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Abstract This paper develops a control strategy based on immersion and invariance (I&I) adaptive method-

ology for a class of multi-input multi-output (MIMO) systems in the presence of parametric uncertainty, input

saturation, and external disturbance. To avoid the analytic calculation in the backstepping process, a high-

gain auxiliary system is constructed to compensate for the effect of command filter error. The first-order

command filters are also employed in the construction procedure of the I&I adaptive law to simplify its

design and remove the structural conditions on the regressors. A filter-based disturbance observer is devel-

oped to counteract the effect of the external disturbance produced by a partially known exogenous system.

To overcome the input saturation nonlinearity, a smooth function is introduced to approximate the input

saturation with an extended state and a bounding estimation law. Stringent analysis guarantees the stability

of closed-loop system. Finally, simulated examples confirm the effectiveness of the suggested method.
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1 Introduction

Adaptive control issues of single-input single-output (SISO) and multi-input multi-output (MIMO) non-
linear systems have attracted the attention of many researchers as a hot control field topic. Extensive
research has been performed so far. The purpose of adaptive control is to control plants with unknown
parameters, which is a reason for its rapid development and ongoing popularity [1].

To address shortcomings such as poor transient response and sensitivity in the presence of noises or
disturbances in the classical adaptive approach, immersion and invariance (I&I) adaptive methodology
provides an extra design of freedom to shape the estimation error manifold via domination to enhance the
transient performance of the system [2,3]. However, this shaping strategy heavily depends on the solution
of the partial differential equation (PDE), which is particularly challenging for multivariable systems. One
way to remove this obstacle is the dynamic scaling method [4], in which a reduced-order observer, an
output filter, and a dynamic scaling parameter are co-designed with the adaptive law. Another technique
to avoid solving PDEs is to use low-pass filters as in [5, 6], whereby filtering the state or error variables,
the derivatives needed in the adaptive law are replaced by the constructed filter equations. Although the
I&I adaptive method has been effectively applied in typical MIMO systems such as robot manipulator [6]
and quadrotor [7, 8], it is still an open issue to apply I&I estimators in higher-order plants and consider
the above-mentioned problems at the same time. Therefore, to construct more feasible I&I adaptive laws
for a general class of MIMO high-order nonlinear systems is one of the goals of this study.
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For higher-order plants, backstepping provides a systematic approach to design stabilizing controllers,
yet its implementation becomes increasingly difficult, and increasing order of the system causes the
“explosion of terms” problem. To address this, dynamic surface control is suggested in [9] for creating
backstepping-based controllers where virtual controls are passed through first-order low-pass filters to
eliminate the arising complexity. This method has been effectively applied in many classes of MIMO
systems subject to unmeasured states, output constraints, and disturbances [10–12]. On the other hand,
command-filtered backstepping method in [13,14] additionally constructs compensating signals to remove
the effect of the unachieved portion between the virtual control and the filtered virtual control. This
method is frequently used in conjunction with other techniques, such as adaptive neural network [15–17],
and fuzzy logic system [18–20]. Therefore, the command-filtered backstepping technique is a plausible
contender for our interest in the control problem of higher-order plants.

Physical restrictions always result in saturation constraints for control inputs or actuators, which
can impair control performances and possibly lead to instability. One technique to compensate for
input saturation is to introduce an auxiliary system [21, 22], where an auxiliary system is created to
remove the effect of saturation between the error of the control input and saturated input, and this
method has been applied in studies such as [16, 23–25] for various kinds of systems with saturated
input. Another solution for this problem is to use a smooth function to approximate the saturation
nonlinearity [17,19,20,26]. In [19,20], the smooth function and mean-value theorem are employed to deal
with saturation limitations for adaptive fuzzy control of nonlinear systems. In [26], a well-defined smooth
function is used to approximate the saturation, and the Nussbaum function is introduced to compensate
for the nonlinear term arising from the input saturation. However, it has been reported that the usage of
numerous kinds of Nussbaum functions shows poor transients and control shock [27, 28], which suggests
that there is still room for further improvement of smooth function-based approach.

Disturbance attenuation problem continues to receive frequent attention recently due to its significance.
Among existing methods, disturbance observer-based approaches have been created and applied to many
practical systems such as quadcopters, robot manipulators, and hydraulic knee exoskeleton systems [29–
34], to mention a few. Various kinds of disturbance observers can be used in different settings, namely
nonlinear disturbance observer [31], sliding mode disturbance observer [32], and fixed-time disturbance
observer [33], aiming to obtain asymptotic, finite-time, or practical tracking control results. Furthermore,
the studies in [29,34,35] created efficient disturbance observers to estimate unknown external disturbances
produced by an exogenous system whose model information is only partially known. This encourages us
to build a disturbance observer that estimates unknown exosystem states and embed it in the controller
along with adaptive laws.

Based on above discussions, this study creates an adaptive control strategy based on the I&I method
with command filters for a class of MIMO uncertain nonlinear systems that are subject to control input
saturation. To be more precise, to compensate for the parametric uncertainties, I&I adaptive laws are
developed with command filters for the plant with satisfactory performance, and the challenge of solving
PDEs is removed. As will be depicted in the backstepping procedure, the control design is based on
the filtered dynamics using command filters, and the virtual control law to be used in the tracking
error variable requires to be recovered from its filtered form, which varies from traditional command-
filtered backstepping design with Lyapunov-based adaptive law [14–20]. In addition to compensating for
parametric uncertainties, a filter-based disturbance observer is built to estimate external disturbances
produced by exogenous systems. Motivated by [24], a high-gain auxiliary system is created to remove
the effect of the errors of command-filtered virtual control law and the original virtual control law.
Furthermore, a smooth function is introduced to approximate the abrupt saturation control with an
extended state, and the bounding estimation approach is used to offset the effect of time-varying input
gain. The main contributions of this study are listed as follows.

(1) The filter-based I&I adaptive method [5,6] in this study is co-designed with the backstepping method
and is applied to MIMO systems with subsystems in the strict feedback form, and the structural conditions
on the regressors needed in [3] are removed. Compared with the traditional adaptive backstepping
technique, the performance of estimation errors and tracking errors can be efficiently enhanced due to
the I&I adaptation mechanism. Furthermore, the controller is free from solving PDEs, which is not
considered in I&I adaptation-based results [36, 37].

(2) A filter-based disturbance observer is created in this study to deal with the external disturbances
caused by unknown exosystems with bounded modeling errors. Compared with the existing approach [29,
34], the disturbance observer in this study is developed in the filtered fashion to make the design more
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integrated with the command filter-based I&I adaptive law.
(3) Compared with the smooth function-based approach [26] for input saturation using the Nussbaum

function, in this paper, the bounding estimation approach [38, 39] is selected to deal with the effect of
time-varying input gain for better transient performance.

The rest of the study is organized as follows. The plant model and problem formulation are depicted in
Section 2. The adaptive control design is introduced in Section 3, as well as the stability analysis of the
closed-loop system. Numerical simulation examples are provided in Section 4 to confirm the suggested
control strategy, and finally, Section 5 draws a summary of this paper.

2 Problem formulation

Consider the following MIMO nonlinear system (j = 1, . . . ,m):

ẋj,1 = xj,2 + θTj,1ϕj,1(x̄j,1) + fj,1(x̄j,1) + dj,1(t),

...

ẋj,nj−1 = xj,nj
+ θTj,nj−1ϕj,nj−1(x̄j,nj−1) + fj,nj−1(x̄j,nj−1) + dj,nj−1(t),

ẋj,nj
= uj(vj) + θTj,nj

ϕj,nj
(x) + fj,nj

(x) + dj,nj
(t),

(1)

where x = [xT1 , . . . , x
T
m]T ∈ R

n1+···+nm with xj = [xj,1, . . . , xj,nj
]T ∈ R

nj and x̄j,ij = [xj,1, . . . , xj,ij ]
T ∈

R
nj , ij = 1, . . . , nj are the state vectors, ϕj,ij (·) ∈ R

qj,ij and fj,ij (·) ∈ R, ij = 1, . . . , nj are known smooth
functions, θj,ij ∈ R

qj,ij is the unknown constant parameter vector, and dj,ij (t) is the external disturbance
generated by the following exosystem:

η̇j,ij =Wj,ijηj,ij +̟j,ij (t),

dj,ij (t) = Cj,ijηj,ij , ij = 1, . . . , nj , j = 1, . . . ,m,
(2)

where ηj,ij ∈ R
rj is the state, Wj,ij ∈ R

rj×rj and Cj,ij ∈ R
1×rj are the known system matrices with

(Wj,ij , Cj,ij ) observable, and̟j,ij ∈ R
rj describes the modeling error of the exosystem. In (1), uj(vj(t)) ∈

R is the control input for the jth subsystem with saturation type nonlinearity described by

uj(vj(t)) = sat(vj(t)) =

{

sign(vj(t))uj,M , |vj(t)| > uj,M ,

vj(t), |vj(t)| < uj,M ,
(3)

with uj,M being the known saturated bound of uj(vj)(t).
To handle input saturation nonlinearity, as in [26] we introduce the following smooth function to

approximate it:

gj(vj) = uj,M tanh(vj/uj,M ), (4)

and by using (3), the last dynamics of (1) is rewritten with the auxiliary signal vj ,

ẋj,nj
= gj(vj) + θTj,nj

ϕj,nj
(x) + fj,nj

(x) + dj,nj
(t) + dj,s(vj),

v̇j = −hjvj + wj ,
(5)

where hj > 0 is a positive constant to be designed, dj,s(vj) = uj(vj) − gj(vj) is bounded, and wj is the
control signal to be designed.

The following assumptions are made in this paper.

Assumption 1. The reference for the jth subsystem yj,r(t) and its first-order derivative ẏj,r(t) are
smooth, available, and bounded.

Assumption 2. The exosystem states ηj,ij (t) are bounded and the modeling error ̟j,ij (t) is bounded.

Remark 1. Assumption 1 is made thanks to the command filter backstepping technique which removes
the requirement in traditional backstepping where the reference and its first njth order derivatives need to
be known and bounded. Assumption 2 is reasonable since in practice the energy of external disturbance
is finite, and similar requirements can be found in [29, 35].
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Figure 1 (Color online) The block diagram of the control scheme.

Remark 2. Compared with SISO systems, the MIMO system in the form of (1) exhibits high coupling
characteristics and can represent a large class of practical systems, which is more meaningful to be
investigated. Moreover, in this paper the factors of external disturbance and input saturation nonlinearity
are also considered, which make the design task more challenging.

In this paper the following first-order command filter is defined:

τ żf + zf = z, zf (0) = z(0), (6)

where z ∈ R is the input, the superscript (·)f denotes the filtered variable, and τ > 0 is the filter constant.
The filter (6) will be employed to generate filtered versions of tracking error variables, regressors, and
virtual controls, and the outputs zf as well as żf will be used in the control design.

The control objective of this paper is to design an appropriate adaptive controller for the uncertain
and disturbed plant (1) subject to input saturation to track the given references yj,r(t), j = 1, . . . ,m as
precisely as possible.

3 Control design

The block diagram of the control scheme is shown in Figure 1. The tracking errors will be determined
first which contain the states, filtered virtual controls, and auxiliary states. In every step except for the
final step, we apply the command filter to filter both sides of the error equation; then the virtual control
law, the corresponding adaptive law, and disturbance observer will be designed. The virtual control laws
are passed through command filters and an auxiliary system is assigned to remove the effect of command
filtered error of the virtual controls. Finally, the designed control law in the last step is passed through
the filter in (5) to derive the signal vj .

First, define the error variables for the jth subsystem,

zj,1 = xj,1 − yj,r − ξj,1,

zj,ij = xj,ij − αf
j,ij−1 − ξj,ij , ij = 2, . . . , nj ,

zj,nj+1 = gj(vj)− αf
j,nj

− ξj,nj+1,

(7)

where αj,1, . . . , αj,nj
are the virtual control law to be determined in each step of the control design, αf

j,ij
is

the filtered variable of αj,ij passed through the command filter (6), and ξj,1, . . . , ξj,nj+1 are the auxiliary
system states to remove the effect of the error in the command-filtering backstepping process, designed
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as
ξ̇j,1 = −ǫjcj,1ξj,1 + ξj,2 + αf

j,1 − αj,1,

...

ξ̇j,nj−1 = −ǫ
nj−1
j cj,nj

ξj,1 + ξj,nj
+ αf

j,nj−1 − αj,nj−1,

ξ̇j,nj
= −ǫ

nj

j cj,nj
ξj,1 + ξj,nj+1 + αf

j,nj
− αj,nj

,

ξ̇j,nj+1 = −ǫ
nj+1
j cj,nj+1ξj,1,

(8)

with cj,1, . . . , cj,nj+1 Hurwitz coefficients and ǫj > 1 the high-gain parameter. The design steps are
illustrated below in detail.

Step j, 1. First, the derivative of zj,1 is calculated as

żj,1 = ẋj,1 − ẏj,r − ξ̇j,1

= zj,2 + αf
j,1 + ξj,2 + θTj,1ϕj,1 + fj,1 + dj,1 − ẏj,r − ξ̇j,1

= zj,2 + θTj,1ϕj,1 + ᾱj,1 + dj,1,

(9)

where the equivalent virtual control ᾱj,1 is given by

ᾱj,1 = αj,1 + ǫjcj,1ξj,1 + fj,1 − ẏj,r. (10)

Now using the filter (6) to filter both sides of (9) as

żfj,1 = zfj,2 + θTj,1ϕ
f
j,1 + dfj,1 + ᾱf

j,1, (11)

where the exponential decaying term due to filter error is omitted and dfj,1 to be estimated is generated
by the following filtered exosystem:

η̇fj,1 =Wj,1η
f
j,1 +̟f

j,1,

dfj,1 = Cj,1η
f
j,1.

(12)

Now we design the filtered equivalent virtual control ᾱf
j,1 as

ᾱf
j,1 = −kj,1z

f
j,1 − (θ̂j,1 + βj,1)

Tϕf
j,1 − d̂fj,1, (13)

where kj,1 > 0 is a positive control parameter, (θ̂j,1 + βj,1) is the I&I estimate for θj,1 updated by

˙̂
θj,1 = −γj,1ϕ

f
j,1(−kj,1z

f
j,1 + zfj,2)− γj,1ϕ̇

f
j,1z

f
j,1 − γj,1σj,1(θ̂j,1 + βj,1),

βj,1 = γj,1ϕ
f
j,1z

f
j,1,

(14)

with γj,1, σj,1 > 0 being positive design parameters with appropriate dimensions, and d̂fj,1 is the distur-
bance observer developed as

˙̂ηfj,1 =Wj,1(η̂
f
j,1 + Γj,1z

f
j,1)− Γj,1(−kj,1z

f
j,1 + zfj,2),

d̂fj,1 = Cj,1(η̂
f
j,1 + Γj,1z

f
j,1),

(15)

with Γj,1 a suitable parameter vector to be designed.
Now substituting (13) into (11) yields

żfj,1 = −kj,1z
f
j,1 + zfj,2 − ζTj,1ϕ

f
j,1 + Cj,1η̃

f
j,1, (16)

where ζj,1 = θ̂j,1 − θj,1 + βj,1 is the off-the-manifold co-ordinate and η̃fj,1 = ηfj,1 − η̂fj,1 − Γj,1z
f
j,1 is the

observer error. The time-derivative of ζj,1 can be calculated by invoking (14) and (16) as

ζ̇j,1 =
˙̂
θj,1 + γj,1ϕ

f
j,1(−ki,1z

f
j,1 + zfj,2 − ζTj,1ϕ

f
j,1 + Cj,1η̃

f
j,1) + γj,1ϕ̇

f
j,1z

f
j,1

= −γj,1ϕ
f
j,1ϕ

fT
j,1 ζj,1 + γj,1ϕ

f
j,1Cj,1η̃

f
j,1 − γj,1σj,1(θ̂j,1 + βj,1).

(17)
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Moreover, the time-derivative of η̃fj,1 satisfies

˙̃ηfj,1 =Wj,1η̃
f
j,1 +̟f

j,1 − Γj,1(−ζ
T
j,1ϕ

f
j,1 + Cj,1η̃

f
j,1)

= (Wj,1 − Γj,1Cj,1)η̃
f
j,1 +̟f

j,1 + Γj,1ζ
T
j,1ϕ

f
j,1,

(18)

where the matrix Wj,1 − Γj,1Cj,1 can be made Hurwitz by selecting appropriate Γj,1 since (Wj,1, Cj,1) is
observable. Now choosing the Lyapunov function,

Vj,1 =
1

2
zf2j,1 +

εj,1
2
ζTj,1γ

−1
j,1 ζj,1 + η̃fTj,1Pj,1η̃

f
j,1 (19)

for the (j, 1)th subsystem where εj,1 > 0 is a positive constant, and Pj,1 > 0 is the solution of the
equation (Wj,1 − Γj,1Cj,1)

TPj,1 + Pj,1(Wj,1 − Γj,1Cj,1) = −Qj,1 with Qj,1 > 0. The time-derivative of
Vj,1 is calculated using (16)–(18) as

V̇j,1 = zfj,1(−kj,1z
f
j,1 + zfj,2 − ϕfT

j,1 ζj,1 + Cj,1η̃
f
j,1) + εj,1ζ

T
j,1(−ϕ

f
j,1ϕ

fT
j,1 ζj,1 + ϕf

j,1Cj,1η̃
f
j,1

− σj,1(θj,1 + ζj,1))− η̃fTj,1Qj,1η̃
f
j,1 + 2η̃fTj,1Pj,1Γj,1ζ

T
j,1ϕ

f
j,1 + 2η̃fTj,1Pj,1̟

f
j,1.

(20)

Using Young’s inequality,

zfj,1ϕ
fT
j,1 ζj,1 6

1

2
zf2j,1 +

1

2
(ϕfT

j,1 ζj,1)
2,

zfj,1Cj,1η̃
f
j,1 6

1

2
‖Cj,1‖

2‖η̃fj,1‖
2 +

1

2
zf2j,1,

− ζTj,1σj,1(θj,1 + ζj,1) 6 −
σj,1
2

‖ζj,1‖
2 +

σj,1
2

‖θj,1‖
2,

εj,1ζ
T
j,1ϕ

f
j,1Cj,1η̃

f
j,1 6

εj,1
2ρj,1

(ϕfT
j,1 ζj,1)

2 +
εj,1ρj,1

2
‖Cj,1‖

2‖η̃fj,1‖
2,

2η̃fTj,1Pj,1Γj,1ζ
T
j,1ϕ

f
j,1 6 ‖Pj,1Γj,1‖

2(ϕfT
j,1 ζj,1)

2 + ‖η̃fj,1‖
2,

2η̃fTj,1Pj,1̟
f
j,1 6 ‖Pj,1‖

2‖̟f
j,1‖

2 + ‖η̃fj,1‖
2,

(21)

with ρj,1 >
1
2 , then we have

V̇j,1 6 −(kj,1 − 1)zf2j,1 + zfj,1z
f
j,2 −

(

εj,1(2ρj,1 − 1)

2ρj,1
− ‖Pj,1Γj,1‖

2 −
1

2

)

(ϕfT
j,1 ζj,1)

2 −
εj,1σj,1

2
‖ζj,1‖

2

−

(

λmin(Qj,1)−
εj,1ρj,1 + 1

2
‖Cj,1‖

2 − 2

)

‖η̃fj,1‖
2 +

εj,1σj,1
2

‖θj,1‖
2 + ‖Pj,1‖

2‖̟f
j,1‖

2.

(22)

Now we shall recover the virtual control law αj,1. First the derivative of ᾱf
j,1 is calculated as

˙̄αf
j,1 = −kj,1ż

f
j,1 − (

˙̂
θj,1 + γj,1ϕ̇

f
j,1z

f
j,1 + γj,1ϕ

f
j,1ż

f
j,1)

Tϕf
j,1 − (θ̂j,1 + βj,1)

Tϕ̇f
j,1 − Cj,1

˙̂ηfj,1, (23)

which is available due to the defined low-pass filters and the adaptive laws. From (6), (13), and (23), αj,1

can be obtained as

αj,1 = τᾱf
j,1 + ˙̄αf

j,1 − ǫjcj,1ξj,1 − fj,1 + ẏj,r. (24)

The obtained αj,1 is then passed through the command filter (6) to get the filtered signals αf
j,1 and α̇f

j,1

which will be used in the next step.

Remark 3. With the filter operation, the regressor ϕj,1 is replaced by the filtered variable ϕf
j,1, thus

avoiding the requirement of solving PDEs, as displayed in the constructed I&I adaptive law. A similar
operation will be applied to the following design steps (j, 2)–(j, nj), and this largely releases the pressure
due to the tedious calculation, particularly for regressors with miscellaneous arguments. Therefore, the
structural conditions on the regressors required in [3] can be removed for systems in the parametric strict
feedback form.
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Step j, ij (j = 1, . . . ,m, ij = 2, . . . , nj). The process for the second step to the njth step of the jth
subsystem will be illustrated here. Differentiating zj,ij using (1) and (8) gives

żj,ij = ẋj,ij − α̇f
j,ij−1 − ξ̇j,ij

= zj,ij+1 + αc
j,ij

+ ξj,ij+1 + θTj,ijϕj,ij + fj,ij + dj,ij + δj,ij − α̇c
j,ij−1 − ξ̇j,ij

= zj,ij+1 + θTj,ijϕj,ij + dj,ij + δj,ij + ᾱj,ij , ij = 2, . . . , nj − 1,

(25)

where δj,1 = · · · = δj,nj−1 = 0, δj,nj
= dj,s(vj), and the equivalent virtual control ᾱj,ij is given by

ᾱj,ij = αj,ij + ǫij cj,ijξj,1 + fj,ij − α̇c
j,ij−1. (26)

Filtering both sides of (25) by using (6) yields

żfj,ij = zfj,ij+1 + θTj,ijϕ
f
j,ij

+ dfj,ij + ᾱf
j,ij

+ δfj,ij , ij = 2, . . . , nj , (27)

where dfj,ij is generated by the filtered exosystem,

η̇fj,ij =Wj,ijη
f
j,ij

+̟f
j,ij
,

dfj,ij = Cj,ijη
f
j,ij
.

(28)

Assign ᾱf
j,ij

as

ᾱf
j,ij

= −zfj,ij−1 − kj,ij z
f
j,ij

− (θ̂j,ij + βj,ij )
Tϕf

j,ij
− d̂fj,ij ij = 2, . . . , nj − 1, (29)

where kj,ij > 0 is a positive control parameter, (θ̂j,ij + βj,ij ) is the I&I estimate for θj,ij updated by

˙̂
θj,ij = −γj,ijϕ

f
j,ij

(−zfj,ij−1 − ki,ij z
f
j,ij

+ zfj,ij+1)− γj,ij ϕ̇
f
j,ij
zfj,ij − γj,ijσj,ij (θ̂j,ij + βj,ij ),

βj,ij = γj,ijϕ
f
j,ij
zfj,ij ,

(30)

where γj,ij > 0 and σj,ij > 0 are positive design parameters, and d̂fj,ij is the disturbance observer updated
by

˙̂ηfj,ij =Wj,ij (η̂
f
j,ij

+ Γj,1z
f
j,ij

)− Γj,ij (−z
f
j,ij−1 − kj,ij z

f
j,ij

+ zfj,ij+1),

d̂fj,ij = Cj,ij (η̂
f
j,ij

+ Γj,1z
f
j,ij

),
(31)

with Γj,ij a suitable design parameter vector. Substituting (29) into (27) yields

żfj,ij = −zfj,ij−1 − kj,ijz
f
j,ij

+ zfj,ij+1 − ϕfT
j,ij
ζj,ij + Cj,ij η̃

f
j,ij

+ δfj,ij , (32)

with ζj,ij = θ̂j,ij − θj,ij +βj,ij and η̃fj,ij = ηfj,ij − η̂fj,ij −Γj,1z
f
j,ij

is the observer error. The time-derivative

of ζj,ij and η̃fj,ij can be calculated respectively as

ζ̇j,ij = −γj,ijϕ
f
j,ij
ϕfT
j,ij
ζj,ij + γj,ijϕ

f
j,ij
Cj,ij η̃

f
j,ij

+ γj,ijϕ
f
j,ij
δfj,ij − γj,ijσj,ij (θj,ij + ζj,ij ),

˙̃ηfj,ij = (Wj,ij − Γj,ijCj,ij )η̃
f
j,ij

+̟f
j,ij

+ Γj,ij ζ
T
j,ij
ϕf
j,ij

− Γj,ijδ
f
j,ij
.

(33)

Now consider the following function:

Vj,ij =
1

2
zf2j,ij +

εj,ij
2
ζTj,ijγ

−1
j,ij
ζj,ij + η̃fTj,ijPj,ij η̃

f
j,ij

(34)

for the (j, ij)th subsystem where εj,ij > 0 is a positive constant and Pj,ij > 0 is the solution of the
equation (Wj,ij −Γj,ijCj,ij )

TPj,ij +Pj,ij (Wj,ij −Γj,ijCj,ij ) = −Qj,ij with Qj,ij > 0. The time-derivative
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of Vj,ij is calculated using (32) and (33) as

V̇j,ij = zfj,ij (−z
f
j,ij−1 − kj,ij z

f
j,ij

+ zfj,ij+1 − ϕfT
j,ij
ζj,ij + Cj,ij η̃

f
j,ij

) + εj,ijζ
T
j,ij

(−ϕf
j,ij
ϕfT
j,ij
ζj,ij

+ ϕf
j,ij
Cj,ij η̃

f
j,ij

+ ϕf
j,ij
δfj,ij − σj,ij (θj,ij + ζj,ij ))− η̃fTj,ijQj,ij η̃

f
j,ij

+ 2η̃fTj,ijPj,ijΓj,ijζ
T
j,ij
ϕf
j,ij

+ 2η̃fTj,ijPj,ij̟
f
j,ij

− 2η̃fTj,ijPj,ijΓj,ijδ
f
j,ij

6 −zfj,ij−1z
f
j,ij

− (kj,ij − 1)zf2j,ij + zfj,ijz
f
j,ij+1 −

(

εj,ij (2ρj,ij − 1)

2ρj,ij
− ‖Pj,ijΓj,ij‖

2 −
1

2

)

× (ϕfT
j,ij
ζj,ij )

2 −
εj,ijσj,ij

2
‖ζj,ij‖

2 −

(

λmin(Qj,ij )−
εj,ijρj,ij + 1

2
‖Cj,ij‖

2 − 2

)

‖η̃fj,ij‖
2

+
εj,ijσj,ij

2
‖θj,ij‖

2 + ‖Pj,ij‖
2‖̟f

j,ij
‖2 + εj,ij ζ

T
j,ij
ϕf
j,ij
δfj,ij − 2η̃fTj,ijPj,ijΓj,ijδ

f
j,ij
,

(35)

with ρj,1, . . . , ρj,nj−1 >
1
2 and ρj,nj

> 3
2 . Note that the virtual control law αj,ij should be recovered

according to (29),

αj,ij = τᾱf
j,ij

+ ˙̄αf
j,ij

− ǫ
ij
j cj,ijξj,1 − fj,ij + α̇f

j,ij−1, (36)

where the derivative of ᾱf
j,ij

is

˙̄αf
j,ij

= −żfj,ij−1 − kj,ij ż
f
j,ij

− (
˙̂
θj,ij + γj,ij ϕ̇

f
j,ij
zfj,ij + γj,ijϕ

f
j,ij
żfj,ij )

Tϕf
j,ij

− (θ̂j,ij + βj,ij )
Tϕf

j,ij
− Cj,ij

˙̂ηfj,ij ,
(37)

which is available due to the filters and adaptive law. By passing αj,ij through the command filter, the

filtered signals αf
j,ij

and α̇f
j,ij

can be obtained.

Step j, nj + 1. This is the final step of the design. Differentiating zn using (5) and (8) gives

żj,nj+1 =
∂gj(vj)

∂vj
(−hjvj + wj)− α̇c

j,nj
− ξ̇j,nj+1

= χj(−hjvj + wj)− α̇c
j,nj

+ ǫ
nj+1
j cj,nj+1ξj,1,

(38)

with χj =
∂gj(vj)
∂vj

> 0. In [26], the Nussbaum-based approach is used to deal with the time-varying term

χj . In this paper, inspired by [38,39], we use an update law with a smooth function for the lower bound
of χj, defined as χ̄j = inft>0{χj(t)}.

The control law is designed as

wj = −χ̂2
j w̄

2
j zj,nj+1/(χ̂

2
j w̄

2
j z

2
j,nj+1 + ϑ2)

1

2 ,

w̄j = kj,nj+1zj,nj+1 − χjhjvj − α̇f
j,nj

+ ǫ
nj+1
j cj,nj+1ξj,1,

˙̂χj = ψjw̄jzj,nj+1 − ψjΨjχ̂j ,

(39)

with kj,nj+1, ψj ,Ψj, ϑ > 0. Note that the following holds [38, 39]:

χjwjzj,nj+1 = −χjχ̂
2
j w̄

2
j z

2
j,nj+1/(χ̂

2
j w̄

2
j z

2
j,nj+1 + ϑ2)

1

2

6 −χ̄jχ̂
2
j w̄

2
j z

2
j,nj+1/(χ̂

2
j w̄

2
j z

2
j,nj+1 + ϑ2)

1

2

6 χ̄jϑ− χ̄jχ̂jzj,nj+1w̄j

6 χ̄jϑ− zj,nj+1w̄j + χ̄jχ̃jzj,nj+1w̄j ,

(40)

with the estimation error χ̃j =
1
χ̄j

− χ̂j .

Consider the following function:

Vj,nj+1 =
1

2
z2j,nj+1 +

χ̄j

2ψj

χ̃2
j , (41)
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whose time-derivative is derived using (38)–(40) as

V̇j,nj+1 = zj,nj+1(χj(−hjvj − χ̂2
j w̄

2
j zj,nj+1/(χ̂

2
j w̄

2
j z

2
j,nj+1 + η2)

1

2 )− α̇f
j,nj

+ ǫnj+1cj,nj+1ξj,1)−
χ̄j

ψj

χ̃j
˙̂χj

6 −kj,nj+1z
2
j,nj+1 + χ̄jϑ+ χ̄jχ̃jzj,nj+1w̄j −

χ̄j

ψj

χ̃j
˙̂χj

6 −kj,nj+1z
2
j,nj+1 + χ̄jϑ+ χ̃jχ̄jΨjχ̂j .

(42)
Using Young’s inequality,

χ̃jχ̄jΨjχ̂j 6 −
χ̄jΨj

2
χ̃2
j +

Ψj

2χ̄j

, (43)

then Eq. (42) becomes

V̇j,nj+1 6 −kj,nj+1z
2
j,nj+1 −

χ̄jΨj

2
χ̃2
j + χ̄jϑ+

Ψj

2χ̄j

. (44)

4 Stability analysis

The stability of the closed-loop system under the designed control scheme will be illustrated in the
following theorem.

Theorem 1. Consider the uncertain MIMO nonlinear system (1) subject to the external disturbance
(2) and the input constraint (3). It is closed with the control laws (24), (36), and (39), the I&I adaptive
laws (14) and (30), and the disturbance observers (15) and (31). Under Assumptions 1 and 2, it can be
guaranteed that (1) all the signals in the closed-loop system are ultimately bounded and, (2) the output
tracking error ej(t) = xj,1(t) − yj,r(t) finally converges to a small residual bound around zero that can
be adjusted by choosing appropriate design parameters.

Proof. Consider the function Vn =
∑m

j=1 Vj,nj+1 whose derivative can be calculated using (44) as

V̇n 6

m
∑

j=1

(

−kj,nj+1z
2
j,nj+1 −

χ̄jΨj

2
χ̃2
j + χ̄jϑ+

Ψj

2χ̄j

)

6 −κnVn +∆n,

(45)

where κn = min{2kj,nj+1, ψjΨj} and ∆n =
∑m

j=1(χ̄jϑ +
Ψj

2χ̄j
). This implies that Vn(t) is bounded

and zj,nj+1(t) and χ̃j(t) are also bounded. Now consider the function V̄ =
∑m

j=1

∑nj

ij=1 Vj,ij , whose

time derivative is calculated by using (22), (35) and choosing
εj,ij (2ρj,ij

−1)

2ρj,ij

− ‖Pj,ijΓj,ij‖
2 − 1

2 > 0,

λmin(Qj,ij )−
εj,ij ρj,ij

+1

2 ‖Cj,ij‖
2 − 2 = 1, ij = 1, . . . , nj − 1,

3εj,nj
ρj,nj

−2εj,nj

4ρj,nj

−‖Pj,nj
Γj,nj

‖2 − 1
2 > 0, and
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λmin(Qj,nj
)−

εj,nj
ρj,nj

+1

2 ‖Cj,nj
‖2 − 3 = 1,

˙̄V 6

m
∑

j=1

(

− (kj,1 − 1)zf2j,1 + zfj,1z
f
j,2 −

(

εj,1(2ρj,1 − 1)

2ρj,1
− ‖Pj,1Γj,1‖

2 −
1

2

)

(ϕfT
j,1 ζj,1)

2 −
εj,1σj,1

2
‖ζj,1‖

2

−

(

λmin(Qj,1)−
εj,1ρj,1 + 1

2
‖Cj,1‖

2 − 2

)

‖η̃fj,1‖
2 +

εj,1σj,1
2

‖θj,1‖
2 + ‖Pj,1‖

2‖̟f
j,1‖

2

)

+

m
∑

j=1

nj
∑

ij=2

(

− zfj,ij−1z
f
j,ij

− (kj,ij − 1)zf2j,ij + zfj,ij z
f
j,ij+1 −

(

εj,ij (2ρj,ij − 1)

2ρj,ij
− ‖Pj,ijΓj,ij‖

2 −
1

2

)

× (ϕfT
j,ij
ζj,ij )

2 −
εj,ijσj,ij

2
‖ζj,ij‖

2 −

(

λmin(Qj,ij )−
εj,ijρj,ij + 1

2
‖Cj,ij‖

2 − 2

)

‖η̃fj,ij‖
2

+
εj,ijσj,ij

2
‖θj,ij‖

2 + ‖Pj,ij‖
2‖̟f

j,ij
‖2 + εj,ijζ

T
j,ij
ϕf
j,ij
δfj,ij − 2η̃fTj,ijPj,ijΓj,ij δ

f
j,ij

)

6

m
∑

j=1

nj−1
∑

ij=1

(

− (kj,ij − 1)zf2j,ij −
εj,ijσj,ij

2
‖ζj,ij‖

2 − ‖η̃fj,ij‖
2
)

+

m
∑

j=1

(

−

(

kj,nj
−

3

2

)

zf2j,nj

−
εj,nj

σj,nj

2
‖ζj,nj

‖2 − ‖η̃fj,nj
‖2

)

+ ∆̄

6 −κ̄V̄ + ∆̄,
(46)

where the inequalities εj,nj
ζTj,nj

ϕf
j,nj

δfj,nj
6

εj,nj

4 (ζTj,nj
ϕf
j,nj

)2 + εj,nj
δf2j,nj

and −2η̃fTj,nj
Pj,nj

Γj,nj
δfj,nj

6

‖η̃fj,nj
‖2 + ‖Pj,nj

Γj,nj
δfj,nj

‖2 have been used and κ̄ = minj=1,...,m{2kj,1 − 2, . . . , 2kj,nj−1 − 2, 2kj,nj
−

3,
σj,1

λmax(γ
−1

j,1
)
, . . . ,

σj,nj

λmax(γ
−1

j,nj
)
, 1
λmax(Pj,1)

, . . . , 1
λmax(Pj,nj

)} and ∆̄ =
∑m

j=1

∑nj

ij=1(
1
2 sup{z

f2
j,nj+1(t)}+

εj,ij σj,ij

2

×‖θj,ij‖
2+‖Pj,ij‖

2‖̟f
j,ij

‖2+εj,nj
δf2j,nj

+‖Pj,nj
Γj,nj

δfj,nj
‖2). Note that since zj,nj+1(t) is bounded from the

previous analysis, from Assumption 2, ̟j,ij (t) is bounded and δj,nj
= gj(vj) is bounded; then the filtered

variables zfj,nj+1(t), ̟
f
j,ij

(t), and δfj,nj
are also bounded which implies that from (44) V̄ (t) is bounded

and thus zfj,ij (t), ζj,ij (t), and η̃j,ij (t) are all bounded. Immediately the estimates θ̂j,ij (t) + βj,ij (t) and

η̂j,ij (t) + Γj,ij z
f
j,ij

(t) are also bounded. Because zfj,ij (t) are all generated by the stable filters with the

input zj,ij (t), then zj,ij (t) is also bounded.

Next, to analyze the boundedness of ξj,ij we define the scaled variable ξj = ǭ−1
j [ξj,1, . . . , ξj,nj+1]

T with

ǭj = diag{ǫj, ǫ
2
j , . . . , ǫ

nj+1
j }; then the dynamics of ξj in (8) can be rewritten in a compact form as

ξ̇j = ǫjAjξj + ǭ−1
j Bj , (47)

where Bj = [αf
j,1 − αj,1, . . . , α

f
j,nj

− αj,nj
, 0]T with

Aj =



















−cj,1 1 0 . . . 0

−cj,2 0 1 . . . 0
...

...
...
. . .

...

−cj,nj
0 0 . . . 1

−cj,nj+1 0 0 . . . 0



















. (48)
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Consider the function Vξ =
∑m

j=1 ξ
T
j Pjξj with AT

j Pj + PjAj = −I, Pj > 0 whose time derivative is

V̇ξ =
m
∑

j=1

(−ǫj‖ξj‖
2 + 2ξTj Pj ǭ

−1
j Bj)

6

m
∑

j=1

(−(ǫj − 1)‖ξj‖
2 + ‖Pj ǭ

−1
j Bj‖

2)

6 −κξVξ +∆ξ,

(49)

with κξ = minj=1,...,m{
ǫj−1

λmax(Pj)
}, ∆ξ = sup{

∑m
j=1 ‖Pj ǭ

−1
j Bj(t)‖

2}. Since from [14] the command filter

errors αf
j,ij

− αj,ij , . . . , ij = 1, . . . , nj are bounded, then ∆ξ is bounded. As a result we can deduce

the boundedness of Vξ(t) and thus ξj(t) is bounded. Given the boundedness of zj,1(t), ξj,1(t), and
Assumption 2 we know xj,1 is also bounded according to (7). Then immediately the virtual control

law αj,1 is bounded in (24) and the command filtered variables αf
j,1, α̇

f
j,1 are also bounded. According

to (7) again then xj,2 is bounded. By recursive procedures we have αj,2, . . . , αj,nj
, αf

j,2, . . . , α
f
j,nj

, and

xj,3, . . . , xj,nj
all bounded. Furthermore, the boundedness of the control law wj in (39) can be established.

Consequently, all the closed-loop signals are ultimately bounded.
On the other hand, solving (46) and (49) respectively yields

V̄ (t) 6 V̄ (0)e−κ̄t +
∆̄

κ̄
(1 − e−κ̄t),

Vξ(t) 6 Vξ(0)e
−κξt +

∆ξ

κξ
(1 − e−κξt);

(50)

then it can be concluded that limt→∞ |zfj,1(t)| 6
√

2∆̄
κ̄

and limt→∞ |ξj,ij (t)| 6
√

∆ξ

λmin(Pj)κξ
. From (6) the

ultimate bound of zj,1(t) can be calculated as limt→∞ |zfj,1(t)| = limt→∞ |τ żfj,1 + zfj,1| 6
√

2∆̄
κ̄

+ τ̟j with

̟j > 0 the ultimate bound of żfj,1. Consequently, from (7) the output tracking error ej(t) = xj,1(t)−yj,r(t)

satisfies limt→∞ |ej(t)| = limt→∞ |zj,1(t) + ξj,1(t)| 6

√

2∆̄
κ̄

+ τ̟j +
√

∆ξ

λmin(Pj)κξ
. The proof is thus

completed.

Remark 4. Note that in the development process, the command filters for the tracking error variable
zj,ij , the regressor ϕj,ij , and the virtual control αj,ij are actually needed to be implemented to generate

the filtered variables zfj,ij , ϕ
f
j,ij

, and αf
j,ij

for j = 1, . . . ,m, ij = 1, . . . , nj . The filtered exosystems (12)

and (28) are only presented for analysis because their states need to be estimated by the disturbance
observer.

Remark 5. Although the result in [40] can completely dominate the command filter error by introducing
a continuous robust function in the auxiliary system, the upper bound of the command filter error may
be hard to know in practice. Alternatively, in this paper the auxiliary system in the command-filtered
backstepping method is designed in a high-gain form, which restrains the command filter error by simply
increasing the high-gain parameter.

Remark 6. In the suggested control scheme, the main control parameters kj,ij , cj,ij , τ , ǫj , γj,ij ,
Γj,ij , σj,ij , ψj , and Ψj , j = 1, . . . ,m, ij = 1, . . . , nj are needed to be chosen appropriately. Besides,
theoretically speaking, the larger values of kj,ij , ǫj , ψj , and γj,ij contribute to faster convergence rates
and smaller residual tracking errors. However, too high values for them can also result in an increase
in control effort and may activate unmodeled dynamics. In particular, the large value of the high-gain
parameter ǫj implies higher sensitivity to noises such as input and sensor noises. As a result, when
choosing these parameters, users should design and adjust based on the actual situation to determine
the more appropriate values. The Γj,ij s and cj,ij s need to be chosen such that the system matrices in
(18), (33), and (48) are Hurwitz. The parameters σj,ij ,Ψj of the leakage terms in the adaptive laws
should be fixed to the appropriate values since their sizes provide the trade-off between the boundedness
of estimates and the size of ultimate bounds. Furthermore, the constant τ in the command filter for
filtering the virtual control laws should be selected small for a good approximation, while the τ for
filtering the tracking error variable or regressors need not be chosen small essentially. However, it has
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been indicated from the derived bound of the output error ej(t) that a small value of τ is beneficial for
decreasing the ultimate bound of ej(t) since it decreases the bound of the term τ̟j .

5 Simulations

5.1 Example 1

Consider the following nonlinear system:

ẋ1,1 = x1,2 + θ1x
2
1,1,

ẋ1,2 = u1 + d1(t),

ẋ2,1 = x2,2 + d2(t),

ẋ2,2 = u2 + θ2x1,1x2,1,

(51)

where unknown parameters θ1 = θ2 = 1 and d1(t) and d2(t) are generated by the following exosystems:

η̇j =

[

0 1

−1 0

]

ηj +̟j(t),

dj(t) =
[

1 0
]

ηj ,

(52)

for j = 1, 2, ̟1(t) = [sin(5t), 0]T and ̟2(t) = [0, cos(5t)]T. For simplicity the controller parameters for
the two subsystems are set as the same, given by k1 = k2 = k3 = c1 = c2 = c3 = h = 5, ǫ = 1.5,
γ1 = γ2 = 2, ϑ = 0.01, σ1 = σ2 = Φ = 0.01, Γ1 = Γ2 = [2, 0]T, and ψ = 0.0001. The filter constants for
generating the filtered tracking error variable and the filtered regressors are set as τ = 1 and the filter
constant for filtered virtual control is τ = 0.01. In simulation, the initial states are x1(0) = [1,−0.5]T

and x2(0) = [−1, 0]T. The initial values for the update laws are all set as zero. The initial exosystem
states are η1(0) = [1, 2]T and η2(0) = [−1, 0]T. The control saturation magnitude is set as u1,M = 80
and u2,M = 170. Simulation results for this case are shown in Figures 2 and 3. In Figure 2, the curves of
tracking errors and control inputs of the two subsystems are depicted, where good tracking performances
can be observed and control saturation occurs shortly in the transient stage. Figure 3 presents the time
evolutions of estimated disturbance and parameter, where it can be observed that they are all bounded
and very close to their true values. In order to further illustrate the performance of the used smooth
function with bounding estimate in (39), we replace the bounding estimation with the Nussbaum-based
approach in [26] under the same condition and parameters. The tracking errors and control inputs of
this case are shown in Figure 4, where it can be seen that the transient tracking performance is relatively
poor. More specifically, the tracking errors increase reversely in the transient process and the control
inputs have longer saturation time compared with the previous case, which illustrate the advantage of
the proposed method.

5.2 Example 2

To further test the efficiency of the suggested controller, we apply the scheme to an unmanned surface
vehicle (USV). We consider the fully actuated USV modeled by [41, 42],

η̇ = J(η)ν,

Mν̇ = −C(ν)ν −D(ν)ν + τ + τd(t),
(53)

where η = [x, y, ψ]T and ν = [u, v, r]T with (x, y) being the position of the vehicle in the earth-fixed frame,
ψ being the yaw angle, and u, v and r being the velocities in surge, sway, and yaw in the body-fixed frame.
τ and τd are the control inputs and external disturbances, respectively. J(η) denotes the rotation matrix,
M > 0 is the inertia matrix, C(ν) is the total Coriolis and centripetal acceleration matrix, and D(ν) is
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Figure 2 (Color online) Tracking errors and control inputs of the proposed method.

0 10 12 14 16 18 20

t (s)

−2

0

2

D
O

 f
o
r 
d

1f
D

O
 f

o
r 
d

2f

−1

0

1

−1

0

1

E
st

im
at

e 
fo

r 
θ

θ̂
1
+β

1

θ̂
2
+β

2

True

Estimated

True

Estimated

2 4 6 8

0 10 12 14 16 18 20

t (s)

2 4 6 8

0 10 12 14 16 18 20

t (s)

2 4 6 8

Figure 3 (Color online) Disturbance observer and adaptive law.

the hydrodynamic damping matrix, which are given by

J(η) =




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cosφ − sinφ 0

sinφ cosφ 0
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







,

(54)

where C13 = −M22v − M23r, M11 = m − Xu̇, M22 = m − Yv̇, M23 = mxg − Yṙ, M33 = Iz − Nṙ,
D11 = −Xu − X|u|u|u| − Xuuuu

2, D22 = −Yv − Y|v|v|v| − Y|r|v|r|, D23 = −Yr − Y|v|r|v| − Y|r|r|r|,
D32 = −Nv −N|v|v|v| −N|r|v|r|, and D33 = −Nr −N|v|r|v| −N|r|r|r| with m being the vehicle mass, Iz
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Figure 4 (Color online) Tracking errors and control inputs using Nussbaum function.

the moment of inertia in yaw direction, Xu̇, Yv̇, Yṙ, andNṙ the added masses, xg the xb-coordination of the
center of gravity, and X(·), Y(·), N(·) the hydrodynamic parameters. The explicit value of these parameters
can be found in [41, 42]. In simulation we assume that the matrices M and C(ν) are known but D(ν) is
unknown. Note that the auxiliary system (8) and virtual control law (36) for ij = nj should be modified
to take the known input matrix M into account. The disturbances in this simulation are the outputs of
the van der Pol oscillators given by η̇j,1 = ηj,2, η̇j,2 = −µjηj,1+ηj,2(1−η

2
j,1), dj(t) = ηj,1, j = 1, 2, 3 with

the parameter µj = j. We assume that the parameter µj is known but the nonlinear part ηj,2(1 − η2j,1)
is unknown to the control design, acting as the bounded unmodeled error. In simulation the initial
exosystem states are η1(0) = [0.2, 0.5]T, η2(0) = [0.6,−0.3]T, and η3(0) = [0, 0.7]T.

The controller parameters are given by cj,k = 5, j, k = 1, 2, 3, kj,k = 5, j, k = 1, 2, kj,3 = hj = 10,
ǫ = 1.5, γj = 3, ϑ = 0.01, σj = Φj = 0.01, Γj,1 = Γj,2 = [5, 5]T, Γj,3 = [20, 10]T, ψ1 = 0.0000001,
ψ2 = 0.001, and ψ3 = 0.0001. The filter constants are set as the same with the previous simulation.
The initial states are η(0) = [0.8, 1, 0.1]T and ν(0) = [−0.3, 0.6, 0.2]T. The initial values for the update
laws are all set as zero. The control saturation magnitude are set as τ1,M = τ2,M = 60 and τ3,M = 5.
For the sake of comparison we also implement the controller with the Lyapunov-based adaptive scheme,
which is actually the proposed control scheme whose adaptation part is replaced with the Lyapunov-based
adaptive approach. The Lyapunov-based adaptive controller is labeled as Controller 1 and the proposed
one is labeled as Controller 2. Both controllers are run under the same conditions and parameters.
Simulation results for this case are shown in Figures 5 and 6, where it can be observed that the proposed
method outperforms the Lyapunov-based adaptive controller during the transient stage and the control
inputs saturate less times during 5–10 s, which illustrates the advantage of the filter-based I&I adaptive
scheme.

6 Conclusion

In this paper, a command filter-based I&I adaptive controller is developed to cope with parametric
uncertainty, external disturbance, and input saturation of a class of MIMO systems. To design I&I
adaptive laws more feasibly, low-pass filters are used to avoid solving PDEs. A high-gain auxiliary system
is constructed to remove the effect of the command filter error of the virtual controls. A disturbance
observer is created and co-designed with the command filter-based adaptive backstepping method. A
smooth function is used to approximate the input saturation with an extended state. It is shown that
the suggested strategy guarantees the boundedness of closed-loop signals and the convergence to a small
residual bound of the tracking error. Numerical simulated examples are finally performed to verify the
proposed design. In future research, we consider experimentally confirming the proposed control scheme
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Figure 5 (Color online) Comparison of tracking errors.
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in actual systems and extending the approach to the multi-agent coordination field.
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