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Abstract This study is concerned with the fault detectability of Boolean control networks (BCNs) by two

nonaugmented methods. Firstly, the equivalent system-based approach is considered, and the equivalence of

BCNs is applied to analyze weak active fault detectability. Further, an iterative matrix set-based approach

is proposed, by which, several novel criteria for strong and weak active fault detectability are presented.

Meanwhile, effective algorithms are designed to check strong and weak active fault detectability and generate

all feasible input sequences with the minimum length. In comparison, our results reduce the computational

complexity dramatically than the existing studies.
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1 Introduction

One powerful model to characterize gene regulatory networks (GRNs) is the Boolean network (BN),
which is discrete-time and discrete-state [1]. In a BN, the genes of a GRN are viewed as either active
(ON/TRUE/1) or inhibited (OFF/FALSE/0), and the interactions among genes are expressed in terms
of logical update rules [1, 2]. Further, a BN with inputs and outputs is called a Boolean control network
(BCN) [3]. In the past few decades, BNs and BCNs have been widely applied in systems biology to
capture the coarse-grained dynamics of various GRNs and confirmed to provide a nice approximation
of continuous dynamic processes [4–6]. However, compared with the theory of continuous models, the
control methods for discrete models are still in their infancy.

Inspired by the Morgan’s problem of control systems, Cheng [7] developed the theory of semi-tensor
product (STP), which breaks the restriction on the dimensionality of traditional matrix product. By
means of STP, an algebraic state-space representation approach was proposed to deal with discrete
(finite-valued) dynamical systems involving BCNs, finite games, cryptography, finite automata, smart
homes, and so on [8, 9]. In this framework, substantial progress has been made in the study of BCNs,
related research results including but not limited to controllability and stabilization [10–12], observability
and detectability [13–15], and optimal control [16–18].

Fault detection technology is a hot topic in the field of control systems, which is of great practical
significance as it is the basis for ensuring system safety and reliability. In terms of biological systems,
some systemic diseases, such as cancer, originating from random mutations in somatic cells [19], cause
model failures and alter their expected dynamics, which often result in undesirable outputs, the so-called
disease phenotypes. In GRNs, previous studies have shown that genetic alterations can be properly
modeled by different faulty models in the BCN paradigm [20]. By studying the dynamics of the original
BCN and the faulty BCN, it is possible to design appropriate intervention strategies to drive the system
from a diseased state to a healthy or less harmful state. That is, the fault detection plays an important
role in the detection and treatment of diseases [21, 22].

*Corresponding author (email: yyyu@sdu.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-023-3787-y&domain=pdf&date_stamp=2023-11-27
https://doi.org/10.1007/s11432-023-3787-y
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-023-3787-y
https://doi.org/10.1007/s11432-023-3787-y


Zhao R, et al. Sci China Inf Sci December 2023 Vol. 66 222205:2

In a BN, the faults can be broadly divided into two types: stuck-at faults and bridging faults [20]. A
stuck-at fault refers to that a node in the network is stuck at a specific value, which can be regarded as
a genetic mutation; i.e., a specific gene is permanently turned on or off. A bridging fault means that
an old interconnection is broken or a new interconnection is merged into the network. However, the
faults considered in [20, 21] were only “stuck-at faults”. Utilizing STP, Fornasini and Valcher [23, 24]
generalized the results of [20,21] and proposed the general concept of fault detectability for BCNs. Then,
Leifeld et al. [25] extended the idea of [24] to probabilistic BCNs. The problems discussed in [23, 24] are
mainly related to on-line fault detection. Afterwards, the off-line fault detection of BCNs was studied
in [26–28] successively. Fornasini and Valcher [26] provided a graphical criterion and an augmented
algebraic criterion for off-line fault detectability. Zhang et al. [27] transformed the fault detection problem
into a dead-beat stabilization problem. Li et al. [28] obtained a verification matrix by indistinguishability
for off-line fault detectability. In our recent paper [29], passive fault detectability and four kinds of active
fault detectability, corresponding to online and offline cases, respectively, were investigated using the
reachability analysis of an augmented system. Associated fault detection problems were also applied to
discrete event systems [30], nuclear plants [31, 32], and combinational circuits [33, 34].

It should be pointed out that the method in [26, 27, 29] is cascading the faulty BCN and non-faulty
BCN to obtain an augmented system, which is computationally expensive. And the method of [28]
following that of [35] is constructing a transferable matrix to show the control-transferability among
indistinguishable states. In this article, we are dedicated to further enriching and improving the research
of fault detectability and putting forward some new criteria. In detail, two nonaugmented methods are
exploited to analyze the fault detectability. One is the equivalent system-based approach, and the other
is the iterative matrix set-based approach. These approaches can provide new perspectives for describing
different fault detectability, while avoiding the disadvantage of the high computational complexity of
the augmented method. The main contributions of this paper are summarized as follows. (i) With
knowledge of convergent sequences and limits, new criteria for the equivalence of BCNs are presented,
which are successfully applied to the weak active fault detectability. (ii) By means of a series of iterative
matrix sets, necessary and sufficient conditions for strong and weak active fault detectability are provided.
(iii) Efficient algorithms are developed to determine the fault detectability, and all possible input sequences
of the shortest length for active fault detection are obtained. Compared with the existing studies, our
results can reduce the computational complexity significantly.

The remainder of this paper is organized as follows. Section 2 contains some preliminaries. Section 3
includes the equivalent system-based approach for weak active fault detectability. Section 4 is the iterative
matrix set-based approach for strong and weak fault detectability. Section 5 is an example. Section 6 is
the concluding remarks.

2 Preliminaries

In this section, some preliminaries including STP and fault detectability of BCNs are reviewed. First,
some notations are listed below.

• N: the set of non-negative integers.
• ⌈·⌉: the upward rounding function.
• [M ]i,j : the (i, j)th element of matrix M .
• Coli(M): the ith column of matrix M .
• Rowi(M): the ith row of matrix M .
• B := {0, 1}.
• In: identity matrix in R

n×n.
• δin := Coli(In).
• ∆n := {δin|1 6 i 6 n}.
• 1n :=

∑n
i=1 δ

i
n.

• 0m×n: an m× n matrix with all elements being zero.
• | · |: cardinality of a set.
• Lm×n: the set of m× n logical matrices.
• Bm×n: the set of m× n Boolean matrices.
• ⊗ (∗): Kronecker product (Khatri-Rao product).
•
∧

(
∨

): conjunction (disjunction).
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Besides, logical operations of Boolean matrices used in the sequel are defined element wise, for example,
1n

∧

δin = δin.

Definition 1 ([7]). Let M ∈ R
a×b and N ∈ R

c×d. The STP of M and N is defined as

M ⋉N = (M ⊗ I e
b
)(N ⊗ I e

c
),

where e is the least common multiple of b and c.

Throughout this paper, the matrix multiplication ⋉ used by default is Boolean, i.e., AB = Sgn(A⋉B),
where Sgn(·) is the sign function.

For a Boolean variable x̄ ∈ B, identify x̄ as δ2−x̄
2 . Then the following lemma is used to convert a

Boolean function into its algebraic form.

Lemma 1 ([36]). Given a Boolean function f(x̄1, x̄2, . . . , x̄n) : B
n → B, there exists a unique matrix

Mf ∈ L2×2n , called the structure matrix of f(·), such that δ
2−f(x̄1,x̄2,...,x̄n)
2 = Mf ⋉

n
i=1 xi, with xi =

δ2−x̄i

2 ∈ ∆2.

Generally, a BCN with n state nodes, m input nodes, and p output nodes is of the form:















x̄t+1
i = fi(x̄

t
1, x̄

t
2, . . . , x̄

t
n, ū

t
1, ū

t
2, . . . , ū

t
m),

ȳtj = hj(x̄
t
1, x̄

t
2, . . . , x̄

t
n),

1 6 i 6 n, 1 6 j 6 p,

(1)

where fi : B
m+n → B, hj : Bn → B are Boolean functions and x̄t

i, ū
t
k, ȳ

t
j ∈ B are the state, input, and

output, respectively. By Lemma 1, the algebraic form of BCN (1) is described as [36]

{

x(t+ 1) = L1 ∗ L2 ∗ · · · ∗ Lnu(t)x(t) = Lu(t)x(t),

y(t) = H1 ∗H2 ∗ · · · ∗Hpx(t) = Hx(t),
(2)

where x(t) = ⋉
n
i=1xi(t) = ⋉

n
i=1δ

2−x̄t
i

2 ∈ ∆2n , u(t) = ⋉
m
k=1uk(t) = ⋉

m
k=1δ

2−ūt
k

2 ∈ ∆2m , y(t) = ⋉
p
j=1yj(t) =

⋉
p
j=1δ

2−ȳt
j

2 ∈ ∆2p , and Li ∈ L2×2m+n

(Hj ∈ L2×2n) is the structure matrix of fi(·) (hj(·)). Since
Eq. (2) can be determined by structure matrices L,H uniquely, BCN (2) is defined as B(L,H). Let
x(x0, u(t)) = ⋉

n
i=1xi(x0, u(t)) and y(x0, u(t)) = ⋉

p
j=1yj(x0, u(t)) be the state and output of (2) at time

t ∈ N starting from initial state x(0) = x0 under input sequence {u(t)}|+∞
t=0 , respectively.

Assume BCN B(L̃, H̃) is the faulty model of B(L,H).

Definition 2 ([27–29]). Set that x0, x̃0 ∈ ∆2n are initial states of B(L,H) and B(L̃, H̃), respectively.
(i) BCN B(L̃, H̃) is said to be weakly active fault-detectable, if for any x0, x̃0 ∈ ∆2n , there exist an

integer T ∈ N and an input sequence {u(t)}|+∞
t=0 , both of which are dependent on x0, x̃0, such that

(y(x0, u(0)), y(x0, u(1)), . . . , y(x0, u(T )))

6= (ỹ(x̃0, u(0)), ỹ(x̃0, u(1)), . . . , ỹ(x̃0, u(T ))).
(3)

(ii) BCN B(L̃, H̃) is said to be strongly active fault-detectable, if there exists an integer T ∈ N, such
that Eq. (3) holds for any input sequence {u(t)}|+∞

t=0 and any x0, x̃0 ∈ ∆2n .

Clearly, strong active fault detectability is sufficient for the weak active fault detectability, but the
converse is not necessarily true. Besides, it is crucial to emphasize that weak active fault detectability is
equivalent to active fault detectability1), which has been proven in [29]. Thus, in the sequel, we mainly
focus on the weak and strong active fault detectability.

3 Equivalent system-based approach

In this section, the equivalence of BCNs is considered, which provides a new viewpoint to study the fault
detectability.

1) BCN B(L̃, H̃) is said to be actively fault-detectable, if there exist an integer T ∈ N and an input sequence {u(t)}|+∞
t=0 , such

that Eq. (3) holds for any x0, x̃0 ∈ ∆2n .
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Definition 3 ([37]). Given two BCNs, they are said to be equivalent if for any point x0 of one network
there is a point x̃0 of the other network such that for the same input {u(t)}|+∞

t=0 with initial values x0

and x̃0, respectively, the output {y(t)}|+∞
t=0 are the same.

Remark 1. It is worth stating that the equivalence of BCNs given in Definition 3 is consistent with the
indistinguishability of sequential machines in [38], which also shows the interconnectivity between BCNs
and finite automata.

Consider two BCNs: B(L,H) and B(L̃, H̃) with L ∈ L2n×2n+m

, L̃ ∈ L2s×2s+m

, H ∈ L2p×2n , H̃ ∈
L2p×2s , and set Fk = Lδk2m , F̃k = L̃δk2m , k = 1, 2, . . . , 2m. Then construct a Boolean vector sequence

ϑi+1 =

2m
∧

k=1

ϑi(Fk ⊗ F̃k) ∧ ϑi ∈ B1×2n+s

, (4)

where ϑ0 = Me(H ⊗ H̃), and Me ∈ B1×22p with Meδ
i
2pδ

j
2p = 1 if i = j, otherwise Meδ

i
2pδ

j
2p = 0,

1 6 i, j 6 2q. Immediately, {ϑi}|i∈N is finite-time convergent, since ϑi is non-increasing element-wise on
i. Set ϑ∗ := limi→∞ ϑi and R ∈ B2n×2s with

Rowi(R) = ϑ∗δi2n . (5)

Based on the above vector sequence, we give the following condition on the equivalence of BCNs.

Proposition 1. BCNs B(L,H) and B(L̃, H̃) are equivalent, if and only if matrix R has no zero rows
and columns.

Proof. (Necessity) If B(L,H) and B(L̃, H̃) are equivalent, then for any initial state x of B(L,H), there
exists state x̃ of B(L̃, H̃), satisfying y(x, u(t)) ≡ ỹ(x̃, u(t)), for any {u(t)}|+∞

t=0 , where ỹ(x̃, u(t)) is the
output of B(L̃, H̃) under initial state x̃ and input signal {u(t)}|+∞

t=0 at time t ∈ N. Furthermore, we can
see that



























Hx = H̃x̃,

HFk0x = H̃F̃k0 x̃,

HFk1Fk0x = H̃F̃k1 F̃k0 x̃,

...

(6)

hold for any 1 6 k0, k1, . . . 6 2m. In (6), Hx = H̃x̃ and HFk0x = H̃F̃k0 x̃ can be rewritten as Me(H ⊗
H̃)xx̃ = 1 and

Me(HFk0x⋉ H̃F̃k0 x̃) = Me(H ⊗ H̃)(Fk0 ⊗ F̃k0)xx̃ = 1,

respectively. Thus, it can be obtained that ϑ0xx̃ = 1 and ϑ1xx̃ = 1, since ϑ1 =
∧2m

k=1 ϑ0(Fk ⊗ F̃k) ∧ ϑ0.

Moreover, HFk1Fk0x = H̃F̃k1 F̃k0 x̃ can be rewritten as

Me(HFk1Fk0x⋉ H̃F̃k1 F̃k0 x̃)

= Me(H ⊗ H̃)(Fk1 ⊗ F̃k1)(Fk0 ⊗ F̃k0 )xx̃ = 1,

which means ϑ2xx̃ = 1, since

ϑ2 =

2m
∧

k=1

ϑ1(Fk ⊗ F̃k) ∧ ϑ1

=

2m
∧

k2=1

2m
∧

k1=1

(

ϑ0(Fk2 ⊗ F̃k2)(Fk1 ⊗ F̃k1) ∧ ϑ0(Fk1 ⊗ F̃k1) ∧ ϑ0

)

.

Repeating the above processes gets ϑixx̃ = 1, i ∈ N. Because x is arbitrary, we can set x = δi2n . Thus,
for any given δi2n ∈ ∆2n , there exists x̃, such that ϑ∗δi2n x̃ ≡ 1 and (δi2n)

⊤Rx̃ = 1, which implies that
matrix R has no zero rows. Similarly, if B(L,H) and B(L̃, H̃) are equivalent, then for any initial state x̃

of B(L̃, H̃), there exists state x of B(L,H) such that Eq. (6) holds for any 1 6 k0, k1, . . . 6 2m. That is
to say, for any δ

j
2s ∈ ∆2s , there exists x such that ϑ∗xδ

j
2s ≡ 1, i.e., x⊤Rδ

j
2s = 1, which means R has no

zero columns as well.
Inverting the above processes completes the proof of sufficiency.
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From the above proof, one can see the meaning of elements in ϑ∗. ϑ∗δi2nδ
j
2s = 1, i.e., [R]i,j = 1 if and

only if initial states δi2n of B(L,H) and δ
j
2s of B(L̃, H̃) have same output sequences for any same input

{u(t)}|+∞
t=0 .

Proposition 1 is intuitive and easy to understand but is not convenient to obtain matrix R, and then
we provide an alternative way to get it.

Proposition 2. limi→∞ Mi = R, where M0 = H⊤H̃ and

Mi+1 =

2m
∧

k=1

F⊤
k MiF̃k ∧Mi, i ∈ N. (7)

Proof. Firstly, note that Mi is non-increasing element-wise on i and Mk ∈ B2n×2s . Mk must be
finite-time convergent, since Mi+t = Mi, t > 0, if Mi+1 = Mi. Secondly, BCNs B(L,H) and B(L̃, H̃)
are equivalent if and only if for any x ∈ ∆2n (x̃ ∈ ∆2s), there exists x̃ ∈ ∆2s (x ∈ ∆2n) such that Eq. (6)
holds for any 1 6 i0, i1, . . . 6 2m. That is,

{

x⊤H⊤H̃x̃ = 1,

x⊤
∏l

t=0 F
⊤
it
H⊤H̃

∏0
t=l F̃it x̃ = 1, l > 0

(8)

hold for any 1 6 i0, i1, . . . 6 2m. Let T ∗ = min{i|Mi = Mi+1}, then limi→∞ Mi = MT∗ . In addition,
it follows from (7) that

Mi =

2m
∧

k1=1

F⊤
k1
Mi−1F̃k1 ∧Mi−1

=
2m
∧

k1=1

2m
∧

k2=1

(F⊤
k1
F⊤
k2
Mi−2F̃k2 F̃k1 ∧ F⊤

k1
Mi−2F̃k1 ∧Mi−2)

=

2m
∧

k1=1

2m
∧

k2=1

2m
∧

k3=1

(F⊤
k1
F⊤
k2
F⊤
k3
Mi−3F̃k3 F̃k2 F̃k1 ∧ F⊤

k1
F⊤
k2
Mi−3F̃k2 F̃k1 ∧ F⊤

k1
Mi−3F̃k1 ∧Mi−3)

= · · ·

=
2m
∧

k1=1

2m
∧

k2=1

· · ·
2m
∧

ki=1

(

i
∏

t=1

F⊤
kt
M0

1
∏

t=i

F̃kt
∧

i−1
∏

t=1

F⊤
kt
M0

1
∏

t=i−1

F̃kt
∧ · · · ∧ F⊤

k1
M0F̃k1 ∧M0

)

. (9)

Combining (8) with (9), for any x ∈ ∆2n (x̃ ∈ ∆2s), there exists x̃ ∈ ∆2s (x ∈ ∆2n) satisfying x⊤MT∗ x̃ =
1. Then [MT∗ ]i,j = 1 if and only if δi2n of B(L,H) and δ

j
2s of B(L̃, H̃) have the same output sequences

for any same input {u(t)}|+∞
t=0 . Hence, MT∗ = R, which completes the proof.

Propositions 1 and 2 provide new criteria for the equivalence of B(L,H) and B(L̃, H̃). In order to
discuss the fault detectability, let s = n in B(L,H) and B(L̃, H̃). In view of the analysis of equivalent
systems, the following theorem is obtained for weak active fault detectability.

Theorem 1. BCN B(L̃, H̃) is weakly active fault-detectable if and only if R = 02n×2n .

Proof. The existence of 1 6 i, j 6 2n such that [R]i,j = 1, is equivalent to that the output sequences

of B(L,H) and B(L̃, H̃) starting from initial states x0 = δi2n and x̃0 = δ
j
2n , respectively, are the same

under any identical input sequence. Hence, R 6= 02n×2n if and only if B(L̃, H̃) is not weakly active
fault-detectable. The proof is completed.

From Theorem 1, we can see that if BCN B(L̃, H̃) is weakly active fault-detectable, then B(L̃, H̃) and
B(L,H) are not equivalent. Conversely, the equivalence of B(L̃, H̃) and B(L,H) implies that B(L̃, H̃) is
neither weakly nor strongly active fault-detectable.

4 Iterative matrix set-based approach

Motivated by the equivalent system approach, an alternative approach is given to depict the three kinds
of fault detectability uniformly. We first construct a sequence of Boolean matrix sets iteratively:

Si+1(M) = {F⊤
k MF̃k ∧H⊤H̃ |M ∈ Si(M), 1 6 k 6 2m}, (10)
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where S0(M) = {H⊤H̃}, i ∈ N, based on which, the following criteria are deduced.

Theorem 2. (i) BCN B(L̃, H̃) is weakly active fault-detectable if and only if there exists an integer
T ∈ N such that

∧

M∈ST (M)

M = 02n×2n . (11)

(ii) BCN B(L̃, H̃) is strongly active fault-detectable if and only if there exists an integer T ∈ N such that
{02n×2n} = ST (M).

Proof. If for any x, x̃ ∈ ∆2n , Hx 6= H̃x̃, then H⊤H̃ = 02n×2n . In this case, Si(M) = {02n×2n}, i ∈ N,
and thus (i) and (ii) of Theorem 2 hold clearly. Without loss of generality, we assume that there exist
x, x̃ ∈ ∆2n such that Hx = H̃x̃.

(i) (Necessity) Assume that BCN B(L̃, H̃) is weakly active fault-detectable. Then for any x = δi2n and

x̃ = δ
j
2n , there exists an input sequence {u(t)}|

Ti,j

t=0 := {δkt

2m}|
Ti,j

t=0 such that











































Hx = H̃x̃,

HFk0x = H̃F̃k0 x̃,

HFk1Fk0x = H̃F̃k1 F̃k0 x̃,
...

H
∏0

t=Ti,j−1 Fkt
x = H̃

∏0
t=Ti,j−1 F̃kt

x̃,

H
∏0

t=Ti,j
Fkt

x 6= H̃
∏0

t=Ti,j
F̃kt

x̃,

(12)

where Ti,j ∈ N is the minimum integer satisfying (12), which means

x⊤H⊤H̃x̃ = 1, (13)

x⊤
l
∏

t=0

F⊤
kt
H⊤H̃

0
∏

t=l

F̃kt
x̃ = 1, 0 6 l 6 Ti,j − 1, (14)

x⊤

Ti,j
∏

t=0

F⊤
kt
H⊤H̃

0
∏

t=Ti,j

F̃kt
x̃ = 0. (15)

Consequently, we can see

x⊤

(

ρ
∧

l=0

l
∏

t=0

F⊤
kt
H⊤H̃

0
∏

t=l

F̃kt
∧H⊤H̃

)

x̃ = 0, ρ > Ti,j . (16)

Besides, M̄ρ :=
∧ρ

l=0

∏l
t=0 F

⊤
kt
H⊤H̃

∏0
t=l F̃kt

∧H⊤H̃ ∈ Sρ+1(M). That is, for any x = δi2n and x̃ = δ
j
2n ,

there exist an integer Ti,j and M̄t ∈ St+1(M) such that [M̄t]i,j = 0, t > Ti,j . Let T1 = max{Ti,j|1 6

i, j 6 2n} yield

∧

M∈ST1+1(M)

M = 02n×2n .

(Sufficiency) Assume that Eq. (11) holds. Note that the general form of M ∈ ST (M) is

M =

T−1
∧

l=0

l
∏

t=0

F⊤
kt
H⊤H̃

0
∏

t=l

F̃kt
∧H⊤H̃,

where kt ∈ {1, 2, . . . , 2m}. Then Eq. (11) means that for any x = δi2n and x̃ = δ
j
2n , there exist

k
i,j
0 , k

i,j
1 , . . . , k

i,j
T−1 ∈ {1, 2, . . . , 2m} such that

[

T−1
∧

l=0

l
∏

t=0

F⊤
k
i,j
t

H⊤H̃

0
∏

t=l

F̃
k
i,j
t

∧H⊤H̃

]

i,j

= 0.
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Thus, for any x = δi2n and x̃ = δ
j
2n , under input sequence {u(t)}|

T−1
t=0 := {δ

k
i,j
t

2m }|T−1
t=0 , there exists Ti,j 6 T

satisfying




Ti,j
∏

t=0

F⊤
k
i,j
t

H⊤H̃

0
∏

t=Ti,j

F̃
k
i,j
t





i,j

= 0,

which further implies y(δi2n , u(Ti,j)) 6= ỹ(δj2n , u(Ti,j)); i.e., B(L̃, H̃) is weakly active fault-detectable.

(ii) To prove (ii), we firstly show that BCN B(L̃, H̃) is actively fault-detectable if and only if there
exists an integer T ∈ N such that 02n×2n ∈ ST (M).

Assume that BCN B(L̃, H̃) is actively fault detectable. Then there exists an input sequence {u(t)}|+∞
t=0

:= {δkt

2m}|+∞
t=0 such that for any x = δi2n and x̃ = δ

j
2n , there is a minimum integer Ti,j > 0 satisfying

(13)–(15). Hence, for any ρ > Ti,j ,

x⊤

(

ρ
∧

l=0

l
∏

t=0

F⊤
kt
H⊤H̃

0
∏

t=l

F̃kt
∧H⊤H̃

)

x̃ =

[

ρ
∧

l=0

l
∏

t=0

F⊤
kt
H⊤H̃

0
∏

t=l

F̃kt
∧H⊤H̃

]

i,j

= 0.

Take T2 = max{Ti,j|1 6 i, j 6 2n}. From the arbitrariness of i and j, it is obvious that

02n×2n =

T2
∧

l=0

l
∏

t=0

F⊤
kt
H⊤H̃

0
∏

t=l

F̃kt
∧H⊤H̃ ∈ ST2+1(M).

Conversely, if 02n×2n ∈ ST (M), then there exist k̄t ∈ {1, 2, . . . , 2m}, t = 0, 1, . . . , T − 1 such that
∧T−1

l=0

∏l
t=0 F

⊤
k̄t
H⊤H̃

∏0
t=l F̃k̄t

∧ H⊤H̃ = 02n×2n . It means that under input sequence {u(t)}|T−1
t=0 :=

{δk̄t

2m}|T−1
t=0 , for any x = δi2n and x̃ = δ

j
2n , there is an integer Ti,j 6 T satisfying




Ti,j
∏

t=0

F⊤
k̄t
H⊤H̃

0
∏

t=Ti,j

F̃k̄t





i,j

= 0.

In other words, under input sequence {u(t)}|T−1
t=0 = {δk̄t

2m}|T−1
t=0 , we have that y(δi2n , u(Ti,j)) 6= ỹ(δj2n ,

u(Ti,j)) holds for any x = δi2n and x̃ = δ
j
2n , which implies the active fault detectability.

Notice that BCN B(L̃, H̃) is strongly active fault-detectable if and only if Eqs. (13)–(15) hold for any
input sequence {u(t)}|+∞

t=0 := {δkt

2m}|+∞
t=0 . Together with the proof above, we can conclude that B(L̃, H̃) is

strongly active fault-detectable if and only if there exists an integer T > 0 such that {02n×2n} = ST (M).
Combining with Proposition 2, one sees that Theorem 1 and Theorem 2-(i) are equivalent. Thus, the

iterative matrix set-based approach can be thought of as the extension and refinement of the equivalent
system-based approach. The equivalent system-based approach is only applicable to weak active fault
detectability, while the iterative matrix set-based approach is suitable for three kinds of active fault
detectability. Theorem 2 provides a unified framework to investigate fault detectability via the iterative
matrix sets (10), which can avoid starting again when the verified result is not consistent with the
expected fault detectability. Moreover, similar to Theorem 1, the strong active fault detectability can
also be determined by Boolean matrix sequences.

Corollary 1. BCN B(L̃, H̃) is strongly active fault-detectable if and only if

lim
i→∞

M̂i = 02n×2n , (17)

where M̂i+1 =
∨2m

k=1 F
⊤
k M̂iF̃k ∧ M̂i, M̂0 = H⊤H̃ , i ∈ N.

Proof. A simple induction shows that

M̂i =
2m
∨

k1=1

F⊤
k1
M̂i−1F̃k1 ∧ M̂i−1

=

2m
∨

k1=1

2m
∨

k2=1

(F⊤
k1
F⊤
k2
M̂i−2F̃k2 F̃k1 ∧ F⊤

k1
M̂i−2F̃k1 ∧ M̂i−2)
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= · · ·

=
2m
∨

k1=1

2m
∨

k2=1

· · ·
2m
∨

ki=1

(

i
∏

t=1

F⊤
kt
M̂0

1
∏

t=i

F̃kt
∧

i−1
∏

t=1

F⊤
kt
M̂0

1
∏

t=i−1

F̃kt
∧ · · · ∧ F⊤

k1
M̂0F̃k1 ∧ M̂0

)

,

which indicates M̂i =
∨

M∈Si(M) M. Therefore, from (ii) of Theorem 2, B(L̃, H̃) is strongly active

fault-detectable if and only if limi→∞ M̂i = 02n×2n .

Remark 2. (Upper bound analysis)

(i) Let a new BCN B(L̄, H̄) with L̄ ∈ L2n+1×2m+n+1

and H̄ ∈ L2p+1×2n+1

, called the direct sum of
B(L,H) and B(L̃, H̃), where

L̄δk2m =

[

Fk 02n×2n

02n×2n F̃k

]

, H̄ =

[

H 02p×2n

02p×2n H̃

]

.

Let ȳ(x̄0, u(t)) denote the output of B(L̄, H̄) under initial state x̄0 ∈ ∆2n+1 and input signal {u(t)}|+∞
t=0

at time t ∈ N. Then, by Definition 2, B(L̃, H̃) is weakly active fault-detectable if and only if for any
x0 = δi2n , x̃0 = δ

j
2n ∈ ∆2n , there exist an integer T ∈ N and an input sequence {u(t)}|+∞

t=0 , such that

(y(δi2n , u(0)), y(δ
i
2n , u(1)), . . . , y(δ

i
2n , u(T )))

6= (ỹ(δj2n , u(0)), ỹ(δ
j
2n , u(1)), . . . , ỹ(δ

j
2n , u(T ))),

which is equivalent to

(ȳ(δi2n+1 , u(0)), ȳ(δi2n+1 , u(1)), . . . , ȳ(δi2n+1 , u(T )))

6= (ȳ(δ2
n+j

2n+1 , u(0)), ȳ(δ
2n+j

2n+1 , u(1)), . . . , ȳ(δ
2n+j

2n+1 , u(T )));

i.e., each pair of states (δi2n+1 , δ
2n+j

2n+1 ), 1 6 i, j 6 2n of B(L̄, H̄) is distinguishable2). Actually, it follows
from Theorem 6 [38] that the smallest upper bound of steps to verify the distinguishability of two states
of B(L̄, H̄) is 2n+1 − 1. Therefore, the minimum steps to verify the weak active fault detectability satisfy
T < 2n+1 − 1.

(ii) To give a unified upper bound for Theorem 2, recall the sequence of Boolean matrix sets (10).
Number the matrices in Si(M) by Si(M) = {Mi

l|l = 1, 2, . . . , 2im} with

Mi
l = F⊤

l−(⌈ l
2m ⌉−1)2m

Mi−1
⌈ l
2m ⌉

F̃l−(⌈ l
2m ⌉−1)2m ∧H⊤H̃.

And let mi
l = 1⊤

2nM
i
l12n > 0, the number of 1 in the l-th matrix in Si(M). Clearly, mi

l > mi+1
t holds for

any (l − 1)2m + 1 6 t 6 l2m. Hence, Si(M) must converge within m0
l steps; i.e., there is i0 6 m0

1 such
that Si0+t(M) = Si0(M), t > 0. Accordingly, the steps to verify the three kinds of fault detectability
satisfy T 6 m0

1. Besides, partition {1, 2, . . . , 22n} into two subsets:

Θ1 = {(i− 1)2n + j|[H⊤H̃ ]i,j = 1, 1 6 i, j 6 2n},

Θ2 = {(i− 1)2n + j|[H⊤H̃ ]i,j = 0, 1 6 i, j 6 2n}.

Since m0
1 = 1⊤

2nH
⊤H̃12n , we get m0

1 = |Θ1| as well.

In light of Corollary 1, Algorithm 1 is devised to determine the strong active fault detectability.

If B(L̃, H̃) is not strongly active fault-detectable, then we aim to determine whether it is weakly active
fault-detectable by Algorithm 2, which is based on Theorem 1/Theorem 2-(i).

When B(L̃, H̃) is weakly active fault-detectable but not strongly active fault-detectable, we are also
interested in designing all feasible input sequences with the shortest length. This is implemented in
Algorithm 3 which is based on Theorem 2.

2) Consider B(L̄, H̄). States x1 6= x2 ∈ ∆2n+1 are said to be distinguishable, if there exist an integer T ∈ N and an input

{u(t)}|Tt=0 such that ȳ(x1, u(T )) 6= ȳ(x2, u(T )).
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Algorithm 1 Checking the strong active fault detectability of B(L̃, H̃)

Require: Fk, F̃k, H, H̃, k = 1, 2, . . . , 2m.

Ensure: “Yes”, if B(L̃, H̃) is strongly active fault-detectable, and “No”, otherwise.

1: Initialize t = 0, M = H⊤H̃, N = P = 02n×2n , vk,i = [1, 2, . . . , 2n]Coli(Fk), ṽk,i = [1, 2, . . . , 2n]Coli(F̃k), i = 1, 2 . . . , 2n,

k = 1, 2, . . . , 2m;

2: while t 6 |Θ1| and N 6= M do

3: N = M , t = t + 1;

4: for i = 1 : 2n, j = 1 : 2n do

5: for k = 1 : 2m do

6: [P ]i,j = [P ]i,j ∨ [M ]vk,i,ṽk,j
;

7: end for

8: [M ]i,j = [M ]i,j ∧ [P ]i,j ;

9: end for

10: end while

11: if M = 02n×2n then

12: return “Yes”;

13: else

14: return “No”;

15: end if

Algorithm 2 Checking the weak active fault detectability of B(L̃, H̃)

Require: Fk, F̃k, H, H̃, k = 1, 2, . . . , 2m.

Ensure: “Yes”, if B(L̃, H̃) is weakly active fault-detectable, and “No”, otherwise.

1: Initialize t = 0, M = H⊤H̃, N = P = 02n×2n , vk,i = [1, 2, . . . , 2n]Coli(Fk), ṽk,i = [1, 2, . . . , 2n]Coli(F̃k), i = 1, 2 . . . , 2n,

k = 1, 2, . . . , 2m;

2: while t < 2n+1 − 1 and N 6= M do

3: N = M , t = t + 1;

4: for i = 1 : 2n, j = 1 : 2n, k = 1 : 2m do

5: [M ]i,j = [M ]i,j ∧ [M ]vk,i,ṽk,j
;

6: end for

7: end while

8: if M = 02n×2n then

9: return “Yes”;

10: else

11: return “No”;

12: end if

Algorithm 3 Generating all input sequences of the shortest length for active fault detection of B(L̃, H̃)

Require: Fk, F̃k, H, H̃, k = 1, 2, . . . , 2m;

Ensure: There are a total of c shortest input sequences of length τ denoted by {ui(t)}|τ−1
t=0 = {δ

[N ]i,t+1
2m

}|τ−1
t=0 , i = 1, 2 . . . , c.

1: Initialize c = τ = 0, M0
1 = H⊤H̃, vk,i = [1, 2, . . . , 2n]Coli(Fk), ṽk,i = [1, 2, . . . , 2n]Coli(F̃k), i = 1, 2 . . . , 2n, k = 1, 2, . . . , 2m;

2: while c = 0 and τ 6 |Θ1| do

3: τ = τ + 1;

4: for l = 1 : 2τm do

5: r = ⌈ l
2m ⌉, s = l − (r − 1)2m;

6: for i = 1 : 2n, j = 1 : 2n do

7: [Mτ
l ]i,j = [Mτ−1

r ]vs,i,ṽs,j ∧ [H⊤H̃]i,j ;

8: end for

9: if Mτ
l = 02n×2n then

10: c = c+ 1;

11: for i = 1 : τ do

12: if i = 1 then

13: [N ]c,i = ⌈ l

2(τ−1)m ⌉;

14: else

15: [N ]c,i = ⌈ l

2(τ−i)m ⌉ −
∑i−1

j=1([N ]c,j − 1)2(i−j)m ;

16: end if

17: end for

18: end if

19: end for

20: end while

Remark 3. (Computational complexity analysis) From Algorithms 1 and 2, it is straightforward
that the time complexities for checking the strong and weak active fault detectability of B(L̃, H̃) are
O(22n+m|Θ1|) and O(23n+m+1−22n+m), respectively, and the space complexity of both is O(22n+2n+m).
Besides, obtaining all shortest input sequences in Algorithm 3 requires time and space complexities
O(22n+|Θ1|m|Θ1|), O(22n+(|Θ1|+1)m), respectively. On the other hand, the complexities of existing re-
sults are shown in Table 1. Compared with [24,26–29], our results have lower computational complexity
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Table 1 Complexity comparison

Problem Result Time complexity Space complexity

Strong active fault detectability
Algorithm 1 O(22n+m|Θ1|) O(22n + 2n+m)

Theorem 4 [29] O(28n) O(2m+4n)

(Weak) active fault detectability

Algorithm 2 O(23n+m+1 − 22n+m) O(22n + 2n+m)

Proposition 4 [24, 26] O(24n) O(24n)

Theorem 1 [27] ≫ O((22n − |Θ2|)
3) O(2m+4n − |Θ2|2

m+2n)

Algorithm 1 [28] O(26n) O(2m+4n)

Theorem 5 [29] O(22
2n+1m+6n) O(22

2nm+4n)

Obtaining the shortest input sequences
Algorithm 3 O(22n+|Θ1|m|Θ1|) O(22n+(|Θ1|+1)m)

Theorem 5 [29] O(22
2n+1m+6n) O(22

2nm+4n)

evidently.

5 An example

Consider a Boolean model of oxidative stress response pathways [21]. In this model, 7 entries are included:
ARE represents the family of antioxidant genes, ROS stands for reactive oxidative species, PKC, Keap1,
Nrf2, and Bach1 are all proteins, and the Stress is the input signal, which are expressed as x̄1, x̄2, . . . , x̄6, ū,
respectively. The updating and output equations are as follows:















































x̄t+1
1 = ūt ∧ ¬x̄t

6,

x̄t+1
2 = ¬x̄t

1,

x̄t+1
3 = ¬x̄t

1 ∧ (x̄t
3 ∨ x̄t

5),

x̄t+1
4 = x̄t

1 ∧ ¬x̄t
6,

x̄t+1
5 = x̄t

4 ∨ ¬x̄t
3,

x̄t+1
6 = x̄t

5 ∧ (¬x̄t
2 ∨ ¬x̄t

6),

ȳt1 = x̄t
2, ȳt2 = x̄t

3, ȳt3 = x̄t
5.

(18)

Then Eq. (18) can be converted into its algebraic form (2) with

L = δ64[62, 25, 62, 26, 64, 27, 64, 28, 62, 25, 62, 26, 62, 25,

62, 26, 61, 25, 62, 26, 63, 27, 64, 28, 61, 25, 62, 26, 61,

25, 62, 26, 38, 5, 38, 6, 40, 7, 40, 8, 38, 5, 46, 14, 38, 5,

46, 14, 37, 5, 38, 6, 39, 7, 40, 8, 37, 5, 46, 14, 37, 5, 46,

14, 62, 57, 62, 58, 64, 59, 64, 60, 62, 57, 62, 58, 62, 57,

62, 58, 61, 57, 62, 58, 63, 59, 64, 60, 61, 57, 62, 58, 61,

57, 62, 58, 38, 37, 38, 38, 40, 39, 40, 40, 38, 37, 46, 46,

38, 37, 46, 46, 37, 37, 38, 38, 39, 39, 40, 40, 37, 37, 46,

46, 37, 37, 46, 46] ∈ L64×128,

H = δ8[1, 1, 2, 2, 1, 1, 2, 2, 3, 3, 4, 4, 3, 3, 4, 4, 5, 5, 6, 6, 5, 5,

6, 6, 7, 7, 8, 8, 7, 7, 8, 8, 1, 1, 2, 2, 1, 1, 2, 2, 3, 3, 4, 4, 3,

3, 4, 4, 5, 5, 6, 6, 5, 5, 6, 6, 7, 7, 8, 8, 7, 7, 8, 8] ∈ L8×64.

Assume that the faulty model B(L̃, H̃) is derived from

{

Col8(L̃) = δ1664 ,Col16(L̃) = δ864,Col40 = 64,Col25(H̃) = δ18 ,Col64(H̃) = δ78 ,

Coli(L̃) = Coli(L),Colj(H̃) = Colj(H), i 6= 8, 16, 40 and j 6= 25, 64.

By Algorithm 1, it is verified that B(L̃, H̃) is not strongly active fault-detectable. Furthermore, Algo-
rithm 2 shows that B(L̃, H̃) is weakly active fault-detectable. Meanwhile, according to Algorithm 3, we
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Figure 1 (Color online) The state trajectories of (a) the original and (b) faulty BCNs under input sequence {u(t)}|4t=0 =

(δ12 , δ
1
2, δ

1
2 , δ

1
2 , δ

2
2).

Figure 2 (Color online) The output trajectories of the original and faulty BCNs under input sequence {u(t)}|4t=0 =

(δ12 , δ
1
2, δ

1
2 , δ

1
2 , δ

2
2) starting from (x0, x̃0) = (δi64, δ

i
64), i = 1, 2, . . . , 64 (in order from left to right, from top to bottom). The

blue and red lines represent the outputs of the original and faulty BCNs, respectively.

get that there are 3 shortest input sequences of length 5 for active fault detection:

{u(t)}|4t=0 =











(δ12 , δ
1
2 , δ

1
2 , δ

1
2 , δ

1
2),

(δ12 , δ
1
2 , δ

1
2 , δ

1
2 , δ

2
2),

(δ12 , δ
1
2 , δ

1
2 , δ

2
2 , δ

2
2).

Take {u(t)}|4t=0 = (δ12 , δ
1
2 , δ

1
2 , δ

1
2 , δ

2
2), and then Figure 1 shows the state trajectories of original and faulty

BCNs. Corresponding to different initial states, 642 pairs of output sequences can be obtained, where
each pair of output sequences is distinguishable. Due to the limitation of the space, we only show 64 pairs
of output sequences in Figure 2.
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6 Concluding remarks

In this paper, strong and weak active fault detectability of BCNs has been investigated by two new
approaches. Firstly, the equivalent system-based method has been discussed, and necessary and suf-
ficient conditions have been derived for weak active fault detectability. Secondly, the iterative matrix
set-based method provides a unified framework to characterize strong and weak active fault detectability.
In addition, corresponding algorithms have been developed for verifying fault detectability and gener-
ating all shortest input sequences. Compared with the existing results, our methods can significantly
reduce the computational cost. Additionally, our methods can also be extended to various BCNs such
as probabilistic, time-delayed, and disturbed BCNs. Another interesting topic, the fault isolation of
BCNs, which was preliminarily studied by an augmented method in [39], can also be further investigated
by our nonaugmented methods. On the other hand, to overcome the high computational complexity,
the network structures have been taken into account for analysis and control of large-scale BNs [40, 41],
which maintain the time complexity at a relatively low level. It is also interesting to investigate the fault
detectability combined with the method of [40, 41] in the future research.
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