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Abstract In this paper, a unified control framework is proposed to investigate the multicase finite-time

stabilization of stochastic delayed memristor neural networks (SDMNNs). With this framework, stochastic

finite-time stabilization (SFTS), stochastic fixed-time stabilization (SFXTS), and stochastic prescribed-time

stabilization (SPTS) of SDMNNs are achieved. Subsequently, unlike existing results, a bridge between the

proportional-integral (PI) control protocol and the SDMNN is established, allowing the system to perform

SFTS/SFXTS/SPTS without a separately designed controller. By appropriately adjusting the control factors

of the unified framework, appropriate time of settlement estimates is derived. Furthermore, the controller is

improved to the appropriate adaptive controller using the PI control protocol. The SFTS/SFXTS/SPTS of

the system are obtained, and the corresponding upper bounds for the estimation of the settling time functions

are acquired. Finally, the feasibility of the obtained theoretical results is demonstrated by two examples.
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1 Introduction

The memristor is a fundamental component of the implemented circuit that describes the interrelationship
between the circuit and the magnetic flux. The existence of memristors was predicted by Chua [1] in
1971, following the principle of completeness of combinations of circuit components. The existence of
memristors was first verified in 2008 by Hewlett-Packard’s labs when they appeared in nature, which
prompted widespread interest in the scientific field [2]. With the advancement of research, memristors
have the merits of nanoscale size, non-volatility, synapse-like properties, and low energy consumption.
Combining memristors with neural networks (NNs) has the potential for a profound impact in areas such
as image processing [3,4], pattern recognition [5,6], and associative memory [7,8]. As indicated by Guo et
al. [9], n-neuron cell memristor neural networks (MNNs) with time-varying delays dramatically expand

their balance number from 2n to 22n
2+n, which significantly increases memory storage capacity.

Simulating human synapses with memristors makes it possible to transmit information in a neuronal
system with stochastic probability, which is susceptible to external disturbances such as noise, which
deteriorate the system’s performance to the extent that it may render the system more unstable [10–14].
Accordingly, it is significant and challenging to study the dynamical behavior of stochastic memristor
neural networks (SMNNs) in synchronization [15–17], dissipative [18–20], and stability [21–23]. Ren et
al. [15] considered the problem of fixed-time synchronization of SMNNs using two different controllers.
Shen et al. [18] addressed the problem of dissipative synchronization control of Markovian jump MNNs
by factoring in time-varying delays and fragility when implementing gain-scheduling controllers. Chen
et al. [21] investigated the analysis and control of the global generalized exponential stability and global
finite-time stability of adaptive switching systems by establishing Lyapunov-based logical switching rules.
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In practice-related situations, regarding the dynamical behavior of SMNNs, one should focus on their
occurrence in finite-time. However, finite-time control theory still has certain weaknesses; see [24, 25].
Existing finite-time control theories obtain settling time (ST) evaluations, which are always related to
the initial value, when the initial value is enormous or insignificant, the finite-time estimated by us loses
its practical value. To address this problem, Polyakov proposed a class of control algorithms that do not
depend on the original conditions to render an uncertain system globally finite-time stable, referred to as
fixed-time control [26]. Recently, researchers advanced prescribed-time control; see [27, 28]. Prescribed-
time control is not associated with any control parameters; its ST is provided randomly, unlike fixed-time
control, which is constrained by the control parameters.

Notably, Refs. [29, 30] investigated some similarities between the two types of controllers usually de-
signed by studies addressed finite-time and fixed-time control. To better control the cost economy, some
researchers have introduced a harmonized control framework to achieve finite- and fixed-time control
implemented by a system with adjusted control parameters [31, 32]. Moreover, some studies gradually
imported the prescribed-time control to discuss the multicase finite-time control within a unified frame-
work; see [33, 34].

However, most of the currently available control protocols use only ‘current’ feedback. For improving
the stability or consistency performance of NNs [35], utilizing ‘current’ feedback and integrating ‘past’
information and/or ‘future’ trends for stability and consistency protocols emerge as an influential theme
of research. The classical control theory literature [36] describes proportional-integral-derivative (PID)
control and its evolution as broadly available. In PID controllers, the proportional, integral, and differen-
tial terms represent the current feedback, past records, and prospective estimations of the system state,
respectively. However, PID control and its use for stabilization or consistency changes in control systems
have been neglected in the literature. Gu et al. [37] addressed the synchronization problem of nonlin-
ear dynamic complex networks with stochastic coupling for adaptive proportional-integral (PI) control.
Gu et al. [38] aimed to establish a connection between PID control protocols and the synchronization
of complex dynamical networks with directed topologies. Zhao et al. [39] attempted to address output
synchronization and H∞ output synchronization problems for multiple output coupled complex networks
with PD and PI controllers.

Despite the recent work on the finite-time stabilization of stochastic delayed memristor neural networks
(SDMNNs), PID control and unified control frameworks implementing stochastic finite-time stabilization
(SFTS), stochastic fixed-time stabilization (SFXTS), and stochastic prescribed-time stabilization (SPTS)
control have not been considered. Consequently, designing PID control protocols to make SDMNNs stable
by combining multicase finite-time control theory in a unified framework is challenging. This study
aims to combine PI control protocols and multicase finite-time control theory in a unified framework by
utilizing the tools of control theory [40], algebraic graph theory [41], and matrix theory [42] to enable the
stabilization of SDMNNs. The main contributions of the study are as follows.

(1) First, the corresponding linear matrix inequalities (LMIs) are derived by designing controllers that
combine PI control and multicase finite-time control in a unified framework to ensure that SDMNNs
achieve SFTS, SFXTS, and SPTS.

(2) Subsequently, to reduce control costs, the controller is added as adaptive control under the PI
control protocol, and the appropriate updated control rules are designed to obtain the suitable conditions
expressed in the form of LMIs, which lead SDMNNs to achieve SFTS, SFXTS, and SPTS.

(3) Finally, the proposed theoretical results are tested with two examples, which confirm that the
control gain of adaptive PI control is smaller than that without adaptive PI control, resulting in control
cost savings.

The remainder of this paper is structured as follows: Section 2 presents the model and network prepa-
ration. Section 3 introduces the implementation of SFTS, SFXTS, and SPTS for SDMNNs using PI
control and the adaptive PI control. Two simulation examples are presented in Section 4. Finally, the
conclusion is presented in Section 5.

2 Preliminaries and network model

In this section, we propose a mathematical model for SDMNNs and introduce some assumptions, defini-
tions, and lemmas.
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According to Kirchhoff’s current law, we considered a type of DMNNs:

Ciχ̇i(t) =−





n∑

j=1

W1ij +W2ij +
1

Ri



χi(t) +
n∑

j=1

signij W1ijgj (χj(t))

+
n∑

j=1

signij W2ijgj

(

χj(t− h̃(t))
)

,

(1)

where i, j = 1, 2, . . . , n, χi(t) is the capacitor voltage of Ci, Ri is the resistance of the resistor,

signij =

{

−1, i = j,

1, i 6= j,

gj(·) is the activation function, and h̃(t) is the time-varying delay. W1ij ,W2ij are the memristance

between gj(χj(t)) and χj(t), gj(χj(t− h̃(t))) and χj(t− h̃(t)), respectively.
Define χ(t) = (χ1(t), χ2(t), . . . , χn(t))

T, g(χ(t)) = (g1(χ1(t)), g2(χ2(t)), . . . , gn(χn(t)))
T, and g(χ(t −

h̃(t))) = (g1(χ1(t − h̃(t))), g2(χ2(t − h̃(t))), . . . , gn(χn(t − h̃(t))))T. Stochastic noise is unavoidable in
practical neural networks. The entire system (1) can then be reformulated by taking the shape of the
matrices as follows:

dχ(t) =
[

−A(χ(t))χ(t) + S(χ(t))g(χ(t)) +D(χ(t− h̃(t)))g(χ(t− h̃(t)))
]

dt

+ δ(t, χ(t))dω(t),
(2)

where A(χ(t)) = diag{a1(χ1(t)), a2(χ2(t)), . . . , an(χn(t))} with ai(χi(t)) > 0, S(χ(t)) = sij(χj(t))n×n,

D(χ(t)) = dij(χj(t))n×n, h̃(t) is the time-varying delay and satisfies 0 6 h̃(t) 6 h̃,
˙̃
h(t) 6 h̃⋆, h̃, h̃⋆ are

positive constants. The parameters related to the memristor state should satisfy

ai (χi(t)) =
1

Ci





n∑

j=1

(W1ij(t) +W2ij(t)) +
1

Ri



 =

{

âi, |χi(t)| 6 Ti,

ǎi, |χi(t)| > Ti,

sij (χj(t)) =
signij
Ci

W1ij =

{

ŝij , |χi(t)| 6 Ti,

šij , |χi(t)| > Ti,

dij

(

χj(t− h̃(t))
)

=
signij
Ci

W2ij =







d̂ij ,
∣
∣
∣χi(t− h̃(t))

∣
∣
∣ 6 Ti,

ďij ,
∣
∣
∣χi(t− h̃(t))

∣
∣
∣ > Ti,

where Ti > 0 are switching jumps, and âi, ǎi, ŝij , šij , d̂ij , ďij are known constants. δ : R+ × R
n → R

n

denote the noise function matrix. w(t) = (w1(t), w2(t), . . . , wn(t))
T is a Brownian motion defined on

(Ω,F , {Ft}t>0,P ) satisfying E{dw(t)} = 0, E{dw(t)2} = dt. The initial values of the system (2) are

given by χi(t) = φi(t) ∈ C([−h̃, 0],R).

Assumption 1. The neuron activation function gj(·) is bounded, and there exist positive number
lj , j = 1, 2, . . . , n, such that

|gj(a1)− gj(a2)| 6 lj |a1 − a2|
holds for all a1, a2 ∈ R

n, a1 6= a2.

Assumption 2. The noise disturbance function δ(t, χ(t)) with δ(0, 0) = 0 satisfies the uniform Lipschitz
continuity conditions,

|δT(t, χ(t))δ(t, χ(t))| 6 βχT(t)χ(t),

where β is a positive constant.

Assumption 3. By allowing 0 < ̺ < 1 and Φ > 0, a continuous function g : [0,∞) → [0,∞) with
g(0) > 0 exists for an arbitrary 0 6 υ 6 α, such that

g(α)− g(υ) 6 −Φ

∫ α

υ

(g(s))̺ds.
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Let ai = max{âi, ǎi}, ai = min{âi, ǎi}, sij = max{ŝij , šij}, sij = min{ŝij , šij}, dij = max{d̂ij , ďij},
dij = min{d̂ij , ďij}, ài = ai+ai

2 , ái =
ai−ai

2 , s̀ij =
sij+sij

2 , śij =
sij−sij

2 , d̀ij =
dij+dij

2 , d́ij =
dij−dij

2 .

From differential inclusion theories and some interval matrix transformations, the SDMNNs (2) can be
equivalently rewritten as

dχ(t) =
[

−
(

À+GAΘ1(t)FA

)

χ(t)+
(

S̀ +GSΘ2(t)FS

)

g(χ(t))

+
(

D̀ +GDΘ3(t)FD

)

g(χ(t− h̃(t)))
]

dt+ δ(t, χ(t))dω(t),
(3)

where À = diag{à1, à2, . . . , àn}, S = (s̀ij)n×n, D = (d̀ij)n×n, γi ∈ R
n denotes the column vector with the

ith elements to be 1 and others to be 0; GA = diag(
√
á1γ1, . . . ,

√
ánγn), FA = diag(

√
á1γ1, . . . ,

√
ánγn)

T,
GS = (

√
ś11γ1, . . . ,

√
ś1nγ1, . . . ,

√
śn1γn, . . . ,

√
śnnγn), FS = (

√
ś11γ1, . . . ,

√
ś1nγ1, . . . ,

√
śn1γn, . . . ,√

śnnγn)
T, GD = (

√

d́11γ1, . . . ,
√

d́1nγ1, . . . ,
√

d́n1γn, . . . ,
√

d́nnγn), FD = (
√

d́11γ1, . . . ,
√

d́1nγ1, . . . ,√

d́n1γn, . . . ,
√

d́nnγn)
T, Θℵ(t) = {diag{θℵ11(t), . . . , θℵ1n(t), . . . , θℵn1(t), . . . , θℵnn(t)} : |θij(t)| 6 1,ℵ = 1, 2,

3}. Evidently, ΘT
ℵ (t)Θℵ(t) 6 I.

Subsequently, the stochastic nonlinear system of system (3) can be expressed as

dχ(t) = g(t, χ(t))dt+ δ(t, χ(t))dω(t), (4)

where ω(t) is the Brownian motion and it is clearly E{dw(t)} = 0. L is an operator that is defined as

L V (t, χ(t)) =
∂V (t, χ(t))

∂t
+ Vχ(t, χ(t))g(t, χ(t))

+
1

2
trace

[

δT(t, χ(t))

(
∂2V (t, χ(t))

∂χi∂χj

)

δ(t, χ(t))

]

,

(5)

where Vχ(t, χ(t)) = (∂V (t,χ(t))
∂χ1

, ∂V (t,χ(t))
∂χ2

, . . . , ∂V (t,χ(t))
∂χn

)T.

Definition 1. The system achieves multicase stochastic finite-time stability (MCSFTS) if both of the
following criteria are established:

(i) The initial value of the system (3) is probabilistically stochastic stable.

(ii) The initial value of the system (3) is stochastically finite-time (or fixed-time, or prescribed-time)
convergent if ST is correlated with initial conditions and controller factors (or with controller factors only,
or without respect to any initial conditions or controller factors other than ST) such that

lim
t→T

E ‖χ(t)‖2 = 0, (6)

and E ‖χ(t)‖2 ≡ 0, for t > T .

Lemma 1 ([43]). If V (t, χ(t)) : Rn → R
+ is a C-regular regarding χ(t) : [0,+∞) → R

n on arbitrary
tight interval in [0,+∞) that is, it is also strictly continuous, such that

ζ1(‖χ(t)‖) 6 V (χ(t)) 6 ζ2(‖χ(t)‖),

L V (χ(t)) 6 −P(V (χ(t))),

where ζ1 and ζ2 are K∞ class functions and P is a positive real numbers with P(ǫ) > 0, for all ǫ > 0 .

(i) If E{T†} = E{
∫ V (χ(0))

0
1

P(ǫ)dǫ} is finite, the system (3) stabilizes stochastically at finite time and

the ST is E{T†}.
(ii) If T‡ =

∫ +∞

0
1

P(ǫ)dǫ is finite, the system (3) stabilizes stochastically at fixed time and the ST is T‡.

Lemma 2 ([44]). If a Lyapunov function V (t) : Rn → R
+∪{0} is a positive radially unbounded function

that satisfies the following requirements:

L V (t) 6 −pV η1(t)− qV η2(t),
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where p, q > 0, and 0 6 η1 < 1, η2 > 1, hence, the initial value of the system (3) is probabilistically stable
at a fixed time, and the ST is

T‡ =
1

q

(
q

p

) 1−η1
η2−η1

(
1

1− η1
+

1

η2 − 1

)

.

Moreover, if

L V (t) 6 −T‡

T§
(pV η1(t) + qV η2(t)) ,

where p, q > 0, and 0 6 η1 < 1, η2 > 1, hence, the initial value of the system (3) is probabilistically stable
at a prescribed time, and the ST is T§.

Lemma 3 ([45]). Given yi, i = 1, 2, . . . , n, 0 < η1 6 1 and η2 > 1, the inequalities below are satisfied:

n∑

i=1

yη1

i >

(
n∑

i=1

yi

)η1

,

n∑

i=1

yη2

i > n1−η2

(
n∑

i=1

yi

)η2

.

Lemma 4 (Schur complement [46]). If a symmetric matrix S = ST = [S11 S12

∗ S22
] is available, where

S11 ∈ R
r×r, the below requirements are equivalent:

(1) S < 0,
(2) S11 < 0, S22 − ST

12S−1
11 S12 < 0, and

(3) S22 < 0, S11 − S12S−1
22 ST

12 < 0.

Lemma 5 ([47]). For some matrices Q = QT, H, and E that satisfy

Q+HΘ(t)E + ETΘT(t)HT < 0,

if there exists ξ > 0 with Θ(t)TΘ(t) 6 I,

Q+ ξ−1HHT + ξETE < 0.

3 Main results

3.1 Multicase stochastic finite-time stability with PI control

In this subsection, a control PI protocol (7) is designed to enable SDMNNs to achieve MCSFTS. The
control protocol is as follows:

U(t) = −KPχ(t)−KFitsign(χ(t))|χ(t)|ϑ −KFixsign(χ(t))|χ(t)|ν

−KI

(∫ T

t−h̃(t) χ(s)
TMχ(s)ds

) 1+ν
2
(

M−1|χ(t)|
‖χ(t)‖2

)

,
(7)

where KP ,KFit,KFix,KI are control strength matrices, M is a real matrix, the real number ϑ, ν satisfies
ϑ, ν > 0, and the sign (·) is the signum function.

Remark 1. In the controller U(t), KP is employed to ensure that the current system reaches stability
in the Lyapunov sense, KI eliminates the influence of the time-varying delay of the system, adjusting
KFix keeps the system (3) is SFTS, adjusting KFit guarantees that the system is SFXTS, while adjusting
KFit, KFix to maintain the system is SPTS.

Remark 2. To further enhance the stability performance of SDMNNs, the state variables are dependent
on ‘current’ feedback and correlated with ‘past’ information. Therefore, PI control strategies have at-
tracted considerable attention and an impressive number of research results have been published [37–39].
However, compared with the existing studies, most of the authors consider the coupling structure in the
network to implement the PI control strategy and have not considered constructing an integral inequality
to implement the PI control strategy. Therefore, it is fascinating to investigate the MCSFTS with PI
control protocols in this study.
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Theorem 1. Given the conditions of Assumptions 1–3, if there exist some real matrices YP , YFit, a
symmetric positive matrix Z, and some scalars ξ1 > 0, ξ2 > 0, ξ3 > 0, ξ4 > 0, ξ5 > 0, the following LMI
holds: 





Ξ1 0 Ξ2

∗ −
(

1− h̃⋆
)

ZT − 2YFit Ξ3

∗ ∗ Ξ4






< 0, (8)

where

Ξ1 =− 2YP − 2ÀZ + ξ1GAG
T
A + ξ2S̀S̀

T + ξ3GSG
T
S + ξ4D̀D̀T

+ ξ5GDGT
D + βZT + ZT + 2YFit,

Ξ2 =(ZFT
A , ZLT, ZLTFT

S , 0, 0),

Ξ3 =(0, 0, 0, ZLT, ZLTFT
D),

Ξ4 =diag(−ξ1I,−ξ2I,−ξ3I,−ξ4I,−ξ5I).

Subsequently, the controller factors can be devised as KP = YPZ
−1,KFit = YFitZ

−1,KT
FixKFix >

0,KT
I KI > 0. Additionally, for the system (3) to achieve SFTS, SFXTS, or SPTS by the choice of

the controller (7) control factors, ST is estimated as follows:







SFTS : E{T1} 6
E{V (χ(0))}

1−ϑ
2

̟(1−ϑ) , 0 6 ϑ < 1,KFix = diag (0, . . . , 0)
︸ ︷︷ ︸

n

,KI = diag (0, . . . , 0)
︸ ︷︷ ︸

n

,

SFTS : E{T2} 6
ln(1+

̟1
̟

E{V (χ(0))}
1−ϑ
2 )

̟1(1−ϑ) , 0 6 ϑ < 1, ν = 1,

SFXTS : T3 6
1

(2n)
1−ν
2 ̟1

(

(2n)
1−ν
2 ̟1

̟

) 1−ϑ
ν−ϑ (

1
1−ϑ

+ 1
ν−1

)

, 0 6 ϑ < 1, ν > 1,

SPTS : T4 6 TPre, 0 6 ϑ < 1, ν > 1,KFit = KFit
T3

TPre
,KFix = KFix

T3

TPre
,

where TPre < T3 is available at an arbitrary given time.

Remark 3. One of the main innovations of this paper is that the complexity of the Lyapunov function is
decreased by constructing the integral term corresponding to the controller gain KFit with Assumption 3
in the process of proving Theorem 1. Therefore, the inequality (8) can be calculated for the control
gain KP and for the control gain KFit. In [31–34], the control gains of both KFit and KFix were tuned
depending on the actual system to make the system achieve SFTS, SFXTS, and SPTS, respectively.
Therefore, it follows from Theorem 1 that the control gains KFix and KI must be adjusted in a unified
control framework such that the system achieves MCSFTS and reduces the cost of some controls.

Remark 4. Theorem 1 achieved the MCSFTS of SDMNN in a new unified framework. By suitably
adjusting the controller parameters, the system (3) was implemented with SFTS (cf. E{T1} and E{T2}),
SFXTS (cf. T3), and SPTS (cf. T4). Evidently, E{T1} and E{T2} are linked to the initial conditions
and the controller parameters, whereas T3 relies solely on the controller parameters, and T4 can be freely
prescribed.
Proof. The candidate for constructing the below Lyapunov-Krasovskii functional is

V (t) = χT(t)Mχ(t) +

∫ T

t−h̃(t)

χT(s)Mχ(s)ds. (9)

Subsequently, by employing the Itô-formula, we obtain the stochastic derivative of V (t) together with
the trajectories of system (3) as follows:

dV (t) = L V (t)dt+ 2χT(t)Mδ(t, χ(t))dω(t), (10)

where
L V (t) =2χT(t)M

[

−
(

À+GAΘ1(t)FA

)

χ(t) +
(

S̀ +GSΘ2(t)FS

)

g(χ(t))

+
(

D̀ +GDΘ3(t)FD

)

g(χ(t− h̃(t))) + U(t)
]

dt+ trace
[
δT (t, χ(t))M

× δ (t, χ(t))] dt+ χT(t)Mχ(t)−
(

1− h̃⋆
)

χT(t− h̃(t))Mχ(t− h̃(t)).

(11)
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From Assumption 1 and Lemma 5, we have

2χT(t)M
((

S̀ +GSΘ2(t)FS

)

g(χ(t))
)

6ξ2χ
T(t)MS̀S̀TMχ(t) + ξ−1

2 χT(t)LTLχ(t)

+ ξ3χ
T(t)MGSG

T
SMχ(t) + ξ−1

3 χT(t)LTFT
S FSLχ(t),

(12)

2χT(t)M
((

D̀ +GDΘ3(t)FD

)

g(χ(t− h̃(t)))
)

6ξ4χ
T(t)MD̀D̀TMχ(t)

+ ξ−1
4 χT(t− h̃(t))LTLχ(t− h̃(t))

+ ξ5χ
T(t)MGDGT

DMχ(t)

+ ξ−1
5 χT(t− h̃(t))LTFT

DFDLχ(t− h̃(t)).

(13)

From Assumption 2, we obtain

trace
[
δT (t, χ(t))Mδ (t, χ(t))

]
6 βχT(t)Mχ(t). (14)

From Assumption 3, there exists a Φ > 0. We give

2KFit

(

χT(t)Mχ(t)− χT(t− h̃(t))Mχ(t− h̃(t))
)

6 −2KFitΦ

∫ T

t−h̃(t)

(
χT(s)Mχ(s)

) 1+ϑ
2 ds. (15)

Therefore,

L V (t) 6χT(t)Γ11χ(t) + χT(t− h̃(t))Γ22χ(t− h̃(t))

− 2

[

(
χT(t)MKFitχ(t)

) ϑ+1

2 +
(
χT(t)MKFixχ(t)

) ν+1

2

+ KI

(
∫ T

t−h̃(t)

χT(s)Mχ(s)ds

) 1+ν
2



− 2KFitΦ

∫ T

t−h̃(t)

(
χT(s)Mχ(s)

) 1+ϑ
2 ds,

(16)

where

Γ11 =− 2MKP − 2MÀ+ ξ1MGAG
T
AM + ξ−1

1 FT
AFA + ξ2MS̀S̀TM + ξ−1

2 LTL+ ξ3MGSG
T
SM

+ ξ−1
3 LTFT

S FSL+ ξ4MD̀D̀TM + ξ5MGDGT
DM + βM +M + 2MKFit,

Γ22 =− (1− h̃⋆)M + ξ−1
4 LTL+ ξ−1

5 LTFT
DFDL− 2MKFit.

From Schur’s lemma, inequality (8) is equivalent to pre- and post-multiplying the aforementioned
Γ11,Γ22 by M = Z−1, and we have

L V (t) 6− 2

[

(
χT(t)MKFitχ(t)

) ϑ+1

2 +
(
χT(t)MKFixχ(t)

) ν+1

2

+ KI

(
∫ T

t−h̃(t)

χT(s)Mχ(s)ds

) 1+ν
2



− 2KFitΦ

∫ T

t−h̃(t)

(
χT(s)Mχ(s)

) 1+ϑ
2 ds.

(17)

Case 1: 0 6 ϑ < 1, KFix = diag (0, . . . , 0)
︸ ︷︷ ︸

n

, KI = diag (0, . . . , 0)
︸ ︷︷ ︸

n

. From Lemma 3, we obtain

∫ T

t−h̃(t)

(
χT(s)Mχ(s)

) 1+ϑ
2 ds >

(
∫ T

t−h̃(t)

χT(s)Mχ(s)ds

) 1+ϑ
2

. (18)

Letting ̟ = min{ρ1, ρ2}, ρ1 =
√

λmin(KT
FitKFit), ρ2 =

√

λmin((KFitΦ)T(KFitΦ)), we get

E{L V (t)} 6− 2E

{

(
χT(t)MKFitχ(t)

)ϑ+1

2 +KFitΦ

∫ T

t−h̃(t)

(
χT(s)Mχ(s)

) 1+ϑ
2 ds

}

6− 2̟E {V (t)}
1+ϑ
2 .

(19)
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From Lemma 1, the system (3) is SFTS with a PI controller (7), and the ST is

E{T1} 6
E{V (χ(0))} 1−ϑ

2

̟(1− ϑ)
.

Case 2: 0 6 ϑ < 1, ν = 1. It has

E{L V (t)} 6− 2E

{

(
χT(t)MKFitχ(t)

)ϑ+1
2 +

(
χT(t)MKFixχ(t)

)

+KI

(
∫ T

t−h̃(t)

χT(s)Mχ(s)ds

)

+ KFitΦ

∫ T

t−h̃(t)

(
χT(s)Mχ(s)

) 1+ϑ
2 ds

}

6− 2̟E {V (t)}
1+ϑ
2 − 2̟1E {V (t)} ,

(20)

where ̟1 = min{ρ3, ρ4}, ρ3 =
√

λmin

(
KT

FixKFix

)
, and ρ4 =

√

λmin

(
KT

I KI

)
.

From Lemma 1, the system (3) is SFTS with a PI controller (7), and the ST is

E{T2} 6
ln
(
1 + ̟1

̟
E{V (χ(0))} 1−ϑ

2

)

̟1(1− ϑ)
.

Case 3: 0 6 ϑ < 1, ν > 1. From Lemma 3, we deduce that

(
χT(t)MKFixχ(t)

) ν+1
2 +KI

(
∫ T

t−h̃(t)

χT(s)Mχ(s)ds

) 1+ν
2

> (2n)
1−ν
2 ̟1V (t)

1+ν
2 . (21)

Consequently,

E{L V (t)} 6− 2E

{

(
χT(t)MKFitχ(t)

) ϑ+1

2 +
(
χT(t)MKFixχ(t)

) ν+1

2

+KI

(
∫ T

t−h̃(t)

χT(s)Mχ(s)ds

) 1+ν
2

+ KFitΦ

∫ T

t−h̃(t)

(
χT(s)Mχ(s)

) 1+ϑ
2 ds

}

6− 2̟E {V (t)}
1+ϑ
2 − 2(2n)

1−ν
2 ̟1E {V (t)}

1+ν
2 .

(22)

From Lemma 1, the system (3) reaches the SFXTS with the PI controller (7), and the ST is

T3 6
1

(2n)
1−ν
2 ̟1

(

(2n)
1−ν
2 ̟1

̟

) 1−ϑ
ν−ϑ (

1

1− ϑ
+

1

ν − 1

)

.

Case 4: 0 6 ϑ < 1, ν > 1, KFit = KFit
T3

TPre
, KFix = KFix

T3

TPre
, where 0 < TPre < T3 is a constant that

can be prescribed randomly. Like Case 3, one has

E{L V (t)} 6 −2
T3

TPre

(

̟E {V (t)}
1+ϑ
2 + (2n)

1−ν
2 ̟1E {V (t)}

1+ν
2

)

. (23)

From Lemma 1, the system (3) reaches the SPTS with the PI controller (7), and the ST is

T4 6 TPre.
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3.2 Multicase stochastic finite-time stability with adaptive PI control

In this subsection, we describe the design of an adaptive state feedback controller for the SDMNNs (3)
to enable the system to achieve MCSFTS. The aforementioned controller U(t) is designed as

U(t) = −KP (t)χ(t)−KFitsign(χ(t))|χ(t)|ϑ −KFixsign(χ(t))|χ(t)|ν

−KI(
∫ T

t−h̃(t)
χT(s)Mχ(s)ds)

1+ν
2 (M

−1|χ(t)|
‖χ(t)‖2 ),

(24)

where KP (t) is the adaptive adjustment of the feedback gain, and the other parameters are defined using
the same controller (7). The updated law is presented,

dKP (t) =
{
χT(t)χ(t)−K1sign(KP (t)−K⋄)|KP (t)−K⋄|ϑ

−K2sign(KP (t)−K⋄) |KP (t)−K⋄|ν} dt.
(25)

Remark 5. Typically, the calculated control gain of the feedback controller will be much larger than
the actual required control gain because of the conservative nature of the theory, while the adaptive
feedback controller can effectively avoid the inflated control gain and economize certain control costs.
Compared with the existing studies [15,30,45], most scholars only consider the adaptive control strategy
for proportional terms and have not considered the adaptive control strategy for PI terms. Therefore,
the designed adaptive PI control strategy has better applicability and comprehensiveness for handling
multicase stochastic finite-time stabilization of discontinuous SDMNNs.

Subsequently, the MCSFTS criterion is obtained by utilizing the adaptive controller.

Theorem 2. Given the conditions of Assumptions 1–3, if there exist some real matrices Y⋄, YFit, a
symmetric positive matrix Z, and some scalars ξ1 > 0, ξ2 > 0, ξ3 > 0, ξ4 > 0, ξ5 > 0, the following LMI
holds: 





Ξ⋄
1 0 Ξ2

∗ −
(

1− h̃⋆
)

ZT − 2YFit Ξ3

∗ ∗ Ξ4






< 0, (26)

where

Ξ⋄
1 =2Y⋄ − 2ÀZ + ξ1GAG

T
A + ξ2S̀S̀

T + ξ3GSG
T
S + ξ4D̀D̀T

+ ξ5GDGT
D + βZT + ZT + 2YFit,

Ξ2 =(ZFT
A , ZLT, ZLTFT

S , 0, 0),

Ξ3 =(0, 0, 0, ZLT, ZLTFT
D ),

Ξ4 =diag(−ξ1I,−ξ2I,−ξ3I,−ξ4I,−ξ5I).

Subsequently, the controller factors can be devised as K⋄ = Y⋄Z
−1,KFit = YFitZ

−1,KT
FixKFix > 0,KT

I KI

> 0,KT
1 K1 > 0,KT

2 K2 > 0. Additionally, for the system (3) to achieve SFTS, SFXTS, or SPTS by the
choice of the controller (24) control parameters, ST is estimated as follows:







SFTS : E{T1} 6
E{V (χ(0))}

1−ϑ
2

ˆ̟ (1−ϑ) , 0 6 ϑ < 1,KFix = diag (0, . . . , 0)
︸ ︷︷ ︸

n

,

KI = diag (0, . . . , 0)
︸ ︷︷ ︸

n

,K2 = diag (0, . . . , 0)
︸ ︷︷ ︸

n

,

SFTS : E{T2} 6
ln(1+

ˆ̟ 1
ˆ̟

E{V (χ(0))}
1−ϑ
2 )

ˆ̟ 1(1−ϑ) , 0 6 ϑ < 1, ν = 1,

SFXTS : T3 6 1

(2n)
1−ν
2 ˆ̟ 1

(

(2n)
1−ν
2 ˆ̟ 1

ˆ̟

) 1−ϑ
ν−ϑ (

1
1−ϑ

+ 1
ν−1

)

, 0 6 ϑ < 1, ν > 1,

SPTS : T4 6 T̂Pre, 0 6 ϑ < 1, ν > 1,KFit = KFit
T3

TPre
,KFix = KFix

T3

TPre
.

Remark 6. Theorem 2 differs from Theorem 1 in that the control gain K⋄ is restrained in inequality
(26), which is the control gain function KP (t) approximation value while increasing the control gain K1

and K2 for fine-tuning.



Wei F, et al. Sci China Inf Sci December 2023 Vol. 66 222207:10

Proof. Selecting Lyapunov functional candidates

V (t) =χT(t)Mχ(t) +

∫ T

t−h̃(t)

χT(s)Mχ(s)ds+ (KP (t)−K⋄)
T
M (KP (t)−K⋄) . (27)

Following the identical line of Theorem 1 and computing the derivative of V (t) along system (3), we
obtain

L V (t) 6χ(t)TΓ′
11χ(t) + χT(t− h̃(t))Γ22χ(t− h̃(t))

− 2

[

(
χT(t)MKFitχ(t)

) ϑ+1
2 +

(
χT(t)MKFixχ(t)

) ν+1
2

+ KI

(
∫ T

t−h̃(t)

χT(s)Mχ(s)ds

) 1+ν
2



− 2KFitΦ

∫ T

t−h̃(t)

(
χT(s)Mχ(s)

) 1+ϑ
2 ds

+ 2 (KP (t)−K⋄)
T
MK̇P (t)

6χT(t)Γ⋄
11χ(t) + χT(t− h̃(t))Γ22χ(t− h̃(t))

− 2χT(t)M (KP (t)−K⋄)χ(t)− 2

[

(
χT(t)MKFitχ(t)

) ϑ+1

2

+
(
χT(t)MKFixχ(t)

) ν+1

2 + KI

(
∫ T

t−h̃(t)

χT(s)Mχ(s)ds

) 1+ν
2





− 2KFitΦ

∫ T

t−h̃(t)

(
χT(s)Mχ(s)

) 1+ϑ
2 ds+ 2 (KP (t)−K⋄)

T
M
{
χT(t)χ(t)

−K1sign(KP (t)−K⋄)|KP (t)−K⋄|ϑ − K2sign(KP (t)−K⋄)|KP (t)−K⋄|ν}
6χT(t)Γ⋄

11χ(t) + χT(t− h̃(t))Γ22χ(t− h̃(t))

− 2

[

(
χT(t)MKFitχ(t)

) ϑ+1

2
(
χT(t)MKFixχ(t)

) ν+1

2

+KI

(
∫ T

t−h̃(t)

χT(s)M χ(s)ds

) 1+ν
2



− 2KFitΦ

∫ T

t−h̃(t)

(
χT(s)Mχ(s)

) 1+ϑ
2 ds

+ 2 (KP (t)−K⋄)
T
M {K1sign(KP (t)−K⋄)| KP (t)−K⋄|ϑ

− K2sign(KP (t)−K⋄)|KP (t)−K⋄|ν} , (28)

where

Γ′
11 =− 2MKP (t)− 2MÀ+ ξ1MGAG

T
AM + ξ−1

1 FT
AFA + ξ2MS̀S̀TM + ξ−1

2 LTL

+ ξ3MGSG
T
SM + ξ−1

3 LTFT
S FSL+ ξ4MD̀D̀TM + ξ5MGDGT

DM + βM +M + 2MKFit,

Γ⋄
11 =− 2MK⋄ − 2MÀ+ ξ1MGAG

T
AM + ξ−1

1 FT
AFA + ξ2MS̀S̀TM + ξ−1

2 LTL

+ ξ3MGSG
T
SM + ξ−1

3 LTFT
S FSL+ ξ4MD̀D̀TM + ξ5MGDGT

DM + βM +M + 2MKFit.

From inequality (26), we deduce that

L V (t) 6− 2

[

(
χT(t)MKFitχ(t)

)ϑ+1
2 +

(
χT(t)MKFixχ(t)

) ν+1
2

+ KI

(
∫ T

t−h̃(t)

χT(s)Mχ(s)ds

) 1+ν
2



− 2KFitΦ

∫ T

t−h̃(t)

(
χT(s)Mχ(s)

) 1+ϑ
2 ds

+ 2 (KP (t)−K⋄)
T
M
{
K1sign(KP (t)−K⋄)|KP (t)−K⋄|ϑ

−K2sign(KP (t)− K⋄)|KP (t)−K⋄|ν} .

(29)
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Case 1: 0 6 ϑ < 1, KFix = diag (0, . . . , 0)
︸ ︷︷ ︸

n

, KI = diag (0, . . . , 0)
︸ ︷︷ ︸

n

, K2 = diag (0, . . . , 0)
︸ ︷︷ ︸

n

. From Lemma 3,

we obtain

(KP (t)−K⋄)
T M (K1sign(KP (t)−K⋄) |KP (t)−K⋄|ϑ

)

> K1

(

(KP (t)−K⋄)
T
M |KP (t)−K⋄|

) 1+ϑ
2

.
(30)

Letting ˆ̟ = min{ρ1, ρ2, ρ̂1}, ρ̂1 =
√

λmin

(
KT

1 K1

)
, we get

E {L V (t)} 6− 2E

{
(
χT(t)MKFitχ(t)

)ϑ+1

2 + KFitΦ

∫ T

t−h̃(t)

(
χT(s)Mχ(s)

) 1+ϑ
2 ds

+ K1

(

(KP (t)−K⋄)
T
M |KP (t)−K⋄|

) 1+ϑ
2

}

6− 2 ˆ̟E {V (t)}
1+ϑ
2 .

(31)

From Lemma 1, the system (3) is SFTS with the adaptive PI controller (24), and the ST is

E{T1} 6
E{V (χ(0))} 1−ϑ

2

ˆ̟ (1− ϑ)
.

Case 2: 0 6 ϑ < 1, ν = 1. It has

E{L V (t)} 6− 2E

{

(
χT(t)MKFitχ(t)

)ϑ+1

2 +
(
χT(t)MKFixχ(t)

)

+KI

(
∫ T

t−h̃(t)

χT(s)Mχ(s)ds

)

+KFitΦ

∫ T

t−h̃(t)

(
χT(s)Mχ(s)

) 1+ϑ
2 ds

+K1

(

(KP (t)−K⋄)
T
M |KP (t)−K⋄|

) 1+ϑ
2

+K2

(

(KP (t)−K⋄)
T
M |KP (t)−K⋄|

)
}

6− 2 ˆ̟E {V (t)}
1+ϑ
2 − 2 ˆ̟ 1E {V (t)} , (32)

where ˆ̟ 1 = min{ρ3, ρ4, ρ̂2}, ρ̂2 =
√

λmin

(
KT

2 K2

)
.

From Lemma 1, the system (3) is SFTS with the adaptive PI controller (24), and the ST is

E{T2} 6
ln(1 + ˆ̟ 1

ˆ̟ E{V (χ(0))} 1−ϑ
2 )

ˆ̟ 1(1− ϑ)
.

Case 3: 0 6 ϑ < 1, ν > 1. From Lemma 3, we deduce the following:

(
χT(t)MKFixχ(t)

) ν+1

2 +KI

(
∫ T

t−h̃(t)

χT(s)Mχ(s)ds

) 1+ν
2

+K2

(

(KP (t)−K⋄)
T
M |KP (t)−K⋄|

) 1+ν
2

> (2n)
1−ν
2 ˆ̟ 1V (t)

1+ν
2 .

(33)
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Hence,

E{L V (t)} 6− 2E

{

(
χT(t)MKFitχ(t)

) ϑ+1

2 +
(
χT(t)MKFixχ(t)

) ν+1

2

+KI

(
∫ T

t−h̃(t)

χT(s)Mχ(s)ds

) 1+ν
2

+KFitΦ

∫ T

t−h̃(t)

(
χT(s)Mχ(s)

) 1+ϑ
2 ds

+K1

(

(KP (t)−K⋄)
T
M |KP (t)−K⋄|

) 1+ϑ
2

+K2

(

(KP (t)−K⋄)
T
M |KP (t)−K⋄|

) 1+ν
2

}

6− 2 ˆ̟E {V (t)}
1+ϑ
2 − 2(2n)

1−ν
2 ˆ̟ 1E {V (t)}

1+ν
2 .

(34)
From Lemma 1, the system (3) reaches the SFXTS with the adaptive PI controller (24), and the ST is

T3 6
1

(2n)
1−ν
2 ˆ̟ 1

(

(2n)
1−ν
2 ˆ̟ 1

ˆ̟

) 1−ϑ
ν−ϑ (

1

1− ϑ
+

1

ν − 1

)

.

Case 4: 0 6 ϑ < 1, ν > 1, KFit = KFit
T3

TPre
, KFix = KFix

T3

TPre
, where 0 < TPre < T3 is a constant that

can be prescribed randomly. Like Case 3, one has

E{L V (t)} 6− 2
T3

TPre

(

ˆ̟E {V (t)}
1+ϑ
2 + (2n)

1−ν
2 ˆ̟ 1E {V (t)}

1+ν
2

)

. (35)

From Lemma 1, the system (3) reaches SPTS with the adaptive PI controller (24), and the ST is

T4 6 TPre.

4 Numerical simulations

In this section, two examples are presented to demonstrate the multicase stochastic finite-time stabiliza-
tion method for SDMNNs.

Example 1. Consider the SDMNNs (3) with the following parameters:

A(χ(t)) =

[

a11 (χ1(t)) 0

0 a22 (χ2(t))

]

, S(χ(t)) =

[

b11 (χ1(t)) b12 (χ1(t))

b21 (χ2(t)) b22 (χ2(t))

]

, g(χ(t)) =

[

tanh (χ1(t))

tanh (χ2(t))

]

,

D(χ(t− h̃(t))) =




d11

(

χ1(t− h̃(t))
)

d12

(

χ1(t− h̃(t))
)

d21

(

χ2(t− h̃(t))
)

d22

(

χ2(t− h̃(t))
)



 , g(χ(t− h̃(t))) =




tanh

(

χ1(t− h̃(t))
)

tanh
(

χ2(t− h̃(t))
)



 ,

where

a11(χ1(t)) =

{

1.0, |χ1(t)| < 1,

1.1, |χ1(t)| > 1,
a22(χ2(t)) =

{

1.1, |χ2(t)| < 1,

1.0, |χ2(t)| > 1,

b11(χ1(t)) =

{

1.9, |χ1(t)| < 1,

2.0, |χ1(t)| > 1,
b12(χ2(t)) =

{

−0.1, |χ2(t)| < 1,

−0.08, |χ2(t)| > 1,

b21(χ1(t)) =

{

−4.8, |χ1(t)| < 1,

−4.7, |χ1(t)| > 1,
b22(χ2(t)) =

{

3.0, |χ2(t)| < 1,

3.1, |χ2(t)| > 1,

d11(χ1(t− h̃(t))) =

{

−1.6, |χ1(t− h̃(t))| < 1,

−1.5, |χ1(t− h̃(t))| > 1,
d12(χ2(t− h̃(t))) =

{

−0.12, |χ2(t− h̃(t))| < 1,

−0.10, |χ2(t− h̃(t))| > 1,

d21(χ1(t− h̃(t))) =

{

0.45, |χ1(t− h̃(t))| < 1,

0.50, |χ1(t− h̃(t))| > 1,
d22(χ2(t− h̃(t))) =

{

−2.6, |χ2(t− h̃(t))| < 1,

−2.4, |χ2(t− h̃(t))| > 1.
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Figure 1 (Color online) The system (3) without the controller. (a) Phase plane diagram; (b) state trajectories diagram.
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Figure 2 (Color online) General diagram of state trajectories of the system (3) with the PI controller (7).

The time-varying delay was h̃(t) = ( eT

1+eT ). The noise function matrix is expressed as

δ(t, χ(t)) =

[

0.5|χ1(t)| 0

0 0.5|χ2(t)|

]

.

Subsequently, we can obtain l1 = l2 = 1, Φ = I. The initial condition of the state trajectories is set as
χ(s) = [1.5,−0.5]T, s ∈ [−1, 0]. Figure 1(a) shows state trajectories of the phase plane of the system (3),
which can be observed to generate chaos in the absence of a control condition. Figure 1(b) shows a graph
of the state trajectories of the system (3), which reveals that the system is oscillatory; that is, the system
(3) is unstable under uncontrolled application.

The feasible solution calculated by MATLAB toolbox according to LMI (8) is as follows:

Z =

[

0.3201 0.0000

0.0000 0.3080

]

,M =

[

3.1239 0.0000

0.0000 3.2468

]

, YP =

[

6.9592 −8.5454

−8.5454 34.5059

]

, YFit =

[

0.7747 0.0000

0.0000 0.7777

]

,

KP =

[

21.7402 −27.7452

−26.6953 112.0334

]

,KFit =

[

2.4200 0.0000

0.0000 2.5250

]

,KI =

[

0.85 0.00

0.00 0.85

]

,KFix =

[

0.0/2.5 0.0

0.0 0.0/2.5

]

,

ξ1 = ξ2 = ξ3 = ξ4 = ξ5 = 1.7094.

If the terms of Theorem 1 are satisfied, the system (3) achieves MCSFTS under the PI controller (7).
As shown in Figure 2, the state trajectories of the system (3) achieve MCSFTS with the PI controller (7)
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Figure 3 (Color online) State trajectories of the system (3) with the PI controller (7). (a) SFTS with ϑ = 0.6,KFix =

diag(0, 0),KI = diag(0, 0); (b) SFTS with ϑ = 0.6, ν = 1; (c) SFXTS with ϑ = 0.6, ν = 1.6; (d) SPTS with ϑ = 0.6, ν = 1.6,

TPre = 2.

0 2 4 6 8 10 12
t (s)

−2.0

−1.5

−1.0

−0.5

0

0.5

1.0

1.5

2.0

0 0.5 1.0 1.5
−1.5

−1.0

−0.5

0

0.5

1.0

1.5

χ 1
(t

) 
an

d
 χ

2
(t

)

χ
1
(t) χ

2
(t) χ

1
(t) χ

2
(t) χ

1
(t) χ

2
(t) χ

1
(t) χ

2
(t)

ϑ=0.6, K
Fix

=0, K
2
=0

ϑ=0.6, ν=1 ϑ=0.6, ν=1.6 ϑ=0.6, ν=1.6,

K
Fit

=K
Fit

T
3

T
Pre

,

K
Fix

=K
Fix

T
3

T
Pre

E{T
1
}=8.5162

E{T
2
}=9.0937

T
3
=10.6952

T
4
=10

Figure 4 (Color online) General diagram of state trajectories of the system (3) with the adaptive PI controller (24).

under different conditions. For each specific condition discussed separately, each case achieves a specific
stability of the system (3), as shown in Figure 3.

Case 1: Choose ϑ = 0.6,KFix = [ 0.0000 0.0000

0.0000 0.0000
],KI = [ 0.0000 0.0000

0.0000 0.0000
]. From Theorem 1, the system (3)

achieves SFTS with the PI controller (7), and the ST E{T1} is 1.7595, as shown in Figure 3(a).

Case 2: Choose ϑ = 0.6, ν = 1. From Theorem 1, the system (3) achieves SFTS with the PI controller
(7), and the ST E{T2} is 2.5523, as shown in Figure 3(b).

Case 3: Choose ϑ = 0.6, ν = 1.6. From Theorem 1, the system (3) achieves SFXTS with the PI
controller (7), and the ST T3 is 2.7313, as shown in Figure 3(c).



Wei F, et al. Sci China Inf Sci December 2023 Vol. 66 222207:15

Table 1 Some upper bounds for the settling time functions

E{T1} E{T2} T3 T4

Theorem 1 1.7595 2.5523 2.7313 2

Theorem 2 8.5162 9.0937 10.6952 10
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Figure 5 (Color online) State trajectories of the system (3) with the adaptive PI controller (24). (a) SFTS with ϑ =

0.6,KFix = diag(0, 0),KI = diag(0, 0),K2 = diag(0, 0); (b) controller gain variable KP (t) of (a); (c) SFTS with ϑ = 0.6, ν = 1;

(d) controller gain variable KP (t) of (c); (e) SFXTS with ϑ = 0.6, ν = 1.6; (f) controller gain variable KP (t)of (e); (g) SPTS with

ϑ = 0.6, ν = 1.6, TPre = 10; (h) controller gain variable KP (t) of (g).

Case 4: Choose ϑ = 0.6, ν = 1.6,KFit = KFit
T3

Tpre
= [ 2.4200 0.0000

0.0000 2.5250
] × 1.3656,KFix = KFix

T3

Tpre
=

[ 2.5000 0.0000

0.0000 2.5000
] × 1.3656. From Theorem 1, the system (3) achieves SPTS with the PI controller (7), and

the ST is T4 = Tpre = 2, as shown in Figure 3(d).

Example 2. The system parameters in Example 2 are the same as those in Example 1, however, the
difference is that we improved the controller by imposing the adaptive PI control protocol (24) and (25).
Calculate the solution of LMI (26) using the MATLAB toolbox, and the feasible solutions are given
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below:

Z =

[

0.3201 0.0000

0.0000 0.3080

]

,M =

[

3.1239 0.0000

0.0000 3.2468

]

, YP =

[

6.9592 −8.5454

−8.5454 34.5059

]

, YFit =

[

0.7747 0.0000

0.0000 0.7777

]

,

K⋄ =

[

21.7402 −27.7452

−26.6953 112.0334

]

,KP (t) =

[

0.0000 0.0000

0.0000 0.0000

]

∼
[

21.7402 0.0000

0.0000 112.0334

]

,

KFit =

[

2.4200 0.0000

0.0000 2.5250

]

,KI =

[

0.25 0.00

0.00 0.25

]

,KFix =

[

0.0/0.5 0.0

0.0 0.0/0.5

]

,K1 = K2 =

[

0.5 0.0

0.0 0.5

]

,

ξ1 = ξ2 = ξ3 = ξ4 = ξ5 = 1.7094.

If the terms of Theorem 2 are satisfied, the system (3) achieves MCSFTS by imposing an adaptive
PI controller (24). From Figure 4, the state trajectories of the system (3) achieve MCSFTS with the
adaptive PI controller (24) under different conditions. As shown in Figure 4, the system saves some
control costs under adaptive PI control, which leads to a larger estimated ST. For a comparison of the
ST for the two theorems, see Table 1. Specific conditions are detailed discussion below; see Figure 5.

Case 1: Choose ϑ = 0.6,KFix = [ 0.0000 0.0000

0.0000 0.0000
],KI = [ 0.0000 0.0000

0.0000 0.0000
],K2 = [ 0.0000 0.0000

0.0000 0.0000
]. From Theorem 2,

the system (3) achieves SFTS with the adaptive PI controller (24), and the ST E{T1} is 8.5162, as shown
in Figure 5(a). The corresponding controller gain KP (t) updating laws are illustrated in Figure 5(b).

Case 2: Choose ϑ = 0.6, ν = 1. From Theorem 2, the system (3) achieves SFTS with the adaptive PI
controller (24), and the ST E{T2} is 9.0937, as shown in Figure 5(c). The corresponding controller gain
KP (t) updating laws are illustrated in Figure 5(d).

Case 3: Choose ϑ = 0.6, ν = 1.6. From Theorem 2, the system (3) achieves SFXTS with the adaptive
PI controller (24), and the ST T3 is 10.6952, as shown in Figure 5(e). The corresponding controller gain
KP (t) updating laws are illustrated in Figure 5(f).

Case 4: Choose ϑ = 0.6, ν = 1.6,KFit = KFit
T3

Tpre
= [ 2.4200 0.0000

0.0000 2.5250
] × 1.0695,KFix = KFix

T3

Tpre
=

[ 0.5000 0.0000

0.0000 0.5000
] × 1.0695. From Theorem 2, the system (3) achieves SPTS with the adaptive PI controller

(24), and the ST is T4 = Tpre = 10, as shown in Figure 5(g). The corresponding controller gain KP (t)
updating laws are illustrated in Figure 5(h).

5 Conclusion

This paper discusses the multicase stochastic finite-time stabilizations of SDMNNs in a unified control
framework. Subsequently, a controller with PI control protocol and a controller with adaptive PI con-
trol are designed. By tuning the controller factors, the SFTS, SFXTS, and SPTS of SDMNNs were
implemented to obtain the corresponding ST estimates. Finally, the reliability of the obtained results is
demonstrated using two examples, implicitly indicating that adaptive PI controllers can save on the cost
of control but lose some ST.
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