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Abstract Channel estimation (CE) is one of the crucial and fundamental elements of signal processing,

especially considering the requirement of high accuracy in future wireless communication systems. Most

traditional CE algorithms are explored under the assumption of Gaussian white noise, which limits the

algorithms performance in real wireless communication situations. In this work, a novel self-adaptive CE

algorithm based on the maximum entropy principle (MEP) was studied, which analyzes the statistical com-

ponents of an arbitrary noise environment. In addition, an MEP channel-based signal estimation algorithm

was studied. Furthermore, the statistical characteristics of channels were considered the regularization terms

in the objective function for providing prior information and further increasing the accuracy. It was found

that the proposed algorithm not only provides accurate CE but also reduces pilot consumption by using es-

timated signal data as pseudo pilots. The superior features of the proposed method concerning CE accuracy,

pilot consumption, and robustness were confirmed through Monte Carlo simulations.
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1 Introduction

Channel estimation (CE) plays a critical role in the physical layer of fifth generation (5G) systems [1].
While the 5G systems’ performance is substantially limited by propagation channels [2], the accurate
channel state information (CSI) is paramount in a number of communication technologies, such as massive
multiple input multiple output (MIMO) [3], precoding [4], and adaptive transmission [5]. Thus, CE has
garnered enormous interest from researchers.

Conventional methods for CE assume that the noise obeys a Gaussian distribution, which is valid in
a long time interval that the number of noise components is large enough to satisfy the center limit
theorem. Numerous studies have been explored based on this assumption over the past decades. A
research group [6] proposed an algorithm combining the l1-regularized least square and the l2 minimum
mean square error CE techniques, which decreases the bit error rate (BER) compared with l2 multiburst
CE. While the spacing of the antenna array is small and very few paths can arrive at the base station, the
channel covariance matrices have low-rank properties [7]. Based on the rank deficiency, Fang et al. [8] used
the minimum mean square error (MMSE) to realize CE with few overheads for training. Machine learning
techniques have also been applied to CE [9]. Previous work [10] put forward the LDAMP network for
CE, which combines the approximate message passing with image denoising methods. Another work [11]
introduced an end-to-end scheme for direction-of-arrival estimation and CE, improving the performance of
CE as well as having low computation complexity. Investigations have also been performed on combining
CE with other modules or information to improve performance [12, 13]. The aforementioned methods
generally assume that the noise obeys a Gaussian distribution. However, the noise component may not be
large enough to satisfy the center limit theorem in real world scenarios. In addition, CE can be improved
by considering the interference and noise jointly in specific scenarios [14].
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Several researchers have investigated nonGaussian noise in a communication environment to overcome
the aforementioned problem. Previous work [15] modeled the probability density function of the addi-
tive noise as a finite mixture of Gaussian (MoG) distribution in the signal processing pipeline. Another
work [16] suggested a nonparametric likelihood-based CE method with MoG noise. Another research
group [17] considered the MoG noise in array processing problems and developed an algorithm for esti-
mating the source locations, signal waveforms, and noise distribution parameters. All these algorithms
are based on MoG due to its effectiveness in the approximation. However, the MoG approximation can-
not decide the number of mixture terms adaptively. A proposed robust CSI estimation method [14] was
capable of determining the mixture term adaptively with a penalized term. Nevertheless, the channel
statistical information and signal information have not been fully utilized. In addition, the algorithm
in [14] pre-sets the formulation of nonGaussian noise, and it may lead to significant bias from the practical
noise distribution.

The maximum entropy principle (MEP) can be employed for solving this problem. Based on the MEP,
without the complete information of a distribution, the distribution with the maximized entropy corre-
sponds to the object distribution [18]. Instead of using the pre-set formulation of the noise distribution,
this formulation can be approximated directly from data by using the MEP. A group of authors [19]
utilized the MEP to estimate the unknown interference by designing a detector in code-division multiple
access (CDMA) systems. A denoising method was designed by tightening the Cramer-Rao lower bound,
which was attributed to the MEP [20].

Although MEP-based strategies for CE can realize accurate probability density function estimation,
they are restricted by the pilot consumption. An intuitive idea to overcome the pilot limitation is
leveraging data-aided methods to extract necessary information for different tasks. Wee et al. [21] used
the detected symbols and pilot symbols for calculating the cross-correlation and reducing the estimation
error, which is attributed to the time-varying channel. Some researchers [22] investigated a data-aided
scheme for CE to explore both the pilot and decoded data. Ju et al. [23] applied a data-aided method to
CE with pilot contamination by using the knowledge of large-scale coefficients among local cells.

Furthermore, the statistical information of an object can be considered in specific scenarios. For
instance, MMSE is a widely used algorithm that leverages the channel statistical information in CE. By
assuming that the angular spread of users is limited to a narrow region, a previous work [24] exploited
the low-rank properties of channels in massive MIMO systems. The channel covariance matrices of any
two users with nonoverlapped angular spread are asymptotically orthogonal to each other, and the pilot
contamination can be reduced. With numerous antennas at the base station, the channel would exhibit
sparsity in beamspace for massive MIMO systems. Accordingly, the sparsity of channels was enhanced
in [25], such that the users with nonoverlapped angular spread could use the same training data to
eliminate pilot contamination.

Considering the aforementioned issues of CE, a robust and accurate method using pilots is required.
Therefore, an enhanced MEP (EMEP) algorithm is developed herein. Through modeling the environment
probability density function using the maximum entropy model and employing the maximum likelihood
estimation (MLE) method, a standard machine learning measurement can be established. For the statis-
tical properties of Rayleigh fading channels, a l2 regularized term in the derived objective function can be
structured to encode the properties. Thus, the objective function is associated with information about
the environment and channel statistical properties. In addition, two methods are proposed to optimize
the derived objective function; however, these processes exploit only the pilot information. To leverage
the nonpilot information of the received data, a rough channel estimator is used to help in estimating the
nonpilot transmitted signal as a pseudo pilot. Pseudo pilot estimation is essentially a nonconvex opti-
mization problem and cannot be solved efficiently. Thus, it was relaxed to a tractable and standard least
absolute shrinkage selection operator (LASSO) problem [26]. Numerical results show that the proposed
algorithm outperforms conventional least square (LS) and noise modeling-based MoG methods [14].

Compared with our previous work, this paper mainly contributes in the following aspects:

• The statistical properties of the Rayleigh fading channel are formulated as l2 regularization and
incorporated into the objective function, which considers the environmental information and channel
statistical properties.

• Based on the proposed model, an EMEP algorithm is proposed to update the parameters in the
model. In addition, a new method is proposed for the optimization of the derived objective function,
which exhibits good performance for a large channel size (32× 32).



Hu Z Y, et al. Sci China Inf Sci December 2023 Vol. 66 222304:3

• Nonpilot signals, which contain substantial information about the channel, are considered in EMEP
to decrease the pilot consumption and increase CE accuracy.

• Through numerical simulations, the robustness of EMEP concerning different communication envi-
ronments, channel sizes, lengths of the pilot sequence, and the estimation accuracy of parameters and
the channel is verified, confirming the superiority of the proposed method.

The rest of this paper is organized as follows. In Section 2, the system model is described. The EMEP
algorithm is discussed in Section 3. In Section 4, the simulation results of the proposed method are
presented. Lastly, the conclusion of this paper is presented in Section 5.

Throughout this paper, the following notations are adopted. Let bold uppercase and bold lowercase
letters denote matrices and vectors, respectively. (·)T denotes the transpose operator and (·)H denotes
the conjugate transpose of a matrix or vector. In denotes the n× n identity matrix and 1 represents the
matrix whose elements are all 1s. Cn×m denotes the set of n×m complex matrices. N (µ, σ2) represents
the Gaussian distribution with mean µ and variance σ2. det(·) denotes the determinant of a matrix. The
notation Aij returns the i, j-th element of the matrix A and | · | denotes the absolute value. E[·] and ln(·)
denote the expectation operator and natural logarithm, respectively. , is used to indicate the definition
of the value and new variable.

2 System model

We consider a MIMO system with Rayleigh fading channels, Nr antennas at the receiver, and Nt antennas
at the transmitter. In the training part, the length of the transmitted signal sequence is L and the length
of the pilot sequence is l, where L > l. Therefore, we use ~Xp ∈ CNt×l and ~X ∈ CNt×L to denote the
pilot signal matrix and transmitted signal matrix, respectively. The channel matrix can be presented by
an Nr × Nt matrix ~H ∈ CNr×Nt . In this paper, we consider the complex communication environment
with interference and colorful noise. The received signal at the receiver can be written as

~Y = ~H ~X + ~E, (1)

where ~E ∈ CNr×L and ~Y ∈ CNr×L are matrices of the communication environment and the received
signal, respectively. In this paper, we regard the communication environment as noise (unless specifically

stated). Yp is the pilot components of the received signal ~Y associated with Xp as well as Ep.

Considering ~Y , ~X, ~H are complex matrices and the requirement of machine learning (ML), Eq. (1)
can be rewritten as

Y = HX +E,

where Y = [Re(~Y ), Im(~Y )], H = [Re( ~H), Im( ~H)], E = [Re( ~E), Im( ~E)], and

X =

[

Re( ~X) Im( ~X)

−Im( ~X) Re( ~X)

]

with Re(·) and Im(·) representing real and imaginary parts, respectively. Once we get H , ~H can be
obtained easily. In addition, all the parameters in this paper are set to real numbers for convenience.

3 EMEP for channel estimation

In this section, we will introduce the MEP-based model for CE and the pseudo pilot estimation model,
which are key components of EMEP, in Subsections 3.1 and 3.2, respectively. Then, the solutions for the
above models and the EMEP algorithm are presented in Subsection 3.3.

3.1 MEP-based channel estimation model

According to the principle of maximum entropy [27], a standard measurement in the machine learning
manner for CE has been derived in Theorem 1.

Theorem 1. p(ǫ) is the environment probability density function, p̂(ǫ) is the empirical probability
density function, fm , |ǫ|pm , and pm > 0,m = 1, . . . ,M . Based on the MEP model [28] and MLE, the
measurement can be derived as (6).
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Proof. The model about p(ǫ) by MEP can be presented as

min

∫

p(ǫ) ln p(ǫ) dǫ

s.t. Ep[fm] = Ep̂[fm], m = 1, . . . ,M,
∫

p(ǫ) dǫ = 1,

(2)

where Ep[fm] and Ep̂[fm] are the the expectation of fm, and the independent variable of fm follows the
distribution p and p̂, respectively. According to the model (2), the maximum entropy distribution can be
derived as

pλ(ǫ) = exp

(

λ0 − 1−
M
∑

m=1

λmfm(ǫ)

)

. (3)

The key point of derivation from (2) to (3) can be found in [28]. It is worth noticing that the constraints
of (2) are equality constraints, so the sign difference of maximum entropy distribution in [28] and (3)
does not change any problem. According to (3), we can derive the likelihood function with regard to ǫ as

lλ(ǫ) =

Nr×L
∏

I=0

exp

(

λ0 − 1−
M
∑

m=1

λmfm(ǫ)

)

. (4)

Considering E = Y −HX, the logarithmic form of likelihood function can be derived as

lλ(H) =
∑

i,j

(

λ0 − 1−
M
∑

m=1

λmfm (Yij − (HX)ij)

)

, (5)

which replaces terms related E as Y −HX, and the independent variable is transformed from E to H .
Then, we can drive the measurement1) as

lλ(H) =
M
∑

m=1

λm‖Y −HX‖pm

pm
. (6)

Considering the robustness of the estimator and the pilot limitation, we employ regularization methods
to improve the generalization ability of the estimator and the accuracy of a few pilots. From a model
standpoint, the regularization is a way to achieve the structure risk minimization. In addition, it avoids
the over-fitting problem with insufficient data and obeys Occam’s razor principle [29]. From a Bayes esti-
mation standpoint, the regularization corresponds to the prior. In this paper, we consider Rayleigh fading
channels with components generated from independent and identical Gaussian distributions N (0, 1) [30]
for both real and imaginary parts. According to the maximum a posterior criterion [31], we can therefore
encode the prior information of Rayleigh fading channels into a l2 regularization term. Given the derived
measurement (6), we can write the objective function as

lλ(H) =
M
∑

m=1

λm‖Y −HX‖pm

pm
+ ρ‖H‖22, (7)

where ρ is the weight of the prior information.

3.2 Pseudo pilot estimation

To improve the estimation accuracy and the spectrum resource efficiency, we present a data-aided esti-
mation approach based on the MEP. By exploiting the non-pilot received signal, the channel estimated
from the rough channel estimator can be used to approximate the non-pilot transmitted signal as pseudo
pilots. The optimization problem for obtaining pseudo pilots can be formulated as

argmin
X

‖Y −HX‖22, (8)

1) The p-norm of matrix is element-wise in this paper.
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and the pseudo pilots can be calculated by LS as

X = (HTH)−1HTY . (9)

However, LS ignores the constraint ofX and decreases the accuracy of the solution due to the extended
solution space. The accuracy of the estimated matrix X further impacts CE. Considering that the
individual element of the transmitted signal is 1 or −12), we rewrite (8) as

argmin
X

‖Y −HX‖22 s.t. |Xij | = 1. (10)

However, the constraint of (10) is non-convex and this problem is not tractable. The optimization problem
thus becomes a discrete optimization problem.

To retrieve a tractable optimization, X can be parameterized as X = SA, where

S =















−1 1 0 0 0 · · · · · · 0
0 0 −1 1 0 0 · · · 0
...

...
. . .

. . .
. . .

. . .
. . .

...

0 0 · · · 0 −1 1 0 0















Nt×2Nt

,

and

A =















a11 a12 a13 a14 · · · a1m
a21 a22 a23 a24 · · · a2m
...

...
...

...
...

an1 an2 an3 an4 · · · anm















2Nt×Ns

.

After this transformation, the elements of the estimated transmitted matrix can be represented as Xij =
Si,2i−1A2i−1,j+Si,2iA2i,j . In the case that Xij is correctly estimated, only one non-zero element exists in
{A2i−1,j , A2i,j}, and A2i−1,j +A2i,j = 1, ∀i = 1, 2, . . . , Nr, j = 1, 2, . . . , 2Nt. Therefore, 1 = BA, where

B =















1 1 0 0 0 · · · · · · 0
0 0 1 1 0 0 · · · 0
...
...
. . .

. . .
. . .

. . .
. . .

...

0 0 · · · 0 1 1 0 0















Nr×2Nt

.

Given this transformation, matrix A is sparse. Therefore, the optimization problem can be written as

argmin
A

‖Ȳ − H̄A‖22 + γ‖A‖1, (11)

where

Ȳ =

[

Y
√
µ1

]

, H̄ =

[

HS
√
µB

]

,

and µ > max(12 , γ) is a hyper-parameter. Then, X can be derived by X = SA. While this approximation
retrieves non-integer estimations, we apply the hard decision operator to constrain the elements of the
estimated matrix Xij = 1 or −1, for i = 1, 2, . . . , Nt, j = 1, 2, . . . , Ns. The hard decision operator can be
explained in the following form:

Xij =

{

1, if |Xij − 1| 6 |Xij + 1|,
−1, otherwise.

(12)

2) Here we only consider the BPSK modulation. In Appendix A, we explain that the proposed data estimation method can be

used in a higher order modulation.
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3.3 The EMEP algorithm

In this subsection, we present the details of the EMEP algorithm. Subsection 3.3.1 is the solving method
corresponding to the MEP-based channel estimation model, i.e., the derived measurement (7) in Subsec-
tion 3.1. Subsection 3.3.2 is the solving method corresponding to the pseudo pilot estimation described
in Subsection 3.2. Finally, the EMEP algorithm is summarized in Subsection 3.3.3.

3.3.1 MEP-based estimator

According to the objective function (6), we need to estimate λ and H . The method for updating λ

and the derivations in detail can be found in [32]. Given the estimated λ, we can optimize the objective
function to estimate H . For straightforward understanding, we firstly consider the non-regularized part
and rewrite the objective function as

l(H) = λ2‖Y −HX‖22 +
M
∑

m=1,
m 6=2

λm‖Y −HX‖pm

pm
. (13)

We introduceM−1 slack variablesMm = Y −HX, and derive the problem by the augmented Lagrangian
method as

min
H

L = λ2‖Y −HX‖22 +
1

2

M
∑

m=1,
m 6=2

ρm

∥

∥

∥

∥

Mm − Y +HX +
∆m

ρm

∥

∥

∥

∥

2

2

+

M
∑

m=1,
m 6=2

λm‖Mm‖pm

pm
, (14)

where ∆m = Mm − Y +HX,m = 1, 3, . . . ,M . Due to the overwhelming number of variables in (14),
we leverage the core idea of the alternating direction method of multipliers (ADMM) [33] to decompose
the original optimization problem into subproblems by proposition 1.

Proposition 1. The problem (14) can be decomposed to subproblems (15) and (16).

Proof.

min
H

L = λ2‖Y −HX‖22 +
M
∑

m=1,
m 6=2

λm‖M‖pi

pi
+

1

2

M
∑

m=1,
m 6=2

ρm‖Mm − Y +HX +
∆m

ρm
‖22

=
1

2

M
∑

m=1,
m 6=2

ρm





∑

ij

(

Mmij − Yij + hT
i xj +

δmij

ρm

)2


+ λ2

∑

ij

(

Yij − hT
i xj

)2

=
1

2

M
∑

m=1,
m 6=2

ρm





∑

ij

2

(

Mmij +
δmij

ρm

)

hT
i xj



+









λ2 +
1

2

M
∑

m=1,
m 6=2

ρm









∑

ij

(

Yij − hT
i xj

)2

=

1
2

∑M
m=1,
m 6=2

ρm(
∑

ij 2(Mmij +
δmij

ρm
)hT

i xj)

λ2 +
1
2

∑M
m=1,
m 6=2

ρm
+
∑

ij

(

Yij − hTxj

)2

=

1
2

∑M
m=1,
m 6=2

ρm(
∑

ij 2(Mmij +
δmij

ρm
)hT

i xj)

λ2 +
1
2

∑M
m=1,
m 6=2

ρm
+
∑

ij

(

hTxj

)2 − 2
∑

ij

Yijh
Txj

=
∑

ij

2







∑M
m=1,
m 6=2

ρm(Mmij +
δmij

ρm
)

2λ2 +
∑M

m=1,
m 6=2

ρm
− Yij






hT
i xj +







∑M
m=1,
m 6=2

ρm(Mmij +
δmij

ρm
)

2λ2 +
∑M

m=1,
m 6=2

ρm
− Yij







2

+
(

hT
i xj

)2
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=
∑

ij






hT
i xj −






Yij −

∑M
m=1,
m 6=2

ρm(Mmij +
δmij

ρm
)

2λ2 +
∑M

m=1,
m 6=2

ρm













2

=

∥

∥

∥

∥

∥

∥

∥

HX −






Y −

∑M
m=1,
m 6=2

ρm(Mm + ∆m

ρm
)

2λ2 +
∑M

m=1,
m 6=2

ρm







∥

∥

∥

∥

∥

∥

∥

2

2

= ‖∆−HX‖22. (15)

Then, the optimization part for variable Mm can be presented as

min
Mm

1

2

∥

∥

∥

∥

Mm −
(

Y −HX − ∆m

ρm

)∥

∥

∥

∥

2

2

+
λm

ρm
‖Mm‖pm

pm
, (16)

where m = 1, 3, . . . ,M .
Considering the regularization, Eq. (15) can be rewritten as

min
H

∑

j

‖∆j −HXj‖22 + ρ‖H‖22. (17)

Then, let its gradient about H be zero to estimate H as

H =





∑

j

∆jX
T
j









∑

j

XjX
T
j + ρI





−1

. (18)

For each subproblem in (16), we consider its element-level formulation. A single subproblem can be
represented as

min
Mmij

f =
1

2
‖zmij −Mmij‖2 + λ‖Mmij‖pm , (19)

where zmij = Yij − hT
i xj − δmij

ρm
, λ = λm

ρm
, i = 1, 2, . . . , Nt, and j = 1, 2, . . . , L.

When 0 < pm 6 1,

Mmij =

{

0, if |zmij | < τpm
(λ),

sgn(zmij)Spm
(|zmij |;λ), if |zmij | > τpm

(λ),
(20)

where Spm
(|zmij |;λ) is an iterative operator: Mk+1

ij = |zmij | − λpm(Mk
mij)

pm−1 and τpm
(λ) = (2λ(1 −

pm))
1

2−pm + λpm(2λ(1 − pm))
pm−1

2−pm .
When pm > 1, the subproblems are convex problems; we calculate the first-order and second-order

derivatives of (19),

f ′ = Mmij − Yij + λpm|Mmij |p−1 sgn(Mmij), (21)

f ′′ = 1 + λpm(pm − 1)|Mmij|pm−2. (22)

Then we can use the Newton method to approach Mmij as

Mk+1
mij = Mk

mij −
f ′(Mk

mij)

f ′′(Mk
mij)

. (23)

ρm can be updated through the gradient method as

ρk+1
m = ρkm − α2

‖∆m‖22 + λm‖Mm‖pm
pm

ρkm
2 , (24)

where α2 is the step length. The above optimization method is defined as ‘EMEP-A’.
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‘EMEP-A’ decomposes the optimization problem into subproblems, which can be calculated in parallel.
However, ‘EMEP-A’ introduces the auxiliary variables such as ∆m,Mm, ρm; each of these auxiliary
variables is updated with iterations, which may accumulate the estimation error. To reduce the error, we
rewrite the objective function (6) as

l(H) =
∑

i,j

Wij

(

Yij − hT
i xj

)2
, (25)

where Wij =
∑M

m=1 λm|Eij |pm−2 and W ∈ RNr×L. Therefore, H can be updated by the following
iteration formulations:

W k+1
ij =

M
∑

m=1

λ|Ek
ij + β|pm−2, (26)

hk+1
i

T
=

Xdiag(wk+1
i1 , wk+1

i2 , . . . , wk+1
il )yi

Xdiag(wk+1
i1 , wk+1

i2 , . . . , wk+1
il )XT

, (27)

Ek+1
ij = Yij − hk+1

i

T
xj , (28)

where the details can be found in [32]. After this step, we consider the regularization term that solely
impacts the updates of H . With iterations, H can be updated as

hk+1
i

T
=

Xdiag(wk+1
i1 , wk+1

i2 , . . . , wk+1
iL )yi

Xdiag(wk+1
i1 , wk+1

i2 , . . . , wk+1
iL )XT + ρ1

. (29)

Let ‘EMEP-B’ denote the above optimization method. ‘EMEP-B’ only introduces one auxiliary variable
W to employ the re-weighting method [34], which has less error accumulation by iterative update com-
pared with ‘EMEP-A’ due to the fewer auxiliary variables. However, only using the gradient information
of the second-order term limits its performance when the channel size is large.

3.3.2 Pseudo pilot estimation

According to the optimization problem (11), there are many methods to solve the LASSO problem.
We can rewrite the matrix into column vectors and approach them, respectively. Considering parallel
computing, we use the ADMM to solve the problem (10). We represent the problem (11) as

min
A,Z

{

‖Ȳ − H̄A‖22 + γ‖Z‖1
}

s.t. A = Z. (30)

For approaching A and Z, we replace the 1-norm of matrix with 1-norm of vector and calculate each
column of A and Z, respectively. The iteration formulations are

ak+1
i := argmin

ai

{

‖ȳi − H̄ai‖22 +
ρ

2

∥

∥ai − zk
i + vi

k
∥

∥

2

2

}

, (31)

zk+1
i := argmin

zi

{

γ‖zi‖1 +
ρ

2

∥

∥ak+1
i − zi + vi

k
∥

∥

2

2

}

, (32)

vk+1
i := vk

i + ak+1
i − zk+1

i . (33)

3.3.3 Summarizing the EMEP algorithm

We first use the MEP-based estimator with the pilot signal to estimate the channel for the pseudo pilot
estimation. Then, the MEP-based estimator is used again with the pilot and pseudo pilot signal to
estimate the channel. The algorithm can be summarized as Algorithm 1.

3.4 Complexity

The variables for solving the MEP-based model are described in closed forms. The complexity for
pseudo pilot estimation increases linearly with the length of the transmitted signal sequence. Therefore,
we can evaluate that the complexity of the proposed methods is O(I1(NrL + NtL + N3

t ) + L) and
O(I2(NrNtL+N3

t Nr) +L) for ‘EMEP-A’ and ‘EMEP-B’, respectively, where I1 is the iteration number
of ‘EMEP-A’, and I2 is the iteration number of ‘EMEP-B’.
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Algorithm 1 Algorithm for EMEP

Require: received signal Y , pilot sequence Xp, pilot part of received signal Yp, feature set p;

Ensure: channel H, parameter λ, feature set p;

1: Initialization: {H,λ,p,Ep};
2: while not converged do

3: Update λ;

4: Update {H,p,Ep} by (18), (20) or (23), (24) with Xp and Yp (‘EMEP-A’), or update {H,p,Ep} by (26), (28), (29) with

Xp and Yp (‘EMEP-B’);

5: end while

6: Estimate pseudo pilot X by (31)–(33) with Y and H;

7: Update H = Y XT(XXT)−1, and E = Y − HX;

8: while not converged do

9: Update λ;

10: Update {H, p,E} by (18), (20) or (23), (24) (‘EMEP-A’), or update {H, p,E} by (26), (28), (29) (‘EMEP-B’);

11: end while

4 Simulation results

In this section, the performance and the adaption ability of the proposed EMEP method with additive
nonGaussian noise are verified via Monte Carlo simulations.

The LS estimator is

HLS = Y XT(XXT)−1. (34)

The linear minimum mean square error (LMMSE) estimator is

HLMMSE = Y XT(XXT + σ2
eI)

−1, (35)

where σ2
e is the average power of noise. The above two methods and MoG method [30] will be used to

provide performance references. The signal-to-noise ratio (SNR) is applied to present the noise level and
is defined as

SNR =
σ2
x

σ2
e

, (36)

where σ2
x and σ2

e are the average power of transmitted signals and noise, respectively.

In the training phase of the uplink channel, the user transmits pilot sequences of length l. We choose
the normalized mean square error (NMSE) to evaluate the accuracy of channel estimation, which is

NMSE =
‖H − Ĥ‖22

‖H‖22
, (37)

where H and Ĥ are the real and estimated channels.

4.1 Communication environment settings

To simulate the complex communication environment, we follow the generating method in [30] and
generate the environment by MoG distribution as

P(ǫ) =
K
∑

k=1

πkN (ǫ | µk, σ
2
k), (38)

where K is the number of Gaussian distributions, N (ǫ | µk, σ
2
k) stands for the Gaussian distribution with

mean µk and variance σ2
k. πk > 0, and

∑K
k=1 πk = 1 is the mixing proportion. Since the Laplace noise is

a common assumption in indoor and outdoor communications, submarine transmission, and ultra-wide
bandwidth wireless communication [35], we also generate the environment with Laplace distribution to
verify the robustness of the proposed method in terms of communication environment. The Laplace
distribution is defined as

P(ǫ) = L(ǫ | µl, σl) (39)

with mean µl and variance σl.



Hu Z Y, et al. Sci China Inf Sci December 2023 Vol. 66 222304:10

5 10 15 20 25 30

SNR (dB) SNR (dB)

5 10 15 20 25 30

10−1

10−2

10−3

10−4

10−5

10−6

100

N
M

S
E

10−1

10−2

10−3

10−4

10−5

10−6

100

N
M

S
E

MoG N
t
=32

LS N
t
=32

LMMSE N
t
=32

EMEP-B N
t
=32

EMEP-A N
t
=32

LS N
t
=4

LMMSE N
t
=4

MoG N
t
=4

EMEP-A N
t
=4

EMEP-B N
t
=4

(a) (b)

Figure 1 (Color online) NMSE versus SNR for the EMEP and several methods with (a) Case 1 and (b) Case 2.

4.2 Performance evaluation

In this subsection, we evaluate the NMSE performance of the EMEP algorithm in terms of different
environment probability density functions, channel sizes, pilot lengths, and the number of transmitted
signals through comparison experiments to study its robustness. Moreover, the symbol error rate (SER)
performance is also presented to verify the effectiveness of EMEP, which is defined as

SER =
Nse

Ns

, (40)

where Nse and Ns denote the number of wrong symbols and the number of all symbols, respectively. Fi-
nally, the strong ability of EMEP in terms of distribution estimation is demonstrated through quantitative
experiments.

We study the performance of EMEP with different environment probability density functions to inves-
tigate the robustness of using MEP to fit the environment. In addition, the differences of ‘EMEP-A’ and
‘EMEP-B’ are also studied. In Figure 1(a), the length of pilot sequences, the length of transmitted signal
sequences, and the number of transmitted antennas and received antennas are set as l = 50, L = 1000,
and Nt = Nr ∈ {4, 32}, respectively. The environment (Case 1) is generated as 45% is following Gaussian
N (0, σ2

1), 45% is following Gaussian N (2, σ2
2), and the remaining 10% is following Gaussian N (−2, σ2

2),
where the corresponding SNR is in the range of [5, 30] dB. In Figure 1, the environment (Case 2) is set
as L(0, σl), the SNR varies in the range of [5, 30] dB, and other settings are as the same as the settings
in Figure 1(a).

It is obvious that the NMSE increases for all methods when the number of antennas is increasing
in Figures 1(a) and (b), due to the error accumulation caused by the increasing number of estimated
parameters. However, EMEP (i.e., ‘EMEP-A’ and ‘EMEP-B’) outperforms the compared methods when
the channel sizes are the same. Moreover, EMEP achieves the best performance among the compared
methods with different environment probability density functions, which demonstrates its adaptive ability.
We can also see that the performance gap between the EMEP-A and EMEP-B is narrowing with the
increase of SNR when Nt = 32. Meanwhile, when Nt = 4, the performance gap is stable. In addition,
from Figures 1(a) and (b), it can be seen that ‘EMEP-A’ achieves better performance when the channel
size is 32 × 32, while ‘EMEP-B’ achieves better performance when the channel size is 4 × 4. This
phenomenon may be attributed to that the estimation error accumulation caused by auxiliary variables
affects significantly when the channel size is small, while only using gradient information of the second-
order limits the performance when the number of estimated parameters, i.e., the channel size, is large.
For simplicity, we set the small channel size, and ‘EMEP’ stands for using ‘EMEP-B’ to obtain channels
in the rest of simulations.

We set the number of transmitted antennas, received antennas, and the length of transmitted signal
sequences as Nr = Nt = 4 and L = 1000. The length of pilot sequences l = 50 and l = 100. The
environment is generated as: 10% is following Gaussian N (0, σ2), 20% is following Gaussian N (0, 0.01×
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Figure 2 (Color online) NMSE versus SNR for different methods with different lengths of pilot sequences.
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Figure 4 (Color online) SER versus SNR for different meth-

ods.

σ2), and the remaining 70% is following Gaussian N (0, 0.0001 × σ2), where the corresponding SNR is
in the range of [5, 30] dB. In Figure 2, it is obvious that EMEP outperforms the compared methods
with different lengths of pilot sequences l. It can also be seen that the performance increases with the
increase in the number of lengths of pilot sequences for all methods, while the performances of EMEP
with different lengths of pilot sequences have no significant gap. Due to the pseudo pilot estimation,
EMEP can also utilize the estimated signal rather than only the pilot signal for CE, which means the
performance of EMEP does not highly depend on the length of pilot sequences, and the good performance
can be achieved by fewer numbers of lengths of pilot sequences.

In Figure 3, we compare the NMSE of the CE versus SNR for different lengths of transmitted signal
sequences L ∈ {500, 1000, 2000}, and the pilot sequence length l = 50. Other settings are the same
as the settings in Figure 2. From Figure 3, we can see that the NMSE decreases when the number of
transmitted signals increases, especially when SNR is higher than 20 dB. It shows that increasing L can
improve the upper limitation of EMEP. However, when the number of transmitted signals is large, the
decrease of NMSE is not obvious at a low SNR regime. The reason for the mentioned phenomenon is
that the pseudo pilot estimation is not accurate enough to gain the benefit of increasing the number of
transmitted signals.

To further verify the effectiveness of the proposed method, we compare the SER of the proposed
EMEP method with the compared methods in Figure 4. The lengths of transmitted signal sequences
L = 1000, corresponding SNR is in the range of [2, 10] dB, and other settings are the same as in Figure 3.
Considering the fair comparison, we use the maximum likelihood detection method for all methods to
calculate SER. The results in Figure 4 show that EMEP also outperforms all compared methods in terms
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Table 1 Quantitative comparison of the true (denoted by “True”) environment probability density functions and the estimated

results (denoted by “Est.”) in 3 different cases

Type λ

Case 1
True [1.414, 0]

Est. [1.4974, 4.99 × 10−5]

Case 2
True [0, 0.125]

Est. [0.0951, 0.116]

Case 3
True [0, 0.5]

Est. [0.1591, 0.4836]

of SER, which further demonstrates that EMEP can obtain the accurate channel.
Table 1 shows the parameters estimation results of the true environment probability density functions.

The true environment probability density functions of three cases are L(0, 1√
2
), N (0, 4), and N (0, 1),

respectively. The initialization of parameter p is all set as [1, 2] in three cases. The estimated values
of λ corresponding to the second order part and the first order part are almost zero in Cases 1 and
2, respectively, which shows that our algorithm extracts the different moment components of the noise
distribution automatically. The parameters estimation error is around 10−1 in all three cases, which also
shows the strong moment information extracting ability of our algorithm. The above results verify that
the proposed noise modeling method can investigate the moment information of the noise and get insights
into the environment.

5 Conclusion

In this work, the issues pertaining to CE in practical wireless communication systems were explored.
Since complex environments and the required number of pilots limit the accuracy of CE, reducing pilot
consumption and improving the robustness of CE are important. From the perspective of ML, a data-
aided CE algorithm, namely EMEP, is proposed. The noise modeling method and MEP were exploited
to approximate the probability density functions of the noise and derive the measurement for estimating
channel, which can adaptively determine the moment component of noise in CE under complex com-
munication environments. Further, the nonpilot signal in the CE structure was considered to reduce
pilot consumption, and further increase the estimation accuracy. Notably, the proposed EMEP algo-
rithm demonstrated robustness in different complex communication environments. Simulation results
confirmed the superiority of EMEP concerning estimation accuracy, pilot consumption, and environment
adaptation.
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Appendix A Data estimation for higher order modulation

If one symbol contains k bits as s1, . . . , sk, we change matrixes B, A, and S as

S =

















s1 . . . sk 0 . . . . . . . . . . . . . . . 0

0 . . . 0 s1 . . . sk 0 . . . . . . 0

. . .

0 . . . . . . . . . . . . . . . 0 s1 . . . sk

















Nr×kNt

,

B =

















1 . . . 1 0 . . . . . . . . . . . . . . . 0

0 . . . 0 1 . . . 1 0 . . . . . . 0

. . .

0 . . . . . . . . . . . . . . . 0 1 . . . 1

















Nr×kNt

,

A =

















a11 a12 a13 a14 · · · a1m

a21 a22 a23 a24 · · · a2m

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

an1 an2 an3 an4 · · · anm

















mNt×Ns

.

Other derivations are the same in Subsection 3.2.
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