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Appendix A Literature review
In recent years, there has been a growing interest in the platooning of vehicular systems as a means of alleviating severe traffic

issues. The cornerstone of a vehicular platoon system is wireless inter-vehicle communication, i.e., VANETs, which allows vehicles

to share useful information such as position, velocity, and acceleration with their neighbors. This abundant information enables

the deployment of advanced algorithms and driving in a compact inter-vehicle spacing for reduced air resistance and increased

traffic capacity. However, a large number of vehicles occupying the communication channel can impose a significant burden on the

communication system, resulting in undesired communication issues. Moreover, as the platoon scale and traffic density increase,

there is a growing need for vehicles to have strong anti-interference capabilities.

Traditionally, most research on vehicular platooning has been based on a time-triggered mechanism (TTM), which requires data

transmission among successive vehicles at fixed periodic sampling intervals. However, this approach relies solely on time rather than

the actual status of the vehicles [1], and is often wasteful of communication resources when the platoon system is stable and vehicular

state changes are insignificant [2]. To address this issue, an event-triggered mechanism (ETM) has emerged as an alternative. With

ETM, data is transmitted only when a triggering condition is met, such as when the changes in vehicle status exceed a preset

threshold. This can greatly reduce transmission frequency and save communication resources [3]. Several studies have investigated

event-triggered mechanisms for vehicular platooning, including a proposed communication scheme in [1] to reduce the occupation

of communication resources while maintaining string stability, and the dynamic event-triggered mechanism (DETM) in [4], [5] that

adjust the triggered threshold according to both vehicular status and an additional internal variable to occupy fewer communication

resources than traditional ETM. However, continuous measurement of system states is required to determine triggering instants,

which may be challenging to deploy in a time-sliced software platform. An alternative approach, periodic event-triggered mechanism

(PETM), has received extensive attention as it monitors the status periodically without requiring continuous measurement. Despite

this, there is still limited research on the application of PETM in vehicular platoon systems.

However, the aforementioned event-triggered mechanisms require the continuous measurement of system states to determine

triggering instants, which may be hard to deploy in the time-sliced software platform [6]. As an alternative, PETM monitors the

status periodically without continuous measurement and has received extensive attention [7–9]. To the best of authors’ knowledge,

there is few research on periodic event-triggered mechanism for vehicular platoon system.

Compared to TTM-based vehicular systems, those based on ETM are more vulnerable to perturbations due to reduced real-time

data communication. Therefore, anti-interference measures are critical for ensuring the reliability of vehicular systems. Sliding

mode control (SMC), an important robust control method, has been extensively developed for vehicular platoon systems [10–14].

Researchers have developed a distributed integral sliding mode approach combined with neural network techniques for vehicular

systems [10], which was extended to the proportional-integral-derivative sliding mode case [11]. However, the aforementioned linear

sliding mode approaches can only guarantee asymptotic convergence, which may take infinite time to achieve. To overcome this

limitation, a terminal sliding mode strategy was presented for vehicular platoons [12], ensuring finite-time stability. Nevertheless,

these methods require continuous inter-vehicle communication, leading to a waste of communication resources. Therefore, ensuring

robustness while saving communication resources is still an open problem in the field of vehicular platoon systems. To achieve

communication economy and robust performance simultaneously, the ETM-based SMC approach has gained considerable attention

in various fields [15–17]. For instance, researchers have designed an ETM-based distributed SMC approach in [15] to decrease

the controller sampling frequency. However, this requires continuous communication among agents and may violate the original

intention of ETM. In [16], a PETM using SMC was proposed to achieve robust performance for a single linear time-invariant

system and was extended to a permanent-magnet synchronous motor [17]. Nevertheless, there is limited research on PETM-based

distributed SMC strategies, especially for vehicular platoon systems.

The SMC method typically involves a switching function, and robustness requires the switching gain to exceed the disturbance

magnitude [18]. However, a larger gain can cause chattering, which may harm the actuators and systems. Additionally, the

exact disturbance bound is often unknown in practice. To address this issue, many studies have applied extended state observers

(ESO) [19–22]. In [21], a second-order sliding mode control combined with ESO was applied to a small-scale helicopter with smaller

switching gain. The similar concept was applied to an interconnected power system in [22]. Nevertheless, the aforementioned

ESOs can only achieve asymptotic convergence and require the continuous communication. Recently, the finite-time extended state

observer has gained attention in many fields [23–25] and an ETM-based ESO was proposed in [26] which motivate this research.

In vehicular platoon systems, string stability is critical, ensuring that inter-vehicle spacing errors will not enlarge along the

platoon [27, 28]. Considerable attention has been given to string stability over the past few decades, and most studies rely on

the Constant Time Headway (CTH) policy [29, 30]. However, guaranteed string stability methods typically overlook traffic flow

stability, and the CTH policy cannot ensure TFS [31]. Traffic flow stability characterizes the evolution of the average velocity
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and traffic density as they respond to changes in traffic density [32]. When TFS is violated, even a small density variation will

impact each vehicle in the platoon, and less flow can pass through [33]. The reduced flow can lead to traffic inefficiency, even

causing congestion. By means of the aforementioned discussions, how to guarantee the string stability and traffic flow stability

simultaneously motivates this article.

Appendix B Selection of the EFESO Parameters
To obtain satisfactory observation performance, ε is set as a positive constant and αi satisfies αi ∈ (2/3, 1). The gain kij is the

constant such that the following matrix Ai is Hurwitz.

Ai =


ki1 1 0 0

ki2 0 1 0

ki3 0 0 1

ki4 0 0 0

 . (B1)

To obtain the parameter kij , we introduce the following Lemma.

Lemma 1 ( [34]). Consider the following matrixs

A =

 0(n−1)×1 In−1

0 01×(n−1)

 ∈ Rn×n, C =
[

1, 01×(n−1)

]
∈ R1×n

, K =
[
ki1 · · · k

i
n

]T
∈ Rn×1

.

Since the pair of (A,C) is observable, the eigenvalues λ = {λj} of the matrix A − KC can be assigned by designing the gain

matrix K as follows. Step 1. Select λ, where each element λj in λ is not equal. Step 2. Select the gain matrix K as K =

−V −1(λ)
[
λn1 · · · λ

n
n

]T
where the Vandermonde matrix V (λ) is defined as

V (λ) =


λn−1

1 · · · λ1 1

.

.

.
. . .

.

.

.
.
.
.

λn−1
n · · · λn 1

 .

Then the matrix can be diagonalised by the matrix A−KC and the following equation can be obtained V (λ) (A−KC)V −1(λ) =

diag {λj} = Λ, whicequals A−KC = V −1(λ)ΛV (λ). The above statement indicates that if n=4, then the matrix A−KC equals

Ai in (B1) which means a hurwitz matrix Ai can be obtained.

Appendix C Proof of Theorem 1
In order to analyse the finite-time convergence of the PFESO, the definitions of homogeneity and some lemmas are introduced as

follows.

Definition 1. ( [35]) A function V (χ) : Rn → R is termed as homogeneous of degree d relative to weights {ιi > 0}ni=1, if

V
(
λ
ι1χ1, λ

ι2χ2, . . . , λ
ιnχn

)
= λ

d
V (χ1, χ2, . . . , χn) (C1)

for all λ > 0 and χ = (χ1, χ2, . . . , χn) ∈ Rn. If V satisfies (C1) and is differentiable with respect to χn, then the partial derivative

of V in χn follows

λ
ιn

∂

∂χn
V
(
λ
ι1χ1, . . . , λ

ιnχn
)

= λ
d ∂

∂χn
V (χ1, . . . , χn) (C2)

Definition 2. ( [35]) A vector field F (χ) : Rn → R is termed as homogeneous of degree d relative to weights {ιi > 0}ni=1, if the

ith component of F satisfies

Fi
(
λ
ι1χ1, λ

ι2χ2, . . . , λ
ιnχn

)
= λ

ιi+dFi (χ1, χ2, . . . , χn) (C3)

for all λ > 0 and χ = (χ1, χ2, . . . , χn) ∈ Rn.

Lemma 2. (Tube lemma [36]) Consider a product space X × Y where Y is compact. If N is an open set of X × Y containing

the slice {x0} ×X of X × Y , then N contains some tube W × Y about {x0} × Y , where W is a neighborhood of x0 in X.

Lemma 3. ( [36])Consider the continuous real-valued functions V1, V2 on Rn, and be homogeneous of degree ι1 > 0, ι2 > 0 with

respect to ν, where V1 is positive definite. Then, the following inequality holds for any χ ∈ Rn,

[
min{z:V1(z)=1}V2(z)

]
[V1(χ)]

ι2
ι1 6 V2(χ) 6

[
max{z:V1(z)=1}V2(χ)

]
[V1(χ)]

ι2
ι1 . (C4)

Lemma 4. ( [37])Suppose a function f satisfies f ∈ C (Rn, Rn) and f (0) = 0; for any positive constant λ, f is homogeneous

and fi (λι1χ1, λ
ι2χ2, . . . , λ

ιnχn) = λd+ιifi (χ1, χ2, . . . , χn), where τ ∈ R; and the trivial solution χ = 0 of χ̇ = f (χ) is

locally asymptotically stable. Consider a positive integer µ and a real number ν satisfied ν > µ · max16i6nιi. Then, there

exists a function V : Rn → R such that: (a) V ∈ Cp (Rn, R) ∩ C∞(R\{0}, R); (b) V (0) = 0, V (χ) > 0 for any χ 6= 0 and

V (χ) → +∞ as ‖χ‖ → +∞; (c) V is homogeneous for ∀λ > 0: V (λι1χ1, λ
ι2χ2, . . . , λ

ιnχn) = λνV (χ1, χ2, . . . , χn); (d) for

∀χ 6= 0, ∇V (χ) · f(χ) < 0.

Lemma 5. ( [38])The following conditions are equivalent for the system χ̇ = f (χ, u):

1). χ̇ = f (χ, u) is finite-time input-to-state stable (ISS) with the input u.
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2). There exists a positive-definite Lyapunov function V (χ) such that

V̇ 6 −µ1(V ) + µ2 (‖u‖) , (C5)

where µ1, µ2 are K∞ functions, and |µ1| 6 α
∣∣∣V β∣∣∣ as V → 0 for a constant β ∈ (0, 1).

3). χ̇ = f (χ, u) is (weakly) finite-time robustly stable.

Denote the estimation errors as 

x̃i = x̂i − xi (t) , ηi1 =
x̃i(εt)

ε3

ṽi = v̂i − vi (t) , ηi2 =
ṽi(εt)

ε2

ãi = âi − ai (t) , ηi3 =
ãi(εt)

ε

w̃i = ŵi − wi (t) , ηi4 = w̃i (εt)

. (C6)

Based on (2), (4) and (C6), the estimation error dynamics of PFESO can be obtained as

η̇i1 = ηi2 + ki1dη
i
1c
αi + ki1β

i
1

η̇i2 = ηi3 + ki2dη
i
1c

2αi−1 + ki2β
i
2

η̇i3 = ηi4 + ki3dη
i
1c

3αi−2 + ki3β
i
3 +

(
ai − ai

(
tik
))/

τi

η̇i4 = ki4dη
i
1c

4αi−3 + ki4β
i
4 − εẇi

, (C7)

where βi1 = dηi1 − x̄i
/
ε3cαi − dηi1c

αi , βi2 = dηi1 − x̄i
/
ε3c2αi−1 − dηi1c

2αi−1, βi3 = dηi1 − x̄i
/
ε3c3αi−2 − dηi1c

3αi−2, βi4 =

dηi1 − x̄i
/
ε3c4αi−3−dηi1c

4αi−3 and x̄i = xi
(
tik
)
−xi (t). Note that functions fi1 (y) = dycαi , fi2 (y) = dyc2αi−1, fi3 (y) = dyc3αi−2,

fi4 (y) = dyc4αi−3 are Lipschitz. Therefore, we have∥∥∥βij∥∥∥ =
∥∥∥fij (ηi1 − x̄i/ε3)− fij (ηi1)∥∥∥ 6 l

i
j ‖x̄i‖ . (C8)

Proof. Before analyzing the stability of system (C7), consider the following system

η̇i = Φi (ηi) (C9)

where ηi =
[
ηi1, η

i
2, η

i
3, η

i
4

]T
and

Φi (ηi) =


ηi2 + ki1dη

i
1c
αi

ηi3 + ki2dη
i
1c

2αi−1

ηi4 + ki3dη
i
1c

3αi−2

ki4dη
i
1c

4αi−3

 (C10)

If αi = 1, (C9) becomes

η̇i = Aiηi, (C11)

which is asymptotically stable when the matrix Ai is Hurwitz. Then, consider a proper function V i1 (αi, ηi) and a compact set

Si =
{
ηi ∈ R4 : V i1 (1, ηi) = 1

}
. Further, define a function ϕi : R+ × Si → R : (αi, ηi) → V̇ i1 . Note that ϕi is continuous, then

the ϕ−1
i

(
R−
)

is an open subset of Λ × Si which contains the slice {1} × Si. Since Si is compact, it can be derived from the

Lemma 1 that ϕ−1
i

(
R−
)

contains the tube
(
1− εi, 1 + ε̄i

)
×Si. Evidently, for any (αi, ηi) ∈

(
1− εi, 1 + ε̄i

)
×Si, one has V̇ i1 < 0.

Therefore, the origin of (C9) is locally asymptotically stable.

Then, the finite-time ISS of estimation error dynamics (C7) will be presented in the following step. The vector field Φi in (C10) is

homogeneous of degree αi−1 with respect to the weights {1, αi, 2αi − 1, 3αi − 2}. Meanwhile, system (C9) is locally asymptotically

stable. From the Lemma 3, there exists a positive definite, radially unbounded function V i2 (ηi) : R4 → R such that V i2 (ηi) is homo-

geneous of degree γi with respect to the weights {1, αi, 2αi − 1, 3αi − 2}, and
∂V i2
∂ηi1

(
ηi2 + ki1dη

i
1c
αi
)

+
∂V i2
∂ηi2

(
ηi3 + ki2dη

i
1c

2αi−1
)

+

∂V i2
∂ηi3

(
ηi4 + ki3dη

i
1c

3αi−2
)

+
∂V i2
∂ηi4

(
ki4dη

i
1c

4αi−3
)

is negative definite and homogeneous of degree γi + αi − 1. According to the

homogeneity of V i2 (ηi), it can be obtained that

∣∣∣∣ ∂V i2∂ηi1

∣∣∣∣ is homogeneous of degree γi − 1,

∣∣∣∣ ∂V i2∂ηi2

∣∣∣∣ is homogeneous of degree γi − αi,∣∣∣∣ ∂V i2∂ηi3

∣∣∣∣ is homogeneous of degree γi − 2αi + 1 and

∣∣∣∣ ∂V i2∂ηi4

∣∣∣∣ is homogeneous of degree γi − 3αi + 2. From Lemma 2 and Lemma 3, it

can be conclued that
∂V i2
∂ηi1

(
ηi2 + ki1dη

i
1c
αi
)

+
∂V i2
∂ηi2

(
ηi3 + ki2dη

i
1c

2αi−1
)

+
∂V i2
∂ηi3

(
ηi4 + ki3dη

i
1c

3αi−2
)

+
∂V i2
∂ηi4

(
ki4dη

i
1c

4αi−3
)

6 −µi1
(
V i2
) γi+αi−1

γi ,

(C12)

and 

∣∣∣∣ ∂V i2∂ηi1

∣∣∣∣ 6 µi2
(
V i2
) γi−1

γi∣∣∣∣ ∂V i2∂ηi2

∣∣∣∣ 6 µi3
(
V i2
) γi−αi

γi∣∣∣∣ ∂V i2∂ηi3

∣∣∣∣ 6 µi4
(
V i2
) γi−2αi+1

γi∣∣∣∣ ∂V i2∂ηi4

∣∣∣∣ 6 µi5
(
V i2
) γi−3αi+2

γi

, (C13)



Sci China Inf Sci 4

where µij , j = 1, · · · , 5, are positive constants. Then, the derivative of V i2 (ηi) can be derived as

V̇i1 =
∂Vi1
∂ηi1

(
ηi2 + ki1dη

i
1c
αi
)

+
∂Vi1
∂ηi2

(
ηi3 + ki2dη

i
1c

2αi−1
)

+
∂Vi1
∂ηi3

(
ηi4 + ki3dη

i
1c

3αi−2
)

+
∂Vi1
∂ηi4

(
ki4dη

i
1c

4αi−3 − εẇi
)

+
∂Vi1
∂ηi1

ki1β
i
1 +

∂Vi1
∂ηi2

ki2β
i
2 +

∂Vi1
∂ηi4

ki4β
i
4 +

∂Vi1
∂ηi3

(
ki3β

i
3 +

(
ai − ai

(
tik
))/

τi
)

6 −µi5(Vi1)
γi+αi−1

γi + ki1µ
i
1(Vi1)

γi−1
γi li1δ̄i + ki2µ

i
2(Vi1)

γi−αi
γi li2δ̄i + µi3

(
ki3l

i
3δ̄i + τ−1

i δ̄i
)

(Vi1)
γi−2αi+1

γi

+
(
ki4l

i
4δ̄i + εwm

)
µi4(Vi1)

γi−3αi+2
γi .

(C14)

As

‖ηi‖ > max

{
V −1
i1

(
ki1µ

i
1l
i
1 δ̄i

µi5θ
1
i

)c1
;V −1
i1

(
ki2µ

i
2l
i
2 δ̄i+τ

−1
i

δ̄i

µi5θ
i
2

)c2
; V −1

i1

(
ki3µ

i
3l
i
3 δ̄i

µi5θ
i
3

)c3
;V −1
i1

(
ki4µ

i
4l
i
4 δ̄i+µ

i
4εwm

µi5θ
i
4

)c4}
(C15)

renders

V̇i1 6 −µi5
(

1− θi1 − θ
i
2 − θ

i
3 − θ

i
4

)
Vi1(ηi)

γi+αi−1
γi , (C16)

where c1 =
γi−1

γi+αi−1 , c2 =
γi−αi
γi+αi−1 , c3 =

γi−2αi+1

γi+αi−1 , c4 =
γi−3αi+2

γi+αi−1 and 0 < θi1 + θi2 + θi3 + θi4 < 1. According to Lemma 4, the

error system (C7) is finite-time input-to-state stable, and

‖ηi(t)‖ 6 max
{
$ (‖ηi(0)‖ , t) , ϕ1

(
δ̄i
)
, ϕ2

(
δ̄i
)
, ϕ3

(
δ̄i
)
, ϕ4

(
δ̄i + wm

)}
(C17)

where ϕi is a K function and $i is a K L function with $i (ηi(0), t) ≡ 0 when t > T for a settled time T (ηi(0)) 6

γi(Vi1 (ηi(0)))
1−αi
γi

/(
µi5 (1− αi)

(
1−

4∑
j=1

θij

))
.

Appendix D Effectiveness of coupled quadratic spacing strategy
The coupled quadratic spacing error depicts the relationship between the spacing errors of the vehicular platoon. It is not difficult

to find that the string stability can be guaranteed if the term lim
t→tc

εi (t) = 0 holds. The following lemma shows the relationship

between εi and ei.

Lemma 6. Equation lim
t→tc

εi (t) = 0 is equivalent to lim
t→tc

ei (t) = 0 for i = 1, 2 · · ·N .

Proof. Writing εi and ei in the vector form ε = [ε1, ε2 · · · εN ]T and e = [e1, e2 · · · eN ]T yields

ε = γe, (D1)

where

γ =


γ1 −1 · · · 0

0 γ2 · · · 0

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · γN

 .

Since γi, i = 1, 2 · · ·N are postive constants, we have that matrix γ is a nonsingular matrix, which directly deduces the conclusion.

The proof is thus completed.

Appendix E Estimation of Upper Bound for δi
It is noted that the PETM can only monitor the triggered condition at a predesigned period λi. This means that the actual bound

of triggered error δi may exceed δ̄i between two consecutive sampled instants [16], [17]. By considering a worst case, the upper

bound of δi is given in the following lemma.

Lemma 7. Consider the vehicular platoon system (1) and (2), the PETM (3) and the control law (7), the triggered error δi
satisfies

‖δi(t)‖ 6
(
δ̄i +

(
L
i
1

)−1 (∥∥∥hi (tik)∥∥∥+ w̄
i
m

))
e
Li1λi −

(
L
i
1

)−1 (∥∥∥hi (tik)∥∥∥+ w̄
i
m

)
, (E1)

where Li1 is a Lipschitz constant and w̄im = max {w̃i (t)} is bounded by Theorem 1, and hi (t) is a vector function defined as

hi (t) =


ėi (t)

ai (t)

−τ−1
i ai (t) + γ−1

i Gi (t) + kiϑ
−1
i g−1

i sgn (si)

 , (E2)

where Gi (t)
∆
= β−1

i p−1
i g−1

i ε̇
2−pi
i + g−1

i $i.

Proof. In order to research the evolution of δi(t), consider the differential inequality of it during the time interval
[
tik + (ji − 1)λi,

tik + jiλi
)
.

d‖δi(t)‖
dt 6

∥∥∥δ̇i(t)∥∥∥ =

∥∥∥∥∥∥∥∥


ėi (t)− ėi
(
tik
)

ai (t)− ai
(
tik
)

−τ−1
i ai (t) + τ−1

i ai
(
tik
)
 +


0

0

wi (t)− ŵi
(
tik
)
+ hi

(
tik
)∥∥∥∥∥∥∥∥ (E3)
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Denote the function fi [ξi (t)]
∆
=
[
ėi (t) , ai (t) ,−τ−1

i ai (t)
]
, since fi [ξi (t)] is Lipschitz, then, we have fi [ξi (t)] − fi

[
ξi
(
tik
)]

6

Li1
∥∥ξi (t)− ξi

(
tik
)∥∥ 6 Li1 ‖δi‖. To obtain the upper bound of δi(t), we consider the worst possible case: The event (3) is violated

immediately after tik + (ji − 1)λi, which means that lim
∆t→0+

δi
(
tik + (ji − 1)λi + ∆t

)
= δ̄i. By means of the aforementioned initial

condition and Comparison lemma, the solution to (E3) can be derived as

‖δi(t)‖ 6
((

L
i
1

)−1 (∥∥∥hi (tik)∥∥∥+ w̄
i
m

))
e
Li1

(
t−tik−(ji−1)λi

)
−
(
L
i
1

)−1 (∥∥∥hi (tik)∥∥∥+ δ̄i + w̄
i
m

)
(E4)

Notice that the exponential function increases monotonously with t in the interval
[
tik + (ji − 1)λi, t

i
k + jiλi

)
. It means that

the triggered error ‖δi(t)‖ reaches the maximum value at the instant t = tik + jiλi. Consequently, the inequality (E1) is derived

and the proof is completed.

Remark 1. When the sampling period λi tends to zero, i.e., the continuous measurements case, the PETM (3) will degrade into

the static event triggered mechanism (SETM) as in [4], [5], [39]. In the meanwhile, the upper bound of ‖δi(t)‖ tends to δ̄i, which

shows that the SETM is a special case of the PETM.

Remark 2. It is worth mentioned that the triggered error ‖δi(t)‖ increases with the sampling period λi, which is intuitive. At

the meantime, it provides guidance for the design of the sampling period.

Appendix F Basis for the selection of λi
The sampling period λi is the foundation for the PETM and involves the stability of systems. When the sampling period is small,

the PETM will degrade into continuous-time measurement and may be hard to deploy in practice. On the other hand, the large

λi can corrode the performance as shown in Lemma 6. So, in this section, a selection criterion of λi is proposed for the PETM as

follows.

First, it is necessary to derive the upper bound of the function hi (t) in (E2), by resorting to (7) and Assumption 2, one has

‖hi (t)‖ 6 ϑ−1
i q−1

i [(γi + 1) (vm + qiam + rivmam) +ki + 1] + τ−1
i am

∆
= h̄i (F1)

Now, the selection criterion of the sampling period λi is given as

0 < λi < λ̄i, (F2)

where λ̄i = 1

Li1

ln

(
1 +

σi

(Li1)−1(h̄i+w̄im)+δ̄i

)
with a specified constant σi. Then, according to the sampling period (F2), the upper

bound of δi can be obtained from (E1) that

‖δi(t)‖ 6 δ̄ie
Li1λi +

(
L
i
1

)−1 (
h̄i + w̄

i
m

)(
e
Li1λi − 1

)
= δ̄i + σi. (F3)

Appendix G Proof of Theorem 2
In this appendix, the reachability of practical sliding mode is analyzed for the specified terminal sliding surface (6) at first and

then the ultimately boundedness of the platoon system is derived under the controller (7). Finally, by means of the ultimately

boundedness and the coupled quadratic spacing strategy, the TFS and string stability are guaranteed simultaneously.

Appendix G.1 Reachability of Practical Sliding Mode

Proof. For each vehicle, consider the Lyapunov function candidate Vi(t) = 1
2 s

2
i (t). Differentiating Vi(t) with respect to time, it

derives

V̇i(t) = si(t)ṡi(t) = si(t)βipigiε̇
pi−1

i

(
Gi (t)−

γi

τimi
ui − γiwi

)
(G1)

Substituting the control law (7), one obtains

V̇i(t) = si(t)βipigiε̇
pi−1

i

(
Gi (t)− Gi

(
tik
)
− γiw̃i −β−1

i p−1
i g−1

i

(
tik
)
kisgn

(
si
(
tik
)))

. (G2)

Considering Gi (t) is Hölder continuous, the following inequality can be obtained as

∥∥∥Gi (t)− Gi
(
t
i
k

)∥∥∥ 6 L
i
2

∥∥∥Ξi (t)− Ξi
(
t
i
k

)∥∥∥r 6 L
i
2


√√√√ i+1∑
j=i−1

δ̄2
j

r, (G3)

where Li2 is a positive Hölder constant and Ξi (t) = [ξi−1 (t) , ξi (t) , ξi+1 (t)]. Now, the reachability of practical sliding mode can

be proved in two steps: (i) the states of system have not reached practical sliding mode, i.e., sgn
(
si
(
tik
))

= sgn (si (t)); (ii) the

states of system have reached practical sliding mode and will remain in this region, i.e., sgn
(
si
(
tik
))
6= sgn (si (t)).

• When sgn
(
si
(
tik
))

= sgn (si (t)) holds for t ∈
[
tik, t

i+1
k

)
, it can be derived from (G2) that

V̇i 6 βipigiε̇
pi−1

i |si(t)|

Li2

√√√√ i+1∑
j=i−1

δ̄2
j

r + γiw̄
i
m − β

−1
i p

−1
i g
−1
i

(
t
i
k

)
ki

 (G4)

In the follows, two subcases are discussed.
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(1) When ε̇i 6= 0, by means of ki, it follows from (G4) that V̇i(t) 6 −ciβipigiε̇
pi−1

i |si(t)|, which means that the system

trajectory is attracted to the sliding mainfold si(t) = 0 within a finite time.

(2) When ε̇i = 0, it is meaningless to discuss the case that si(t) = 0 since it shows the system trajectory has reached the sliding

mainfold. If si(t) 6= 0, it can be obtained that εi(t) 6= 0 according to (6). Then, combined ε̈i with the control law (7), one can

obtain that the point (εi 6= 0, ε̇i = 0) is not the equilibrium point. This implies that the system state can not maintain at ε̇i = 0

and V̇i(t) = 0 can not hold for si(t) 6= 0. When the system states change from ε̇i = 0 to ε̇i 6= 0, one can obtain from the first case

that the system trajectory will be attracted to the sliding mainfold si(t) = 0 by the PETM terminal sliding mode controller (7).

• When the system trajectory arrive at the practical sliding mode near si = 0, it can result in sgn
(
si
(
tik
))
6= sgn (si (t)). To

illustrate this reason, without loss of generality, we assume si
(
tik
)
> 0 at the instant t = tik. According to (G2) and ki, it can be

obtained that V̇i(t
i
k) < 0. Then, the system trajectory will arrive at the sliding mainfold si = 0 and keep evolving until the next

triggered instant. If si
(
tik
)
< 0, one has V̇i(t

i
k) < 0 just as the case that si

(
tik
)
> 0. Thus, the system trajectory will cross the

sliding surface si = 0 and lead to sgn
(
si
(
tik
))
6= sgn (si (t)). Still, one can obtain that the system state will remain in a region

called sliding band, namely practical sliding mode. From (6), it yields∣∣∣si (t)− si
(
t
i
k

)∣∣∣ 6 ∣∣∣εi (t)− εi
(
t
i
k

)∣∣∣+
∣∣∣βiε̇pii (t)− βiε̇

pi
i

(
t
i
k

)∣∣∣ . (G5)

According to the triggered condition (3), we have∣∣∣εi (t)− εi
(
t
i
k

)∣∣∣ 6 γiδ̄i + δ̄i+1. (G6)

Since ε̇
pi
i (t) is Lipschitz continuous with a constant Li3, we obtain

∣∣∣βiε̇pii (t)− βiε̇
pi
i

(
t
i
k

)∣∣∣ 6 βiL
i
3

∥∥∥Ξi (t)− Ξi
(
t
i
k

)∥∥∥ 6 βiL
i
3

√√√√ i+1∑
j=i−1

δ̄2
j , (G7)

where Ξi (t) = [ξi−1 (t) , ξi (t) , ξi+1 (t)]. Then, the maximal size of sliding band can be obtained as

∣∣∣si (t)− si
(
t
i
k

)∣∣∣ 6 γiδ̄i + δ̄i+1 + βiL
i
3

√√√√ i+1∑
j=i−1

δ̄2
j . (G8)

In the following, the stability of closed-loop vehicular platoon system is studied. According to the sliding mainfold (6), it yields

ε̇i =
(

1
βi

(si − εi)
) 1
pi . Then, by means of (G8), the ultimately boundedness of coupled quadratic spacing error can be derived as

follows.

Appendix G.2 Ultimate boundedness of coupled quadratic spacing error

Proof. Consider a Lyapunov function candidate V̄i (t) = 1
2 ε

2
i (t). According to (G8), the derivative of V̄i (t) can be obtained as

˙̄Vi (t) = εi
(

1
βi

(si − εi)
) 1
pi . It is seen that ˙̄Vi (t) < 0 when the coupled quadratic spacing error εi(t) stays in the two domains:

Ψi1
∆
= {εi > 0 |εi > |si| } and Ψi2

∆
= {εi < 0 |εi < − |si| }. It means that the coupled quadratic spacing error is attracted to the

domain Ψi3 = {εi ||εi| < |si| }. By sorting to (G8), one can yield that εi(t) converges to Ψi defined in Theorem 2. The proof is

thus completed.

Appendix G.3 String stability

From Appendix F.2, the coupled quadratic spacing error εi(t) will converge to a small region around the origin by setting appropriate

parameters, and then the string stability of closed-loop system can be proved as follows.

Proof. From Appendix F.2, we know that εi(t) can converge to a small region around the origin by setting appropriate parameters.

Since εi = γiei − ei+1 for i < N , it can be obtained as

ei+1/ei ≈ γi. (G9)

If γi ∈ (0, 1] holds, one has

0 < |ei+1|/|ei| ≈ γi 6 1 (G10)

Thus, we can obtain |eN (t)| 6
∣∣eN−1(t)

∣∣ 6 · · · 6 |e1(t)|, which implies that the closed-loop system is strong string stability. The

proof is thus completed.

Appendix G.4 Traffic Flow Stability

It is obvious that the desired distance is achieved and the velocities of all vehicles are equal to v0 at steady state, i.e., di = ∆i and

vi = v0 for all i. Thus, we have

∆i = li + qiv0 +
ri

2
v

2
0 . (G11)

Then, the steady state density can be obtained as

ρi =
1

li + qiv0 +
ri
2 v

2
0

. (G12)

Since the flow rate is defined as Qi(ρi) = ρivi, we have

Qi(ρi) = ρi

(√
q2
i

r2
i

−
2li

ri
+

2

riρi
−
qi

ri

)
. (G13)



Sci China Inf Sci 7

Figure G1 System trajectories under the PETM-based nonsingular terminal sliding mode controller.

To analyze the traffic flow stability of the proposed policy (5), the gradient ∂Qi/∂ρi should be calculated. One has

∂Qi

∂ρi
=

(√
q2
i

r2
i

−
2li

ri
+

2

riρi
−
qi

ri

)

−
1

riρi

(√
q2
i
r2
i

− 2li
ri

+ 2
riρi

) . (G14)

Then, the maximum traffic flow ρ̄i can be obtained by ∂Qi/∂ρi = 0, which is given as follows

ρ̄i =
1

2li + qi

√
2li
ri

. (G15)

The maximum traffic flow ρ̄i also denotes the boundary between stable and unstable traffic flow.

Remark 3. In gi
(
tik
)

= qi + rivi
(
tik
)
, the parameters qi and ri are positive, and gi is equal to 0 only when the velocity vi is

less than 0, which violates Assumption 2.
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Figure G2 System trajectories under the SETM-based nonsingular terminal sliding mode controller.

Table G1 The parameters for vehicle i

i 1 2 3 4 5 6

mi 2000 1700 1300 1900 2100 1900

τi 0.12 0.12 0.13 0.14 0.11 0.13

νi 1.2 1.19 1.21 1.18 1.2 1.22

Ai 2.21 2.19 2.2 1.98 1.95 2.18

Cdi 0.35 0.4 0.39 0.38 0.34 0.33

dmi 50 60 65 70 58 56

Table G2 The initial states for each vehicle i

i 0 1 2 3 4 5 6

xi(0) 136.7 122.0 104.4 89.4 72.1 56.9 40.0

vi(0) 10.1 9.8 10.0 10.1 9.9 9.9 10.0
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Figure G3 System trajectories under the controller in [2] without SMC.

Appendix H Simulation results
In this appendix, a numerical example is provided to demonstrate the effectiveness and efficiency of the proposed PETM-based

nonsingular terminal sliding mode controller via computer simulations. In the simulations, We consider a vehicular platoon system

consisting of 7 vehicles. The initial velocity and position of the leader are set as 10.1 m/s and 136.7 m respectively. The acceleration

of the leader is given as

a =


1.5m/s2, 3s 6 t < 5s

−1.5m/s2, 9s 6 t < 12s

−1.5m/s2, 16s 6 t < 17s

0, otherwise

. (H1)

For the coupled quadratic spacing policy, the minimum standstill li is 15m, the time delay qi is 0.05s, and ri is set as 0.014.

The other parameters and the initial states for each vehicle are given in Table I and Table II respectively. In the PFESO, the

parameters kij , αi and ε are determined by: ki1 = −12.25, ki2 = −35.3, ki3 = −50, ki4 = −24.1, αi = 0.75 and ε = 0.2. Then, in the
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PETM-based terminal sliding mode controller, we assign βi = 2, p1
i = 11, p2

i = 7, γi = 0.9, ki = 40, δ̄i = 0.5 and λi = 0.05. The

external disturbance is set as wi = 52.5 sin (4t− 3i) e−(t−0.7)2 + 30 sin (6t+ 24) e−(t−8)2 + +30 sin (6t− 30) e−(t−17)2 . To further

demonstrate the effectiveness and efficiency of the proposed control scheme, the comparison results are given in three different

scenarios: (1) PETM with NTSMC, (2) ETM with NTSMC, (3) ETM without NTSMC which proposed in [2].

(i) Verify the proposed control scheme.

The simulation results under the PFESO (4) and PETM-based nonsingular terminal sliding mode controller (7) are shown in

Fig.G1. Since there is no cross and overlapped position in Fig.G1(a), no collisions happens in both the steady-state condition

and initial transient. Because of the coupled quadratic spacing policy, the inter-vehicle distance di(t) increases along with

velocity vi(t) in Fig.G1(b) and Fig.G1(d), meanwhile, the velocities of all consecutive vehicles converge to the leader velocity

v0(t). Since all velocities are greater than zero, there is no reversing phenomenon in the simulation. It can be seen from

Fig.G1(c) that the spacing error of each vehicle converges to zero in a finite time, and the spacing errors decrease along the

vehicular platoon (i.e., |e6(t)| 6 |e5(t)| 6 · · · 6 |e1(t)|), which verifies the string stability of the closed-loop system. The

acceleration ai(t) is shown in Fig.G1(e), which depicts that the acceleration of the vehicles are relatively smooth. Fig.G1(f)

represents the engine input. In the Fig.G1(g), the ordinate represents the tag number of each vehicle and abscissa represents

the transmission instants between vehicle and neighbors. For clarity, only the estimation results of the 4th and 6th followers’

disturbance are shown in Fig.H1(a) and (b), which depicts that the external disturbance w4 and w6 are estimated effectively

by the proposed PFESO.

(ii) Comparison of the PETM and ETM with the NTSMC.

For comparison of the SETM and PETM, the comparative simulations are depicted in Fig.G2. The position, velocity,

spacing error, distance, acceleration and control input are similar to those in Fig.G1, so they are omitted here. From the

comparative simulations, it can find that 759 and 853 sampled data are transmitted within 25s by the PETM and SETM.

One can conclude that that the PETM-based nonsingular terminal sliding mode control can alleviate the communication and

measurement burden while maintaining a satisfactory control performance.

(iii) Comparison of the ETM with/without NTSMC.

Fig.G3 depicts the responses of the ETM without NTSMC proposed in [2]. From Fig.G3, the position, velocity, distance,

acceleration and control input are within acceptable levels respectively. Comparison of the simulation results of Fig.G2 (c)

and Fig.G3 (c) shows that the external disturbances degrade the convergence rate of the controller without NTSMC, which

demonstrates that the NTSMC can significantly enhance the anti-interference capability of the ETM systems.
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Figure H1 Estimation results of the disturbances via the PFESO.
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