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Abstract We propose a NOR flash-based computing-in-memory (CIM) to implement high-precision (32-

bit) Poisson image editing, including the gradient operations and Laplace operation. To meet the require-

ments of image processing, CIM operation schemes and reliabilities are carefully studied and optimized,

showing that the power consumption at the near-threshold-voltage (NTV) region can be as low as 40 fJ/bit,

which is two orders lower than working at the saturation region. High-temperature retention, as well as var-

ious disturbs, are also analyzed. The proposed CIM scheme can be applied as an energy-efficient approach

to construct the high-precision image processing accelerator.
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1 Introduction

Computing-in-memory (CIM) is an effective technical way to solve the “memory wall” and the per-
formance bottleneck. Many emerging non-volatile memories (NVM), such as resistive random access
memory (RRAM) [1–3], phase-change memory (PCM) [4,5], ferroelectric RAM (FeRAM) [6,7], and flash
memory [8–13], have demonstrated their good capabilities in lots of artificial neural networks (ANN). Re-
cently, the high-precision CIM architecture has attracted much more attention because it can provide a
fundamental approach to meeting the strict requirements in diverse scientific calculations [2,14]. Poisson
image editing [15] is a seamless image editing algorithm that has been widely used to fuse the background
image and the target image while retaining the gradient information of the source image. To implement
high-precision Poisson image editing with CIM architecture, it is necessary to ensure the cells as well as
the array have good stabilities and robust reliabilities. Compared with other NVMs, flash memory has
significant benefits in terms of ultra-high On/Off ratio, good reliabilities, and strong controllability to
cells’ variations, thus it has great advantages in high precision computing. Importantly, flash memory has
great compatibility with peripheral circuits and it is capable of designing large CIM arrays for large-scale
processing.

So far, lots of work in CIM architectures for the neural network has been reported based on NOR
flash memory. In 2017, the mixed signal neuromorphic classifier based on embedded NOR flash memory
technology was demonstrated firstly by Guo et al. [8]. For more energy-efficient convolution operation,
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Figure 1 (Color online) (a) The schematic of NOR flash memory array; (b) the structure of fabricated NOR flash memory cell

by 65 nm technology node; (c) cell current in the near-Vth region at Vd = 0.4 V.

Han et al. [10] proposed a novel NOR flash array computing scheme to execute the convolution. Xiang et
al. [11,12] designed hardware implementation based on NOR flash computing array for analog deep neural
network (DNN) and spike-driven convolutional neural network (SCNN). Benefiting from the mature
process, NOR flash memory also has great performance in high-precision calculations, such as partial
differential equations [16, 17] and image processing [18].

In this study, aiming at providing energy-efficient solutions to high-precision image processing accel-
erators, a NOR flash-based CIM scheme is proposed to implement Poisson image editing. By using the
designed array and the optimized operation strategies, ultra-low energy consumption (40 fJ/bit) and high
computing precision (32-bit) have been demonstrated.

2 Method and result

The structure of NOR flash memory is shown in Figure 1(a). The amount of charges stored in the floating
gate determines the channel current at the same operating voltage, which can be delicately regulated by
applying program pulses. In this work, the core processing unit is constructed with NOR flash memory
arrays of 65 nm NOR flash memory technique, which is the prototype of the simulation and test in the
work, as shown in Figure 1(b). The Id-Vg curves of the log coordinate and linear coordinate are shown
in Figure 1(c). Near-threshold-voltage (NTV) read scheme is adopted to significantly reduce energy
consumption, where the supply voltage (Vdd) is massively decreased. Moreover, the read current is much
smaller than the linear region and the saturation region. Compared with the sub-Vth region, the near-Vth

region where the operating voltage is slightly higher than Vth has over 10 times less variation [19], thus
the near-Vth region is easier to be applied in high precision CIM. The chosen operation region (Vg =
3.8 V, Vd = 0.4 V) is in the near-Vth region with a small Id for low-power applications.

In previous work [8], the multiply-and-accumulate (MAC) operation is performed directly between an
input vector, represented by Vg, and the coefficient matrix elements represented by Vth. Considering the
linearity requirements of high-precision applications, the input vector is represented by the pulse time.
Figure 2 shows the way to implement MAC operations. Each source line (SL) connects a separate SA
(sensing amplifier) and integrator to acquire the charge quantity as a result of MAC operations. The
process of computing can be described as Q = I · T .

The elements of the input vector and the coefficient matrix are represented by the pulse time and Vth,
respectively. The results represented by the charge quantity can be processed into the input vector of the
next iteration. To make the newly inserted image match the style of the original image, image editing
is utilized. By processing with the gradient field in the source image block, Poisson image editing makes
the fusion boundary between the target scene and the source image smooth. The fused image block
can be seamlessly fused into the target scene, and its hue and light can be consistent with the target
scene. Poisson image editing includes the gradient operation and the Laplace operation, and there is an
iterative process in the Laplace operation, which is suitable to be applied in CIM architecture. This can
be replicated independently in each of the channels of a color image.
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Figure 2 (Color online) Schematic of the method of scientific calculation. The matrix is mapped to the Vth of the cell, and the

vector is mapped to the gate pulse time of the cell. By accumulating the current through the array cells adjusted by Vth, the result

of the integrator is the dot product of array cells with a common SL.
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Figure 3 (Color online) (a) Formula used in Poisson image editing. The Laplace operation is solved in CIM architecture.

(b) The image is processed into RGB channels. The image is a 42×28 matrix, each value is affected by surrounding values

presenting the pulse time of VBL. The coefficient of surrounding pixel values is stored in the cell as Vth. The precision-extension

technology is utilized in this architecture. Each flash memory cell stores 1 bit, thus 32-bit precision is achieved by 32 cells.

(c) Comparison of results before and after Poisson image processing.

Figure 3(a) shows the formula used in Poisson image editing. Eq. (1) in Figure 3(a) shows that the
divergence of the target gradient field (Laplace operation) should be consistent with the reconstructed
gradient field as much as possible to smooth the interface, where the reconstructed gradient field (v) is the
sum of the background gradient field and picture gradient field. Eqs. (2)–(5) in Figure 3(a) show further
derivation. The schema of CIM is shown in Figure 3(b). Firstly, the RGB channels of the color image are
handled separately. Then the Laplace operation is solved by the iterative method when it is transformed
into matrix format by using the finite difference method. In this way, it can be easily calculated in a flash
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Figure 4 (Color online) (a) Retention is characterized at 200◦C to study the stabilities of stored data: cell number distributions

after baking at high temperature in the erase state and the program state. Disturbs are characterized to study the stabilities of

stored data during the repeated read operations, the Vth varies with disturb time plotted in different disturb conditions: (b) drain

disturb; (c) gate disturb; (d) read disturb (RD).

array. In the process of solving the Laplace operation, each pixel is affected by the surrounding four-pixel
values, which are represented by four pulse time inputs in sequence. The Vth stored in cells represents the
coefficient to be multiplied by the four input pulse values. The output is represented by the integral of
the current. Based on Ohm’s law and Kirchhoff’s current law, the array can realize the MAC operation.
The output from the last iteration can be transformed to the input represented by a pulse time of Vg,
and then this process is repeated iteratively by feeding the output to the system as the next input vector
until the expected result is acquired. The precision-extension technology is utilized to improve computing
precision. The input vector and coefficient matrix are sliced and thereby one number can be represented
by multiple cells. Single-level-cell (SLC, 1-bit/cell) is used for processing for more precise computing,
each cell stores one bit (32-bit data can be presented by 32 cells). 42×28 image needs 112896 cells in
total. The results in Figure 3(c) show how well the edges blend after Poisson image editing.

3 Reliability analysis and discussion

Although Poisson image editing in NOR flash memory shows excellent results, it is necessary to have
comprehensive studies on the reliabilities of the constructed CIM to assure high precision computing in
different conditions. High-temperature data retention (HTDR), RD and endurance are characterized.
The maximum variation range in the near-Vth region is also simulated and analyzed.

3.1 HTDR and RD

In the CIM process, when the threshold voltage is set, the electrons need to be maintained in the cell to
ensure current stability, which makes the retention characteristic particularly important, especially when
the chip works in a special high-temperature environment. To check the stability of cells in different
technology nodes when storing electrons, HTDR properties are tested in 65 nm NOR flash cells by
characterizing the retention at 200◦C, as shown in Figure 4(a). The Vth remains a small variation after
48 h baking, especially the data at the erased state, indicating good retention properties that can benefit
high accuracy control. The calculation of Poisson image editing contains a large number of iterations,
which means that multiple times of read operations are necessary at intervals. Thus, the properties of
read stabilities that are strongly correlated to the stored electrons in the cells need to be considered.
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Figure 4(b) shows the Vth varies with disturb time when the applied different voltage in the drain. The
Vth of programmed state cells changes greatly, while the erased state cells remain constant. Figure 4(c)
depicts the stable gate disturb characteristic both in the programmed state cells and erased state cells.
The RDs characteristic is shown in Figure 4(d), with the applied Vg and Vd of 5 and 1 V, respectively.
The minimal Vth variation fully meets the requirement for iteration numbers of CIM calculation.

Figure 5 shows the results of the endurance test. After 100K P/E cycling at room temperature as
well as 85◦C, the 3 V memory window is still retained. Furthermore, the coefficient matrix in this work
is constant, meaning that this computing does not need frequent P/E cycling. The usage count is not
limited by the P/E cycling number.

3.2 Vth variation analysis

HT DR and RD characteristics show the cell current variations can remain in a controlled range. A
detailed simulation is still needed to confirm the maximum threshold voltage drift that the calcula-
tion can tolerate. The impacts of operating voltage drifts are analyzed. To select the optimal oper-
ating voltage, the pixel change of image editing varies with Vth and is tested at various Vg from 3.6 to
3.8 V. Figure 6(a) shows the current variations increase with the decrease of Vg (closer to Vth). To balance
the variation and power consumption, we choose Vg = 3.8 V and Vd = 0.4 V as the optimal operating
voltage. NTV region has more serious variations than other regions. It is necessary to study the impact
of Vth variations. The comparison between quad-level-cell (QLC, 4-bit/cell) and SLC is shown in Fig-
ure 6(b). A tiny disturbance can change the pixel value a lot and destroy the whole calculation. While
SLC can tolerate up to 0.4% variation, which is 7–8 times higher than QLC. Therefore, SLC is chosen
to accomplish the calculations. According to the results, the variations of Vth still need to be controlled
within ±17.5 mV (0.5% variation). It is acceptable that the pixel value variation is within 10 according
to the image editing effect.
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Table 1 Comparison of cell types, precision, and energy

Computing target Cell type Precision (bit) Energy (fJ/bit)

This work SLC NOR 32 40

Convolution [10] SLC NOR 8 10.4

Neural network [20] SLC NAND 4 8

When calculating in the saturation region, the cell can adopt the QLC scheme, the cell number reduces
to a quarter of the SLC scheme and the variations in the saturation region will be greatly eased. Despite
these advantages, the key factor with CIM is power consumption, which is lower when operating in the
near-Vth region than when working in saturation. The energy is calculated by multiplying the cell current
in the NTV region, the pulse time (100 ns), and drain voltage, then dividing it by the bit numbers. By
this scheme, the array energy in the near-Vth region is 40 fJ/bit, while the energy in the saturation region
is 4 pJ/bit. The comparison of the proposed scheme with other related work is summarized in Table 1.

4 Conclusion

We propose a low power-consumption solution to implement high-precision Poisson image editing in
the flash-based CIM. The reliability characteristics including RD and HTDR, as well as the impacts of
cell variations, are comprehensively investigated. Characterization results show that flash-based CIM is
suitable to accomplish precise image processing by working at the near-threshold region, and the power
consumption can be suppressed to as low as 40 fJ/bit. The proposed energy-efficient approach could shed
light on CIM engineering to construct the high-precision image processing accelerator.
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