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The max-cut problem is one of the fundamental NP-hard

problems in combinatorial optimization, which can describe

the practical applications such as data clustering, machine

scheduling, and image recognition. This problem can be for-

mulated into an equivalent Ising model without local fields,

given by H = −
∑

〈l,k〉 Jl,kxlxk where Jl,k is the inter-

action between spins and binary spin state xl ∈ {1,−1}.

And photonic Ising machines are designed to search for the

ground state of the Ising model by either iterative sampling

or directly evolving the ensemble energy regarding the estab-

lished mapping of a particular combinatorial problem [1–4].

Among these solutions, spatial photonic Ising machines en-

coding the spins as a phase matrix in spatial light modula-

tors (SLMs), translate the Ising model into another form as

follows:

H = −
∑

〈l,k〉

εlεkxlxk, (1)

in which the interaction coefficient Jl,k is set by the ampli-

tude modulation εl and εk [2]. This scheme is highly suitable

for solving large-scale max-cut problems that exhibit fully

connected interactions, owing to its superior connectivity

and scalability [3]. However, several proposed Ising ma-

chines tend to focus on solving the benchmark unweighted

max-cut problems, as they can be easily mapped onto the

Ising model with Jl,k taking values of {0,±1} while the

weighted ones are more practical and complex.

In this article, we successfully solve 20736-node weighted

max-cut problems with the quadrature photonic spatial

Ising machine (Q-SIM). To configure the weights, we per-

form intensity configuration based on Euler’s formula by

extending the quadrature phase configuration in previously

proposed architecture [4]. Furthermore, we extend our ex-

periments to instances of dense graphs and compare our re-

sults with those obtained through numerical simulations and

other reviewed methods. Our experimental results show a

33% improvement in the maximum cut value over the sim-

ulation results and a 34% improvement over the standard

Sahni-Gonzales (SG) algorithm. Moreover, our approach

provides a substantial overall speed-up.

Architecture and principle. As shown in Figure 1(a), an

extended coherent light source shines on the SLM screen.

The phase mask of SLM is composed of four parts that en-

code both the interaction coefficients and the spin states,

allowing for a spin with amplitude information to be rep-

resented by four distinct components: ei(φk−αk), ei(θk−βk),

ei(φk+αk), ei(θk+βk). Here, φk ∈ {0, π} and θk ∈ {π

2
,−π

2
}

are two sets of mutually orthogonal phases to construct the

Q-SIM, as demonstrated in our previous work [4]. These

orthogonal phases allow for flexible configurations of low-

rank matrices, overcoming the inherent restriction of rank

= 1 imposed by the form of (1). In addition, some non-

fully-connected Ising models with negative amplitudes are

successfully configured with this architecture. On the other

hand, the sum of ei(φk−αk) and ei(φk+αk) can form the am-

plitude of the spin, according to Euler’s formula

εkxk =
1

2

[

ei(φk−αk) + ei(φk+αk)
]

, (2)

where εk = cosαk. This approach simplifies the step of

amplitude configuration while eliminating the limitation of

non-negative amplitude. Then, after the two-dimensional

Fourier transform by the lens, the central intensity detected

by the CCD Camera is given in the form of

I(0, 0) = (xTε+ yTη)(εTx+ ηTy). (3)

A specific derivation procedure regarding the principle of the

quadrature photonic spatial Ising machine and the intensity

configuration method based on Euler’s formula is provided

in Appendixes A and B.

Now the weighted max-cut instances can be mapped

to the Ising model for the solution. When a cut is de-

fined, the corresponding cut value can be written as W =
1
2

∑

〈l,k〉 wl,k(1−xlxk), in which wl,k is the edge weight be-

tween the l-th node and the k-th node. The related Hamil-

tonian we use is H =
∑

〈l,k〉 wl,kxlxk and the weight can be

expressed as wl,k = cosαl cosαk ± cos βl cos βk. Hence we

can search for the maximum cut value by maximizing the

central intensity during the experiment. Here, we calculate
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Figure 1 (Color online) (a) Schematic and principle of Q-SIM with phase-to-amplitude configuration. (b) Experimental (orange

line) and simulated (blue line) evolution of the cut value. The light orange region represents the interval of the result distribu-

tion from the ten experiments, with the mean indicated by the orange line. (c) Final experimental spin states in (b). (d) Final

experimental phase mask in (b). (e) Experimental results for max-cut problems with graph densities of [0.5, 1.0].

the Euclidean distance ‖IT−I‖2 between the initial detected

intensity I and target intensity IT as a cost function of the

simulated annealing (SA) algorithm, thus generating a new

phase mask to refresh SLM screen. This procedure is con-

tinuously cycled to govern the Hamiltonian evolution until

the system stabilizes to the ground state. Details about the

experimental setup and the operational procedures based on

the SA algorithm are demonstrated in Appendixes C and D.

Experimental performance and numerical simulations.

Given that the exact solvers generally fail with 1000 nodes,

we need to perform a reference calculation on the conven-

tional electrical computing platform. To tackle larger in-

stances, we opt to utilize a classical greedy heuristic al-

gorithm known as the SG algorithm [1]. On average, it

requires 11 h to execute the SG algorithm on CPUs (In-

tel i9-13900K, 5.8 GHz) for addressing the max-cut prob-

lems of 20736 nodes. In the case of an all-to-all max-cut

problem, the SG method generates a maximum cut value of

1.178 × 108, while our method produces a higher cut value

of 1.759 × 108 with a 122 times speedup, as shown in Fig-

ure 1(b). Additionally, we conduct simulations to emulate

the functioning of the photonic Ising machine. Notably, our

findings reveal that the simulation results are also inferior

to the experimental results.

Finally, we extrapolate our experiments and simulations

for the max-cut problem with graph densities of [0.5, 1.0]

compared with the SG algorithm. The results are shown in

Figure 1(e), which statistically demonstrate that our scheme

offers compelling advantages for handling large-scale max-

cut problem that outweighs electronic computers, in com-

parison with both simulations and the SG algorithm. The

experimental maximum cut values exceed the SG algorithm

by an average of 34% and achieve a maximum of 49% with

the graph density of 1.0, which precisely captures the in-

herent advantage of fully connected systems. Additionally,

the experimental results routinely outperform the simulated

results by roughly 33%. These will be illustrated in the com-

putational results given in Appendix E. We speculate that

the detection susceptible to noise may cause some perturba-

tion in experiments, making it easier to jump out of the local

energy minima. This intrinsic property fits better with the

SA algorithm and thus improves the machine performance.

In fact, a related work reported that noise-enhanced pho-

tonic Ising machines can be used to solve large-scale combi-

natorial optimization problems [5].

Discussion and conclusion. We conduct a compara-

tive analysis of our system performance, as elaborated in

Appendix F, in solving max-cut problems against other

Ising machines and identify the following advantages.

(1) Efficient resolution of large-scale max-cut problems.

(2) Flexible mapping capabilities for (non)fully connected

max-cut problems, allowing for arbitrary amplitude assign-

ments. (3) An uncomplicated and cost-effective experimen-

tal setup.

In summary, we performed extensive experiments on the

Q-SIM with the phase-to-amplitude configuration applied

to the instance of the max-cut problem. This system effec-

tively addresses weighted problems with dense graphs of up

to 20736 nodes, resulting in over 30% enhancements com-

pared to classical solvers. Consequently, our proposal show-

cases superior optimization performance and rapid compu-

tational speed within the optical computing paradigm, mak-

ing it a highly competitive solution for addressing large-scale

NP problems.
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