM based Computing-in-Memory System

Ruihua Yu1, Wenqiang Zhang1, Bin Gao1*, Yiwen Geng1, Peng Yao1, Yuyi Liu1,
Qingtian Zhang1, Jianshi Tang1, Dong Wu1, Hu He1, Ning Deng1,

He Qian1 & Huaqiang Wu1

1School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist),
Tsinghua University, Beijing , China

Appendix A Compiler Optimization

As shown in Fig. A1a, the optimization of the model mainly includes two parts, one is the combination and splitting of

nodes, and the other is the optimization of the critical path. The specific optimization processes are as follows. After

compiler optimization, the address information will be added into the intermediate representation (IR) as shown in Fig.

A1c, which can decide the running backends (real chip or analog computing model) of each CIM-friendly layer in deep

neural network models.

Appendix A.1 Node combination

The fusion and splitting of nodes include two cases. The first is to combine or split the layer according to the finest-grained

scheduling instructions of the actual hardware. Sometimes due to the design of the hardware, the hardware instructions

cannot directly give a command to a certain function layer, but can control a group of layers. It is necessary to combine

layers that cannot be executed separately. Besides, for those operations that cannot be completed by hardware instructions

at one time, they need to be split into a combination of some basic operations. For instance, the convolution (CONV)

operation can be split into a combination of VMM as shown in Fig. A1b. The second is to fuse different layers for

simplifying the model based on equivalent conversion. For example, the BatchNormalization layer and CONV layer can be

fused by changing the parameters of the CONV layer. The new weight of CONV layer after fusion can be expressed as

w
′
= wβ/

√
var, where w, beta and var represent the original weight, variance of IFM and learning parameters respectively.

Appendix A.2 Critical path reforming

When there are remaining hardware resources after all layers are mapped once, these resources can be re-allocated to improve

the utilization and throughput. In the inference phase, CONV layers consume the most of the time. The throughput of

inference can be maximized by reallocating XBs for CONV layers. Generally, the throughput of layer-pipeline CIM chip

is always limited by the most computing-insentive layer in the longest path, which have the most layers. The longest

path is defined as the critical path. Assuming that there are N CONV layers in the critical path, the weight of different

CONV layers are mapped to different number of XBs, so we can compute the time for implementing each CONV operation

according to the input size of each CONV layer respectively as T1, ..., TL. If available XBs of critical path are more than

the XBs that are used in initial allocation of all layers on the critical path, we can improve the throughput by minimizing

max{T1X0
1/X1, ..., TLX

0
L/XL} where X0

l and Xl represents the initial-allocated and re-allocated number of XBs for l-th

CONV layer with critical path reforming method (Algorithm A1), respectively. For example, as shown in Fig. A2a, there

is a 3-layer CNN model with two CONV layers and one FC layer. And we use a simplified chip architecture with 8 arrays

(Fig. A2b) to explain the Algorithm A1. Firstly, we can allocate the array for each CONV or FC layer in the model

accordding to the weight kernel size (iteration #0 in Fig. A2b). After that, there are some arrays unoccupied. And we can

find the most time-consuming layer among them (CONV1, CONV2, FC). We mainly use T 0
l = tdata + tXB to calculate the

consumed time of each layer on chip, where tdata represents the data transmission time from one array to another array.

tXB represents the calculating time of analog computing for current feature map, and the layer with maximum will be

selected to allocate more resources. So when the CONV1 is selected as the most time-consuming layer, one more array can

be allocated to CONV1 (iteration #1 in Fig. A2b). The optimization will repeat this process until all arrays in the chips

are allocated to at least one layer (iteration #5 in Fig. A2b).

*Corresponding author (email: gaob1@tsinghua.edu.cn)



Ruihua Yu, et al. Sci China Inf Sci 2

Figure A1 (a) The architecture of compiler,(b) workflow of the frontend in compiler and (c) the frontend and backend

informaton of emulation-oriented IR

Figure A2 (a) A 3-layer CNN model for image classification and (b) the weight placement of 3-layer CNN model on chip

during the iteration of optimization method.

Appendix B Emulation-oriented IR of CIM paradigm

After the model is optimized, we use a new data structure to represent the model in order to map the algorithm model

to the hardware. The data format plays the role of emulation-oriented IR during the compilation process. In addition

to the basic information such as the input, output and weight data dimension, precision, and node fusion and splitting

relationships of each layer, emulation-oriented IR has defined an address attribute to determine the specific location of the

corresponding hardware for each layer in the model. The basic expression form of some attributes in emulation-oriented IR

is shown in TABLE B1.

Operation and OpType in the table give the operation types supported in emulation-oriented IR and the corresponding

detailed operations, respectively. Address gives the description format of hardware location for some common operations.

Generally, after the parser and optimization, the address information does not appear in the emulation-oriented IR graph,

and its value is NONE. When the compiler backend allocates resources according to hardware constraints, the address

information in the emulation-oriented IR will correspond to the actual hardware location. When describing the hardware,

we analogize the three-dimensional coordinates of the design space, and define the three-level architecture of the hardware

as a three-dimensional hardware space, using x, y, and z to represent the chip-level, Tile-level, and XB-level positions,

respectively. During hardware analysis, hardware resources are numbered according to the above three dimensions. Then

the three dimensions are combined to obtain the coordinates corresponding to each actual hardware. This position is

uniquely determined by the values of x, y, and z. It should be noted that for the CONV or FC layer, after determining

the position of XB, the row and column coordinates of the weight mapped in XB need to be given, as shown in the



Ruihua Yu, et al. Sci China Inf Sci 3

Algorithm A1 Critical path reforming method

Input: Neural network, Array size (H ×W ), Dataset, On-chip resource (P);

Output: Re-allocated resources of each layer: Xl;

1: Calculate initial allocation of each layer: Xl = X0
l = (Cout × Cin ×K ×K)/(H ×W );

2: Calculate the size of input feature maps of each layer: IFM l;

3: Calculate initial execution time of each layer: T 0
l = tdata + tXB ;

4: Calculate initial available resource for critical path: M = P −
∑L

l=1 X
0
l ;

5: while M > 0 do

6: i = argmax[T1X
0
1/X1, . . . , TLX

0
L/XL];

7: Xi = Xi +X0
i ;

8: Calculate available resource for critical path:M = P −
∑L

l=1 Xl;

9: end while

10: return Xl, l ∈ (1, L)

Table B1 Emulation-oriented IR of CIM paradigm

Operation Description Address OpType

VMM

Conv2d/MatMul can be splitted

into VMM operations in the

XBs

• {Chip[x].Tile[y].XB[z].[Sx,Sy,Ex,Ey],. . . }
• Conv2d

• MatMul

Add Add the results from XBs
• {Chip[x].Tile[y].Adder[z],. . . }
• virtual • add

Activation
Element-wise operations to

calculate the activation function

• {Chip[x].Tile[y].Activation[z],. . . }
• virtual • Relu

Pooling
Compute the average/max of a

subset of input data

• {Chip[x].Tile[y].Pooling[z],. . . }
• virtual

• MaxPool

• AveragePool

Flatten
Flattens the 3D data from the

Tiles into a vector

• {Chip[x].Controller[y],. . . }
• virtual • Flatten

Dispatch
Split the input data of specify

layer to different Tiles

• {Chip[x].Controller[y],. . . }
• virtual • Dispatch

Merge
Concatenate the outputs of

different Tiles

• {Chip[x].Controller[y],. . . }
• virtual • Merge

Table B1, where [Sx, Sy, Ex, Ey] represent the starting row and column position and the ending row and column position

respectively.The rectangular area formed by the coordinates is the position where the weight is mapped to XB. In addition,

some operations do not require all the three coordinates information, such as a Tile-level controller, which can perform

Flatten operations, but only have two coordinates, which are x and y. It means that the device like Tile-level controller can

control all z devices prefixed with x and y, which are similar to the concept of lines in three-dimensional space.

The backend of the compiler can use the address information as the input information of the hardware interface function.

As there are different operations in different network models, a certain kind of hardware cannot fully support all operators.

For those layers that cannot be executed in existing hardware, we define their address attributes as virtual, indicating that

this operation is executed outside of the actual hardware. In the scheduling module, the layer with the virtual tag will be

shielded, so that only the layer performed on the actual hardware will own its corresponding hardware instruction codes.

Appendix C Analog computing model

The accuracy drop of CIM chips is mainly induced by the nonidealities in analog computing. Thus, a detailed analog

computing model should be developed. As shown in Fig. C1a, basically, the input data is sliced to multi single-bit vectors

and then is transformed to voltages by DAC. When the voltages are applied to the array, the output currents are quantized

by ADC and the output data is obtained with shift-adder circuits. The analog computing model includes two parts: device

and array model (Fig. C1b) and peripheral circuit model (Fig. C1c).

For the device and array in the inference phase, the computing results are mainly influenced by read and write noise

and IR-drop, which can be modeled as Iout = VinFRow(Gori +N(Gori))FCol, where the FRow and FCol are the row and

column IR-drop factors, respectively [1], the N(Gori) is a noise factor related to original G. For the update phase of device

and array, the next conductance state after the open-loop update without verify is modeled as

Gnext =

{
Gorie

(−N/a) + (b+Gmin)(1− e(−N/a)),∆G > 0

Gorie
(N/a) + (Gmax − b)(1− e(N/a)),∆G < 0

(C1)

where N is the update pulse number, Gmin and Gmax are the minimum and maximum of analog switching window,

a and b are the nonlinear factors [2]. In the close-loop update with verify, the next conductance state is modeled as

Gnext = Gori + ∆G + N(Gori + ∆G). For peripheral circuits the inference phase, the nonideal DAC and ADC can be



Ruihua Yu, et al. Sci China Inf Sci 4

Figure C1 (a) Circuit blocks in XB, (b) device and array model in inference and updata phases and (c) XB analog

computing model.

Table D1 The specifications of simulation architecture and referred chips

Parameter

Chip Specification for

throughput

optimization

(Simulation)

4K Array[SCIS 21’] [4] 160K Chip[ISSCC 20’] [3] 16K System[Nature 20’] [5]

Array size 256 × 256 32 × 128
• Array1: 1568 × 100

• Array2: 100 × 10
128 × 16

Data bandwidth 1 Gb/s - - -

ADC bits 8 -
• Array1: 2

• Array2: 8 8

DAC bits 1 -
• Array1: 1

• Array2: 1 1

ADC number

per array
8 -

• Array1: 100

• Array2: 10 32

Memristor

capacity
128M 4K 160K 16K

modeled as shown in Fig. C1c. The nonidealities of peripheral circuits in update phase can be integrated in device model,

which is omitted in this work.

Appendix D Experimental Results

Appendix D.1 Experimental setup

We present three case studies: dataflow optimization, analog computing verification and model calibration. In the dataflow

optimization case, we used four standard DNN models (VGG11, ResNet18, 34, 50) for IMAGENET to simulated on-chip

throughput of the 128M RRAM chip when the array size is 256×256. In the analog computing verification case, we compare

classification accuracies between native inference with FP32 and chip-in-loop inference of ResNet34 for CIFAR-10 using

increasing gate voltage programing method with 100ns-width pulses. In the model calibration case, we use the 160K fully

chip [3] to calibrate the circuit model with two-layer FC NN, and multi-chip system to calibrate the device and array model

with five-layer CNN for MNIST classification. The specification of simulated architecture and referred chips are shown in

Table D1.

Appendix D.2 Optimization of dataflow

The result of throughput of the ResNet18 is shown in Fig. D1a. It can be found that when the array size is small, the

throughput is higher, and the change of row has a smaller impact on the data throughput rate than the change of column.

Therefore, we expect to set the array to with height greater than width, which can achieve faster processing speed when

facing networks of different sizes. At the same time, after adopting the proposed compilation scheme, the throughput rate

can be greatly improved for different networks when the hardware resources are determined. Fig. D1b shows that the

throughput of each model has been improved by at least several tens of times, and the ResNet18 has even reached a 211×
increase comparing to those without adapting the compilation process.



Ruihua Yu, et al. Sci China Inf Sci 5

Figure D1 (a) The impacts of array size on the throughput and (b) throughput optimization with compiler

Figure D2 (a) Measured characteristics of RRAM device, (b) verification of array computing and (c) analog computing

based DNN, (d) execution time of CLEAR.

Appendix D.3 Verification of analog computing based DNN

Many model-based simulation works have shown that the read and write noise of device will reduce the accuracy of RRAM

based analog computing, hence, it is needed to verify the actual accuracy drop of DNN in the actual RRAM chip. We

take two experiments: verification of the device model in simulation and verification of the function of analog computing

based DNN. In the array computing experiment, the device model with Gaussian distribution in each conductance level is

generated by the measured data in Fig. D2a. We can see that the simulated outputs of array computing are linear with

measured outputs but still has deviated noise (Fig. D2b). In DNN inference, the accuracy of chip-in-loop inference with

chip-aware training is slightly lower than native computing with FP32 (Fig. D2c). Thus, the read and write noise will

slightly decrease the accuracy of analog computing based DNN. Further, the simulation time of CLEAR will increases as

the model becomes larger (Fig. D2d).

Appendix D.4 Calibration of models in simulation

We calibrate the circuit model and device and array model with CLEAR. The simulated results are compared with the

measured results of 160K fully chip in CLEAR based on the area, latency and power metrics (Fig. D3a). The simulated

area is larger than the measured one due to the optimized chip layout. The simulated latency and power are slightly smaller

the measured due to the simulated circuit model eliminates the power and latency of pad ring. In Fig. D3b, the simulated

training process of hybrid training method is similar to the experimental training process with about 0.36% error in the

test.



Ruihua Yu, et al. Sci China Inf Sci 6

Figure D3 (a) Calibration of circuit model and (b) device and array model.

Table E1 Comparison with other works in the literature

Works
Compilation

Optimization

Hardware

System Support
Inference Model Training

On-chip

verification

This work ✓ ✓
Circuit Model (High

Simulation Precision)
✓ ✓

PUMAsim [6] ✗ ✗
Behaviour Model (Low

Simulation Precision)
✗ ✗

MNSIM [7] /

MNSIM2.0 [8]
✗ ✗

Behaviour Model (Low

Simulation Precision)
✗ ✗

NeuroSim [9] /

NeuroSim2.0 [10]
✗ ✗

Circuit Model (High

Simulation Precision)
✓ ✓

Appendix E Comparison with other works

We list a table (Table E1) to illustrate the differences between this work and former works about simulation platform of CIM

chips. We mainly compare five representative aspects about hardware simulation tool, including compilation optimization,

hardware system support, inference model, training, and on-chip verification. The compilation optimization refers to

the model deployment optimization. When given a specific hardware architecture, the simulator can find an optimized

placement and simply some connections of different layer if it supports the compilation optimization function.The hardware

system support refers to whether the deployment flow of AI models on simulator and real hardware system can share some

common software functional modules. To validate the proposed simulation model, we need to compare the results between

the chips and simulator. The traditional way to get the results of hardware and simulator are two separate process due

to the different interfaces of hardware and simulator. If we can use unified the workflow for hardware and simulator, the

verification process will be much quicker and more convenient. The inference model refers to the which model does the

simulator adopt. The circuit level model has higher simulation precision than behavior model because the circuit level model

has more comprehensive details when calculating the results. The training refers to whether the tool supports simulation

of on-chip training. The on-chip verification refers to whether the tool has been verified with experimental results from

real chips. The comparison table shows that our proposed simulator has more abundant functions, which can improve the

simulation efficiency. We introduce two functions, the compilation optimization and hardware system support, into our

emulator, which are not supported in other works. With the compilation optimization, we can automatically place various

AI models on hardware or simulator more reasonably. Meanwhile, with the design of unified deployment flow for simulator

and hardware, we can support the hardware system test in the same workflow, which can reduce huge labor consuming to

validate the proposed simulation model with fabricated chips.

References

1 Yan Liao, Bin Gao, Peng Yao, Wenqiang Zhang, Jianshi Tang, Huaqiang Wu, and He Qian. Diagonal matrix regression

layer: Training neural networks on resistive crossbars with interconnect resistance effect. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 40(8):1662–1671, 2020.

2 Wei Wu, Huaqiang Wu, Bin Gao, Peng Yao, Xiang Zhang, Xiaochen Peng, Shimeng Yu, and He Qian. A methodology

to improve linearity of analog rram for neuromorphic computing. In 2018 IEEE Symposium on VLSI Technology,

pages 103–104. IEEE, 2018.

3 Qi Liu, Bin Gao, Peng Yao, Dong Wu, Junren Chen, Yachuan Pang, Wenqiang Zhang, Yan Liao, Cheng-Xin Xue,

Wei-Hao Chen, Jianshi Tang, Yu Wang, Meng-Fan Chang, He Qian, and Huaqiang Wu. A fully integrated analog

ReRAM based 78.4 TOPS/W compute-in-memory chip with fully parallel MAC computing. In 2020 IEEE international

solid-state circuits conference, pages 500–502. IEEE, 2020.

4 Wenqiang Zhang, Bin Gao, Peng Yao, Jianshi Tang, He Qian, and Huaqiang Wu. Array-level boosting method with

spatial extended allocation to improve the accuracy of memristor based computing-in-memory chips. Science China

Information Sciences, 64(6):1–9, 2021.

5 Peng Yao, Huaqiang Wu, Bin Gao, Jianshi Tang, Qingtian Zhang, Wenqiang Zhang, J. Joshua Yang, and He Qian.



Ruihua Yu, et al. Sci China Inf Sci 7

Fully hardware-implemented memristor convolutional neural network. Nature, 577(7792):641–646, 2020.

6 Aayush Ankit, Izzat El Hajj, Sai Rahul Chalamalasetti, Geoffrey Ndu, Martin Foltin, R Stanley Williams, Paolo Fara-

boschi, Wen-mei W Hwu, John Paul Strachan, Kaushik Roy, et al. Puma: A programmable ultra-efficient memristor-

based accelerator for machine learning inference. In Proceedings of the Twenty-Fourth International Conference on

Architectural Support for Programming Languages and Operating Systems, pages 715–731, 2019.

7 Lixue Xia, Boxun Li, Tianqi Tang, Peng Gu, Pai-Yu Chen, Shimeng Yu, Yu Cao, Yu Wang, Yuan Xie, and Huazhong

Yang. Mnsim: Simulation platform for memristor-based neuromorphic computing system. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 37(5):1009–1022, 2017.

8 Zhenhua Zhu, Hanbo Sun, Kaizhong Qiu, Lixue Xia, Gokul Krishnan, Guohao Dai,Dimin Niu, Xiaoming Chen, X

Sharon Hu, Yu Cao, et al. Mnsim 2.0: A behavior-level modeling tool for memristor-based neuromorphic computing

systems. InProceedings of the 2020 on Great Lakes Symposium on VLSI, pages 83–88, 2020.

9 Pai-Yu Chen, Xiaochen Peng, and Shimeng Yu. Neurosim: A circuit-level macro model for benchmarking neuro-

inspired architectures in online learning. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 37(12):3067–3080, 2018.

10 Xiaochen Peng, Shanshi Huang, Hongwu Jiang, Anni Lu, and Shimeng Yu. Dnn+neurosim v2. 0: An end-to-end

benchmarking framework for compute-in-memoryaccelerators for on-chip training.IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 40(11):2306–2319, 2020.


	Compiler Optimization
	Node combination
	Critical path reforming

	Emulation-oriented IR of CIM paradigm
	Analog computing model
	Experimental Results
	Experimental setup
	Optimization of dataflow
	Verification of analog computing based DNN
	Calibration of models in simulation

	Comparison with other works

