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Abstract To explore evolutionary dynamics of collective behaviors within the interconnected population,

previous studies usually map non-pairwise interactions to higher-order static networks. However, from human

communications to chemical reactions and biological systems, interactions often change over time, which

cannot be simply described by higher-order static networks. In this study, we introduce time effects into

higher-order networks and correspondingly investigate the evolutionary dynamics of multiplayer snowdrift

games on higher-order temporal networks. Specifically, extensive simulations from four empirical datasets

reveal that (1) the temporal effect of higher-order networks can facilitate the evolution of cooperation; (2) the

higher-order topology can enhance the emergence of cooperation within a certain range of parameters; (3) the

contribution of temporal burstiness and participants burstiness to cooperation is reversed. Furthermore,

we theoretically demonstrate that the higher-order structure will suppress the propagation of defection in

temporal networks. Our findings offer a new avenue for studying the evolution of altruistic behaviors in

realistic complex networks.
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1 Introduction

In addition to dyadic interactions between individuals [1–3], interactions in the real world often occur
in groups of more than two elements [4, 5]. For example, multiple scholars jointly complete a scientific
research, and wolves collaborate to round up prey. Therefore, it is more relevant to explore the evolution of
cooperation in group interactions [6,7]. However, most early studies on the evolution of group cooperation
are based on well-mixed populations or traditional networks linked by interacting pairs of nodes [8–14],
which do not provide a unique procedure for defining a group [15, 16], and thus an alternative modeling
framework is needed to provide an improved description of reality. As a solution, higher-order networks
are introduced in evolutionary games that are played in groups. The unique character of higher-order
networks is that, apart from traditional networks, they consider simultaneous interactions among multiple
nodes [4, 17, 18], allowing them to naturally describe multi-body interactions in the real world.

In recent years, as many scholars have intensively studied higher-order networks, milestone progress
has been made in the evolutionary dynamics based on non-dyadic interactions [19]. For instance, Alvarez-
Rodriguez et al. [15] studied public goods games on hypergraphs and further confirmed the impact of group
size on cooperative behaviors by using empirical data. Schlager et al. [20] proposed the adaptive simplicial
snowdrift game, which demonstrated that the stability of the equilibrium points remains unchanged even
under higher-order structural frameworks. And moral behavior has also already been studied on higher-
order networks [21, 22]. Besides evolutionary dynamics [23], new collective behaviors have also been
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observed in the field of spreading dynamics [24,25], synchronization phenomena [26,27], and consensus [28,
29] when they are extended beyond pairwise interactions. It should be noted that these important insights
regarding the evolution of cooperation on higher-order networks are generally based on a key premise:
higher-order interactions (interaction networks) are static.

However, in the real world, time is an important dimension to depict various (pairwise/higher-order)
interacting activities, since interactions between individuals will form, strengthen, weaken, or disappear
with time. For example, a scholar will collaborate with different individuals at different times to write
several distinct papers. Activities such as voice communications, group discussions, and working sessions
are also maintained for only a limited period of time. It has been demonstrated that the temporal-
ity of interaction activation can significantly influence a variety of dynamical processes, from epidemic
spreading [30,31] to event detection [32] and even evolutionary cooperation dynamics [33–36]. Naturally,
we consider that temporality will have a far-reaching impact on social systems, over which the relevant
dynamic rules are closely related to interactions changing over time. Existing studies usually model
higher-order interactions as static networks, which limits the application effectiveness and reliability of
the research results in real systems. To solve this problem, we hope to investigate the evolution of coop-
eration on higher-order temporal networks, driving the expansion of higher-order networks in temporal
dimension.

Therefore, we introduce the temporal dimension into higher-order networks and fully consider the
chronological sequence of interactions, in order to accurately portray the real systems. On this basis,
the evolutionary dynamics of multiplayer snowdrift games is studied. Specifically, (1) we investigate the
evolution of cooperation on higher-order temporal networks constructed from empirical datasets, and
it is surprising to discover that the temporal effect of higher-order networks can enhance cooperation.
(2) We explore the effect of higher-order structures on the emergence of cooperation in time-varying
networks, and draw a conclusion that higher-order topology can favor cooperation under some special
parameter settings. (3) In many real social systems, interactions are often intermittent and aggregated,
indicating that interaction patterns have a bursty character. Thus, we further investigate the impact
of bursty behavior on cooperation from the perspective of time and participants. Interestingly, we find
that the contribution of temporal and participants burstiness to cooperation is opposite. (4) Finally, we
theoretically demonstrate that the higher-order structure will hinder the spread of defection in temporal
networks. Our study reveals the significance of temporal information for the evolution of cooperation
within the human population.

The remainder of this paper is organized as follows. In Section 2, we present the multiplayer snowdrift
game model and higher-order temporal network used in this work. Section 3 provides the numerical
results from the simulation. We give the theoretical analysis in Section 4. Section 5 concludes the whole
paper and discusses the potential work.

2 Model

2.1 Multiplayer snowdrift game

The multiplayer snowdrift game [37] represents the social dilemma of conflicts between individual and
collective interests (i.e., maximizing personal benefits will not maximize group benefits). In this game,
each player can choose to shovel the snowdrift (cooperator) or not (defector). The cost c of shoveling the
snowdrift is shared equally among the cooperators. Each player, including the defector, will receive an
equal benefit b > c if the task is completed. The multiplayer snowdrift game reveals the nature of the
social dilemma: contributions may be asymmetric (unbalanced) given equal payoffs. That is to say, there
is no relationship between the contribution of players and the distribution of benefits.

The payoffs of cooperators and defectors within the group of K players are calculated as follows:

Π̄C (nc) = b− c

nc
, for nc ∈ [1,K],

Π̄D (nc) =

{

0, for nc = 0,

b, for nc ∈ [1,K − 1],

(1)

where nc is the number of cooperating players. Let r = c/b represent the cost-to-benefit ratio [37], and
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the payoffs can be further normalized and computed as

ΠC (nc) = 1− r

nc
, for nc ∈ [1,K],

ΠD (nc) =

{

0, for nc = 0,

1, for nc ∈ [1,K − 1].

(2)

For K = 2, the multiplayer snowdrift game will degenerate into a two-player snowdrift game. It
should be noted that multiplayer games with K > 2 cannot be simplified into multiple two-player en-
counters [38].

2.2 Higher-order temporal network

We use several empirical datasets to construct the higher-order temporal network, and the construction
process is shown in Figure 1. In the investigated datasets, the interactions are initially stored through
time-stamped links, as shown in Figure 1(a). There are two factors to be considered in the constructed
higher-order temporal networks: (1) the number of individuals involved in the interactions, i.e., the order
of interactions, and (2) the sequence of interactions. For the order of interactions, we do not temporally
differentiate the interactions occurring within a small time window ∆h; that is, we consider that these
interactions occur at the same moment. If n players interact two-by-two within a time window ∆h,
they constitute an (n− 1)-order interaction. We use simplicial complexes to represent these interactions
of different orders. For example, 1-simplex denotes 1-order interaction (two-body interaction), and 2-
simplex indicates 2-order interaction (three-body interaction). The construction process of interactions
of different orders is shown in Figure 1(b). For the sequence of interactions, we represent higher-order
temporal networks by a sequence of snapshots (separate networks) G = {G1, . . . , GW } on the same set
of N nodes, as shown in Figure 1(c). This discrete method (snapshot sequences) can not only reflect the
sequence of interactions, but also capture effective network structures. A snapshot is a static network
which is generated by aggregating interactions (simplices) over consecutive, non-overlapping time windows
of ∆t. Links in different snapshots are independent. For comparison, we also aggregate all simplices by
setting ∆t = T (T is the time span of all interactions in the dataset) to construct higher-order static
networks.

2.3 Game process

To simulate the game on a higher-order time-varying structure {Gm}m=1,...,W , each individual initially
behaves either as a cooperator or as a defector with an equal chance on the first snapshot of the sequence,
namely on G1. At each time step, each node plays the snowdrift game in all groups (simplices) to which
it belongs. Thus, at time step t, the cumulated payoff of individual i is the sum of the payoffs it receives
from each group, which can be expressed as

Ui(t) =
∑

τ∈Ωi

Ui,τ , (3)

where Ωi denotes the collection of simplices to which individual i belongs, and Ui,τ indicates the payoff of
individual i obtained from simplex τ . Afterwards, each individual synchronously updates his/her strategy
by replicator dynamics rule [39]. Specifically, each individual i randomly selects one of its neighbors j:
if Ui(t) > Uj(t), the current strategy of individual i remains unchanged; if Ui(t) < Uj(t), then individual
i adopts the strategy of individual j at the next step with the probability φ(si(t+ 1) ← sj(t)), and the
strategy transition probability is written as follows:

φ(si(t+ 1)← sj(t)) =
Uj(t)− Ui(t)

max{ki, kj}D
, (4)

where ki and kj represent individual i’s and individual j’s generalized degree, respectively, i.e., the number
of times they participate in the game, respectively. D is the possible maximum payoff difference between
two individuals, and its value depends on the type of game. Here, for MESG, D = 1.

The above process denotes a time step, and the same procedure is repeated for g times. Then, we
change the network structure to the next snapshot and continue running the game, as shown in Figure 2.
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Figure 1 (Color online) Construction of higher-order temporal networks. Here, we show a method for generating higher-order

temporal networks using empirical datasets. (a) The sequence of contacts among six players A–F depicted by different colored

solid circles. Along the entire time from t = 0 to t = 240 s, each player corresponds to a horizontal line. During the time interval

(t − τ, t], if two players interact with each other, the corresponding circles will be marked on their respective horizontal lines and

connected by a curved line at time t. Here, τ = 20 s. (b) The timestamped simplices constructed from the contact sequence shown

in (a) rely on the length of time window ∆h. In practice, if in the same window ∆h, there are n(n+1)/2 edges between a group of

n nodes in (a) such that they form a complete graph, we regard these n(n+ 1)/2 edges as an (n− 1)-simplex. We do not consider

interactions that span a long time dimension as higher-order interactions. Thus, the value of ∆h is small. Here, ∆h = 40 s. (c) The

higher-order temporal networks created from aggregating the simplices shown in (b) into snapshots depend on the length of time

windows ∆t. Here, ∆t = 80 s. Moreover, when ∆t = T , the entire sequence of snapshots degenerates into a snapshot containing all

simplices, i.e., a higher-order static network. The number of snapshots is ⌈T/∆t⌉ provided ∆t < T . Generally, we retain only one

for simplices that recur in the same ∆t; namely, we do not consider the occurrence number of simplices and construct unweighted

networks. When constructing weighted networks, each simplex is assigned a weight, and the weight is the occurrence number of

the simplex.
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Figure 2 (Color online) Game process on higher-order temporal networks. Here, we show the evolution of the game on some

snapshots of higher-order temporal networks. Take the higher-order temporal network corresponding to ∆h = 40 s and ∆t = 80 s

in Figure 1(c) as an example. After performing g rounds of evolution in each snapshot, we move to the next one. In all snapshots,

we totally run the game for G rounds. If ⌈T/∆t⌉g < G, the snapshots are reused according to their sequence.

In all snapshots, the game is performed for a total of G rounds. Note that if ⌈T/∆t⌉g < G, i.e., the
number of snapshots is insufficient, the sequence of snapshots is reused from the beginning. To obtain
the cooperation level at a steady state, we calculate the fraction of cooperators in the system after a long
enough evolution time (G = 106–108). Finally, we measure the average frequency of cooperation (fc)
over another 2000 steps. Numerical simulation results are obtained by averaging over 50 independent
realizations with random initial conditions. Note that, unlike previous studies [33–35], the time-varying
nature of the networks is not related to the dynamics of the game, which allows us to independently
assess how temporality affects the game dynamics.

3 Results

3.1 Datasets

We construct higher-order temporal networks to describe real-world interactions by using the publicly
available SocioPatterns dataset [40], and then conduct large quantities of experiments. SocioPatterns has
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Table 1 Statistics of the datasets. The four datasets we select represent interactions between: participants of an SFHH conference

over a period of 2 days on June 4–5, 2009 (SFHH conference), students in 5 classes at a high school in Marseilles, France over 4

days in Dec. 2011 (School 2011), patients, medical doctors, nurses and administrative staffs in a hospital ward in Lyon, France over

about 5 days in Dec. 2010 (Hospital 2010), staffs at an office building in France from Jun. 24 to Jul. 5, 2013 (Office 2013). Contacts

are defined as individual triples (t, i, j) in the data, which means that node i interacts with j during the time interval (t, t + 20] s.

Events (simplices) are k-interactions (k-simplices) among k + 1 individuals; namely, these individuals interact two-by-two within

the time window ∆h. We count the number of events at ∆h = 20 s. The number of snapshots is computed according to the entire

time window T over which the data were collected, and the interval ∆t is utilized to aggregate the simplices into snapshots.

SFHH conference School 2011 Hospital 2010 Office 2013

Number of nodes 403 126 75 92

Number of contacts 70261 28561 32424 9827

Number of events (simplices) 54306 26384 27835 9645

Number of snapshots ⌈114320/∆t⌉ ⌈272350/∆t⌉ ⌈347520/∆t⌉ ⌈987640/∆t⌉

Recording period (days) 2 4 5 12

Time resolution (s) 20 20 20 20
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Figure 3 (Color online) Statistics of higher-order interactions. We report the number of interactions for each different size in

the four datasets: SFHH conference, School 2011, Hospital 2010, and Office 2013. It is observed that interactions involving more

people are fewer.

collected face-to-face interactions of individuals under many realistic settings and recorded them with a
time resolution of 20 s. We select four datasets representing different social contexts from SocioPatterns:
(a) participants at a scientific conference in Nice, France (SFHH conference) [41], (b) students at a high
school in Marseilles, France (School 2011) [42], (c) patients and doctors in a hospital in Lyon, France
(Hospital 2010) [43], and (d) staffs at an office building in France (Office 2013) [44]. The statistics of
these four datasets is shown in Table 1.

Figure 3 presents the statistics of higher-order interactions for the four datasets. It should be pointed
out that, according to [21, 45, 46], we cannot consider interactions that span a long time dimension as
higher-order interactions. Therefore, the value of ∆h is set to be 20 s in our experiment. Based on this,
we count the occurrence number of interactions for different sizes in four datasets. From Figure 3, it can
be seen that in four datasets, interactions involving more people are fewer. Moreover, the group sizes are
limited to 9, 5, 5, and 4 in the conference, school, hospital, and workplace settings, respectively.

To explore the factors affecting the evolution of cooperation on higher-order temporal networks, we
focus on the following scientific questions (SQ):
• SQ1: How does the temporal nature of higher-order networks affect cooperation?
• SQ2: How does the higher-order topology influence cooperation on temporal networks?
• SQ3: How do the burstiness in time and participants impact cooperation?

3.2 Temporal effect of higher-order networks on the evolution of cooperation (SQ1)

Figure 4 illustrates the cooperation rate fc changing with the cost-to-benefit ratio r and the number of
games g on each snapshot under different values of aggregation time window ∆t for higher-order temporal
networks created from four empirical datasets: (a) SFHH conference, (b) School 2011, (c) Hospital 2010,
and (d) Office 2013. As can be seen from Figure 4, fc declines with the increment of r, which is consistent
with previous studies. Furthermore, we also observe a certain range of g (when g is large) over which fc
in higher-order temporal networks is larger than that in their static counterparts, for almost all values
of r. The reason is that when g is small (i.e., fewer games performed in each snapshot), the cooperation
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Figure 4 (Color online) Temporal effect of higher-order social structures on the emergence of group cooperation. For four

empirical datasets, (a) SFHH conference, (b) School 2011, (c) Hospital 2010, and (d) Office 2013, we present the cooperation level

(fc) at the equilibrium as a function of the cost-to-benefit ratio r on higher-order static (black dashed lines) and temporal (colored

solid lines) networks with different values of the aggregation interval ∆t. For different datasets, we choose intervals depending on

their time span [36]. From left to right, the values of ∆t are set to be 1, 2, 6, 12 h in (a) and (b), 2, 6, 8, 12 h in (c), and 6, 8, 12,

24 h in (d), respectively. The frequency of cooperation is obtained by averaging over another 2000 time steps after G = 106–108

time steps are discarded on each higher-order temporal network. It can be shown that the temporal effect of higher-order networks

can promote cooperation.

pattern has no chance to stabilize before being destroyed by the next change in network structure, which
is detrimental to the evolution of cooperation. Surprisingly, the temporal effect of higher-order networks
can still foster cooperation even for small ∆t when compared with higher-order static networks.

It is worth mentioning that in higher-order temporal networks, fc rises as the number of games g at each
snapshot increases. By the further expansion, we can obtain the following. (1) The faster the frequency
of games (communication) at the same time, i.e., the more the number of games (the greater the g),
the greater the fraction of cooperators. From the perspective of social development, with the progress of
transportation and communication technology (the frequency of communication increases), the number
of exchanges at the same time increases, which is conducive to cooperation. As a result, the pace of social
development accelerates. (2) Under the same frequency of exchange, the longer the evolution time (the
larger the g), the greater the fraction of cooperators. From the perspective of network development, the
change of the network pattern is equivalent to snapshot switching. The slower the snapshot switches,
the greater the number of games g in each snapshot, the more conducive to cooperation and network
development.

Figure 5 reports the frequency of cooperation fc(t) as a function of time (game round) under different
values of r. It is interesting to observe that regardless of the value of g, the cooperation rate converges
quickly and monotonically toward equilibrium with time. The cooperation frequency fc increases when
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Figure 6 (Color online) Evolution of cooperation on weighted higher-order temporal networks. We report the frequency of

cooperation (fc) at the stationary state as a function of the cost-to-benefit ratio r on weighted higher-order static (black dashed

lines) and temporal (colored solid lines) networks with different ∆t for the SFHH conference dataset. We observe that the conclusion

shown in Figure 4 still holds when we consider weighted networks. Other parameters are the same as those in Figure 4, and results

shown here are also applicable for the other three datasets.

the snapshot switches (denoted by the vertical dashed lines in the inset). This suggests that the evolution
of network snapshots favors the increase of fc.

The higher-order temporal networks constructed above are unweighted networks and cannot capture
the strength or number of interactions. Therefore, we create weighted networks using the same datasets.
Specifically, each simplex is assigned a weight, and the weight is the occurrence number of the simplex in
the same ∆t. Figure 6 illustrates how the average proportion of cooperators depends on the parameters
r and g and on aggregation time window ∆t in weighted higher-order temporal networks. It can be seen
from Figure 6 that in weighted networks, temporal networks can still foster cooperation compared with
their static counterparts. This confirms that our conclusions are robust for weighted networks.

3.3 Impact of higher-order structures on the emergence of cooperation (SQ2)

To explore the effect of higher-order structures on cooperative evolution, we create pairwise temporal
networks according to [36]. This method first generates links based on contact sequences and then
aggregates these links into snapshots. Figure 7 displays fc varying with r under different values of ∆t
and g. From Figure 7, it can be seen that fc decreases with the increase of r in both pairwise and higher-
order temporal networks. This is because, in pairwise and higher-order temporal networks, the increment
of r will increase the payoff difference between cooperators and defectors, which makes cooperators choose
the defection strategy and thus leads to the decrease of the cooperation level.

When r is small (r < 0.6 approximately), the cooperation rates of pairwise and higher-order temporal
networks are equal. As r increases (0.6 < r < 0.7 approximately), fc in the higher-order temporal network
is larger compared with its pairwise counterpart. This is because, at this moment, the global cooperation
level is high, i.e., the number of cooperators in the network is much higher than that of defectors. Since
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Figure 7 (Color online) Effect of higher-order structures on the evolution of cooperation. We plot the equilibrium cooperation

level (fc) as a function of the cost-to-benefit ratios r on pairwise (gray lines) and higher-order (red lines) temporal networks for

the SFHH conference dataset (the left two) and the School 2011 dataset (the right two). We find that the higher-order topology

can enhance cooperation within a certain range of parameters. Other parameters are the same as those in Figure 4, and results

shown here are also applicable for the other two datasets.

there are more people involved in each game in higher-order structures, the cost of shoveling will be shared
among more cooperators. Thus, the payoff difference between cooperators and defectors in higher-order
temporal networks is smaller than that in pairwise temporal networks. This indicates that to some extent,
higher-order structures can foster cooperation. With the further increase of r (r > 0.7 approximately),
fc in the higher-order temporal network decreases faster than that in its pairwise counterpart. This is
because, as r increases, fc in higher-order and pairwise temporal networks decreases and the number of
defectors in the network increases. Since there are more people involved within each game in higher-order
structures, it is easier to find a cooperator to perform the task and defectors have a higher probability of
payoff 1 in higher-order temporal networks. This leads to a greater payoff difference between cooperators
and defectors in higher-order temporal networks compared with their pairwise counterparts. Therefore,
fc decreases faster in higher-order temporal networks than in their pairwise counterparts to the extent
that it is smaller than in pairwise temporal networks. Note that, our results hold true for other strategy
update rule that allows players to copy the strategy with a higher average payoff among its neighbors.

3.4 Role of burstiness in the evolution of cooperation (SQ3)

We consider that the burstiness of higher-order interactions is mainly reflected in two dimensions: tem-
poral burstiness (interactions are aggregated on certain time periods) and participants burstiness (in-
teractions are concentrated on certain individuals). Next, we explore the role of these two aspects,
respectively.

(1) Temporal burstiness. There is increasing evidence that temporal patterns of higher-order human
interactions, ranging from communication to work and entertainment patterns, have a bursty character:
long periods of inactivity that separate bursts of intense activity [47]. The burstiness is also present in the
empirical dataset we study, as shown in Figure 8. This figure depicts the occurrence time of interactions
of different sizes in the SFHH conference dataset. It can be observed that the appearance of higher-
order interactions is highly aggregated in time; that is, they have temporal burstiness. This temporal
correlation in activities has been proven to affect the dynamics on networks, for example, accelerating
the spread of disease [48]. This motivates us to explore the effect of temporal burstiness on the evolution
of cooperation.

Accordingly, we shuffle each dataset to eliminate the burstiness inherent to human interaction data. We
adopt the most random timeline shuffling method P [L, E ] [49], where we redistribute the events between
all timelines at random. By uniformly reshuffling the original timelines of interactions, we obtain the
randomized higher-order time-varying networks on which the multiplayer snowdrift games are simulated.

Figure 9 plots the quantitative differences between the cooperation level of the original datasets and
their randomized versions, as a function of r and g. As can be seen from Figure 9, the cooperation
frequency fRTI

c in reshuffled networks minus fORI
c over the original datasets is almost positive. This

suggests that cooperation is enhanced after randomization (the bursty patterns are destroyed); that is,
temporal burstiness impedes cooperation. This is because the temporal burstiness of interactions makes
it difficult for cooperating players to form stable clusters in order to benefit from mutual cooperation and
thus make up for the losses against defectors [50].

Interestingly, we also observe that the explosion of interactions involving more individuals is always
accompanied by that of interactions involving fewer agents; that is, the occurrence time of interactions
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Figure 8 (Color online) Time series of interactions in the SFHH conference dataset. The number of interactions at time t is
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(purple), and 5-body (green) interactions. We find that higher-order interactions are highly aggregated in time; namely, they have

temporal burstiness. Other datasets also present similar time series.

involving fewer individuals always covers that of interactions involving more agents (see Figure 8). This
suggests that bursty patterns of interactions are not independent across different orders; i.e., there is a
strong dependency among them. This is because higher-order structures always develop from lower-order
events. For instance, when A communicates with B, the addition of F increases the interaction size.

To erase the dependencies between temporal bursty patterns, we follow the most random sequence
shuffling method P [pτ (Γ)] [49], where we shuffle the occurrence time between higher-order interactions
with the same size. This method ensures that events of different sizes are independent of each other in the
case of time distribution unchanged. After shuffling the interactions in the original datasets, we obtain
randomized versions of higher-order time-varying networks and perform the corresponding simulations.

Figure 10 represents the cooperation level fRSE
c in the randomized graphs minus fORI

c in the original
datasets varies with r and g. As can be seen from Figure 10, fRSE

c − fORI
c is almost positive, indicating

that cooperation is facilitated after randomization (the dependency relationships are destroyed). That
is, the dependency relationships among bursty patterns inhibit cooperation.

(2) Participants burstiness. Analyses of the participants of human higher-order interactions in certain
realistic scenarios and empirical datasets have revealed a bursty character: higher-order interactions are
always concentrated at a small number of individuals. For example, in colleges and universities, those
who frequently attend academic conferences are research faculty. To further verify the above conclusion,
taking the SFHH conference dataset as an example, we count the number of times each node participates
in higher-order interactions, as shown in Figure 11. From Figure 11, it can be seen that higher-order
interactions are always concentrated on certain nodes, indicating that higher-order events are burst in
terms of participants. Hence, we examine the impact of participants burstiness on the evolution of
cooperation.

To this end, we reshuffle the higher-order interactions in the dataset to remove participants burstiness.
Here, we use the most random snapshot shuffling method P [t] [49], where we keep the interaction size
unchanged and shuffle the participants of higher-order interactions. This shuffling ensures that nodes
in higher-order interactions are completely randomized while keeping the number of interactions of dif-
ferent sizes unaltered. By reshuffling the higher-order interactions in the original dataset, we obtain a
randomized version of the higher-order temporal network over which we simulate the games.

Figure 12 shows the cooperation rate fORI
c in the original datasets minus fRSN

c in reshuffled networks
as a function of r and g. It can be observed that fORI

c − fRSN
c is almost positive; i.e., the cooperation

level in the original datasets is larger than that in the randomized graphs. This suggests that participants
burstiness of higher-order interaction can facilitate the cooperation.
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Figure 9 (Color online) Role of temporal burstiness in the evolution of cooperation. For four datasets, (a) SFHH conference,

(b) School 2011, (c) Hospital 2010, and (d) Office 2013, we report the difference fRTI

c
− fORI

c
between the cooperation rate fRTI

c

obtained on the reshuffled networks and fORI

c
corresponding to the original datasets, as a function of r and g, at different values

of the aggregation interval ∆t. It is indicated that cooperation is facilitated after bursty patterns are disrupted; that is, temporal

burstiness inhibits cooperation. Other parameters are the same as those in Figure 4.

4 Theoretical analysis

To further investigate the role of higher-order structure in the emergence of cooperation, we theoretically
model and analyze the higher-order and pairwise temporal networks, respectively. Specifically, we model
higher-order temporal networks by using the simplicial activity-driven (SAD) model [51] and pairwise
temporal networks starting from the edge-matched AD (eAD) model [52].

4.1 Higher-order temporal networks (SAD model)

We model higher-order temporal networks using the SAD model. In the SAD model, each vertex i is
activated with probability υi, taken from a probability distribution F (υ). Activated node randomly
selects h− 1 nodes and forms an (h− 1)-simplex. The parameter h denotes the collaboration size, which
can either be fixed or a random variable taken from a distribution p(h). After interactions, the node may
change its own strategy, which can be expressed by the following processes:

{

C +D + · · · β−→ D +D + · · · ,
C +D + · · · µ−→ C + C + · · · ,

(5)

where C means the cooperator, D denotes the defector, β (µ) indicates the average chance of a cooperator
(defector) becoming a defector (cooperator) after interactions.
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Figure 10 (Color online) Role of dependencies among bursty patterns in the evolution of cooperation. We show the difference

fRSE

c
− fORI

c
between the cooperation rate fRSE

c
in the randomized networks and fORI

c
in the original networks, at different values

of ∆t for (a) SFHH conference, (b) School 2011, (c) Hospital 2010, and (d) Office 2013. We find that cooperation is improved after

dependency relationships among bursty patterns are destroyed, suggesting that this relationship suppresses cooperation. Other

parameters are the same as those in Figure 4.

Here, we consider the size of the clique generated at each activation in the SAD model is taken from
a distribution p(h). Starting from a particular snapshot m, the number of defectors with activity rate υ
in the next snapshot, Dm+1

υ can be written as

Dm+1
υ = Dm

υ − µDm
υ +NCD +NDC +NCCD, (6)

NCD =

∫

dhp(h) (Nυ −Dm
υ ) υ(h− 1)

∫

dυ′Dm
υ′

β

N
, (7)

NDC =

∫

dhp(h)

∫

dυ′Dm
υ′υ′(h− 1)

(Nυ −Dm
υ )

N
β, (8)

NCCD =

∫

dhp(h) (Nυ −Dm
υ )

β

N

∫

dυ′ (Nυ′ −Dm
υ′) υ′(h− 1)

∫

dυ′′
Dm

υ′′

N
(h− 2), (9)

where Dm
υ represents the number of defectors with activity υ in snapshot m, µDm

υ denotes the number
of defectors with activity υ that convert to cooperators, NCD means active cooperators with activity
υ create an (h − 1)-simplex that includes defectors with any activity (hence the integration over υ′)
and adopt defectors’ strategy, NDC describes cooperators with activity υ share an (h− 1)-simplex with
active defectors with any activity and copy defectors’ strategy, NCCD denotes cooperators with activity
υ are chosen by an active cooperator with any activity who creates an (h− 1)-simplex that also contains
defectors with any activity, and imitates defectors’ strategy, (NCD +NDC +NCCD) captures the number
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of cooperators with activity υ that convert to defectors, Nυ means the total number of individuals with
activity υ, Nυ−Dm

υ means the number of cooperators with activity υ in snapshot m, N =
∫

dυNυ is the
whole population,

∫

dυDm
υ denotes the total number of defectors in snapshot m, and we define it as Dm.

By integrating (6) over all values of υ, we can obtain the equation:

Dm+1 = Dm − µDm + β〈h− 1〉〈υ〉Dm + β〈h− 1〉Gm + β〈(h− 1)(h− 2)〉〈υ〉Dm, (10)

considering that

∫

dυNCD =

∫

dυ

∫

dhp(h) (Nυ −Dm
υ ) υ(h− 1)

∫

dυ′Dm
υ′

β

N
= β〈h− 1〉〈υ〉Dm, (11)

∫

dυNDC =

∫

dυ

∫

dhp(h)

∫

dυ′Dm
υ′υ′(h− 1)

(Nυ −Dm
υ )

N
β = β〈h− 1〉Gm, (12)
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and
∫

dυNCCD =

∫

dυ

∫

dhp(h) (Nυ −Dm
υ )

β

N

∫

dυ′ (Nυ′ −Dm
υ′) υ′(h− 1)

∫

dυ′′
Dm

υ′′

N
(h− 2)

= β〈(h− 1)(h− 2)〉〈υ〉Dm,

(13)

where Gm =
∫

dυDm
υ υ.

To get a closed equation for Gm, we multiply (6) by υ and integrate over υ, obtaining the equation:

Gm+1 = Gm − µGm + β〈h− 1〉
〈

υ2
〉

Dm + β〈h− 1〉〈υ〉Gm + β〈(h− 1)(h− 2)〉〈υ〉2Dm, (14)

considering that

∫

dυυNCD =

∫

dυυ

∫

dhp(h) (Nυ −Dm
υ ) υ(h− 1)

∫

dυ′Dm
υ′

β

N
= β〈h− 1〉

〈

υ2
〉

Dm, (15)

∫

dυυNDC =

∫

dυυ

∫

dhp(h)

∫

dυ′Dm
υ′υ′(h− 1)

(Nυ −Dm
υ )

N
β = β〈h− 1〉〈υ〉Gm, (16)

and
∫

dυυNCCD =

∫

dυυ

∫

dhp(h) (Nυ −Dm
υ )

β

N

∫

dυ′ (Nυ′ −Dm
υ′) υ′(h− 1)

∫

dυ′′
Dm

υ′′

N
(h− 2)

= β〈(h− 1)(h− 2)〉〈υ〉2Dm.

(17)

In the continuum limit for time m, we obtain the expressions for dynamics of D and G as follows:

{

∂mD = −µD + β
〈

(h− 1)2
〉

〈υ〉D + β〈h− 1〉G,
∂mG = −µG+ β〈h− 1〉

〈

υ2
〉

D + β〈h− 1〉〈υ〉G+ β〈(h − 1)(h− 2)〉〈υ〉2D.
(18)

By linearizing the above system at the origin, we obtain the corresponding Jacobian matrix

J =

(

−µ+ β
〈

(h− 1)2
〉

〈υ〉 β〈h− 1〉
β(〈h− 1〉

〈

υ2
〉

+ 〈(h− 1)(h− 2)〉〈υ〉2) −µ+ β〈h− 1〉〈υ〉

)

, (19)

with the eigenvalues

Λ1,2 =
(

β〈h(h− 1)〉〈υ〉 − 2µ± β
√

〈(h− 1)(h− 2)〉〈(h− 1)(h+ 2)〉〈υ〉2 + 4〈h− 1〉2 〈υ2〉
)

/2.

When the largest one is positive, defectors will not vanish in the population as a whole. This yields
the threshold for instability of the no-defection equilibrium:

β

µ
> λSAD

c , (20)

λSAD
c =

2

〈h(h− 1)〉〈υ〉+
√

〈(h− 1)(h− 2)〉〈(h− 1)(h+ 2)〉〈υ〉2 + 4〈h− 1〉2 〈υ2〉
. (21)

4.2 Pairwise temporal networks (eAD model)

To compare with the SAD model, we model pairwise temporal networks using the edge-matched AD
(eAD) model. In the eAD model, the active node generates h(h − 1)/2 links that are connected to
h(h− 1)/2 other randomly selected nodes.

Similar to the SAD model, the equation for the evolution of Dm
υ in the eAD model can be written as

Dm+1
υ = Dm

υ − µDm
υ +N ′

CD +N ′
DC , (22)

N ′
CD =

∫

dhp(h) (Nυ −Dm
υ ) υ

h(h− 1)

2

∫

dυ′Dm
υ′

β

N
, (23)
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Table 2 Values of λSAD

c
/λeAD

c
for empirical datasets. We measure F (υ) and p(h) at different ∆t for each dataset, and calculate

λSAD

c
/λeAD

c
using (26)

Dataset 1 h 2 h 6 h 12 h

SFHH conference 1.0420 1.0366 1.0310 1.0194

School 2011 1.0135 1.0111 1.0160 1.0171

Hospital 2010 1.0339 1.0262 1.0227 1.0082

Office 2013 1.0024 1.0018 1.0010 1.0002

N ′
DC =

∫

dhp(h) (Nυ −Dm
υ )

∫

dυ′Dm
υ′υ′

h(h− 1)

2

β

N
, (24)

where Dm
υ represents the number of defectors with activity υ in snapshot m, µDm

υ denotes the number
of defectors with activity υ that convert to cooperators, N ′

CD means active cooperators with activity υ
interact with defectors with any activity and imitate defectors’ strategy, N ′

DC stands for cooperators with
activity υ share a link with active defectors with any activity and imitate defectors’ strategy, (N ′

CD+N ′
DC)

captures the number of cooperators with activity υ that convert to defectors, Nυ means the total number
of individuals with activity υ, Nυ−Dm

υ denotes the number of cooperators with activity υ in snapshotm,
N =

∫

dυNυ describes the whole population,
∫

dυDm
υ means the total number of defectors in snapshot

m, and we define it as Dm.
Proceeding as before, we can get the threshold condition:

β

µ
> λeAD

c , λeAD
c =

2

〈h(h− 1)〉(〈υ〉+
√

〈υ2〉)
. (25)

4.3 Ratio between SAD and eAD thresholds

Using the expressions for λSAD
c and λeAD

c , we can write the ratio between these two quantities:

λSAD
c

λeAD
c

=
〈υ〉+

√

〈υ2〉
〈υ〉+

√

〈υ2〉√ψ
, (26)

ψ =
4〈h− 1〉2
〈h(h− 1)〉2 +

〈(h− 1)(h− 2)〉〈(h− 1)(h+ 2)〉
〈h(h− 1)〉2 · 〈υ〉

2

〈υ2〉 . (27)

If λSAD
c /λeAD

c is larger than 1, it means that compared with pairwise temporal networks, higher-order
temporal networks are less conducive to the existence of defectors.

For the four empirical datasets investigated in this study, we extract node activity F (υ) and clique
size p(h) distributions for different ∆t. Then, we use (26) to calculate the ratio between the defection
propagation thresholds for the SAD and eAD models according to these extracted distributions, and
the results are presented in Table 2. In Table 2, the ratio is always larger than 1, meaning that the
defection propagation threshold is greater in the SAD model than in the eAD model, i.e., the higher-
order structure hinders the propagation of defection. That is, the higher-order structure can foster the
evolution of cooperation, which is consistent with our previous result.

5 Conclusion and discussion

The higher-order temporal network is a non-pairwise network model with a time dimension, which can
more accurately portray the real system. Exploring the evolutionary dynamics on higher-order temporal
networks is extremely important for us to understand the correlation between the network structure and
dynamics on top of networks, and then to discover the intrinsic motivation for group cooperation.

In this study, we use four empirical datasets to construct higher-order temporal networks on which
the evolutionary dynamics of multiplayer snowdrift games are investigated. We find that, compared with
higher-order static networks, higher-order temporal networks can favor the evolution of cooperation. By
comparing higher-order and pairwise temporal networks, it is found that higher-order structures can
improve cooperation within a certain parameter range. We further explore the effect of burstiness on
cooperation in terms of both time and participants. Results show that temporal burstiness inhibits the
cooperation, while participants burstiness presents the adverse effect. Moreover, we theoretically model
higher-order and pairwise temporal networks by using SAD and eAD models, respectively, to further
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study the role of higher-order structure in cooperative dynamics on temporal networks. We demonstrate
that higher-order structures can hinder the propagation of defection.

Notably, we only consider a single social relationship network. However, in reality, individuals often
have multiple identities and participate in multiple relationship networks simultaneously, such as virtual
network and real physical contact network and so on [53]. Individuals often behave differently when
they are in different relationship networks, and their benefits depend on the corresponding interactions
in different networks. Multi-layer higher-order temporal networks can more accurately depict multiple
interaction scenarios. Thus, it is meaningful to explore the evolution of group cooperation on multi-layer
higher-order temporal networks.

Moreover, the modeling of time window will lead to the discretization of temporal information, which
is not consistent with the continuous nature of time. In future work, it is of great significance to find
a network modeling method that can reflect the continuous characteristics of interaction time. Overall,
our findings advance the study of evolutionary games on more realistic networks and our work opens a
new approach for exploring the evolution of cooperative behaviors.
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52 Perra N, Gonçalves B, Pastor-Satorras R, et al. Activity driven modeling of time varying networks. Sci Rep, 2012, 2: 469

53 Li X-J, Li C, Li X. The impact of information dissemination on vaccination in multiplex networks. Sci China Inf Sci, 2022,

65: 172202

https://doi.org/10.1088/2632-072X/abcea3
https://doi.org/10.1088/2632-072X/ac12bd
https://doi.org/10.1063/5.0099183
https://doi.org/10.1063/5.0063206
https://doi.org/10.1103/PhysRevE.84.046111
https://doi.org/10.1016/j.amc.2022.127295
https://doi.org/10.1038/s41467-020-16088-w
https://doi.org/10.1109/TEVC.2011.2167682
https://doi.org/10.1073/pnas.0912214107
https://doi.org/10.1109/TCSII.2019.2910893
https://doi.org/10.1007/s11432-014-5067-y
https://doi.org/10.1140/epjds/s13688-018-0140-1
https://doi.org/10.1017/nws.2015.10
https://doi.org/10.1038/s41467-022-30706-9
https://doi.org/10.1038/s42005-022-00845-y
https://doi.org/10.1038/nature03459
https://doi.org/10.1137/19M1242252
https://doi.org/10.1038/359826a0
https://doi.org/10.1103/PhysRevLett.121.228301
https://doi.org/10.1038/srep00469
https://doi.org/10.1007/s11432-020-3076-1

	Introduction
	Model
	Multiplayer snowdrift game
	Higher-order temporal network
	Game process

	Results
	Datasets
	Temporal effect of higher-order networks on the evolution of cooperation (SQ1)
	Impact of higher-order structures on the emergence of cooperation (SQ2)
	Role of burstiness in the evolution of cooperation (SQ3)

	Theoretical analysis
	Higher-order temporal networks (SAD model)
	Pairwise temporal networks (eAD model)
	Ratio between SAD and eAD thresholds

	Conclusion and discussion

