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Abstract In distributed optimization theory, network topology graphs are important in communications

among multiple agents. However, distributed optimization approaches cannot solve optimization problems

well if the graphs are infeasible or tampered. To this end, this paper develops two types of modified graph

systems for modifying or recovering the communication graphs among agents employed in distributed op-

timization. Two optimization problems for obtaining feasible graphs are formulated. Based on the two

optimization problems, two modified graph systems are derived accordingly and their convergence to the

optimal solution is proven. Via a coordination mechanism consisting of a distributed optimization approach

and a modified graph system, we can modify an infeasible communication graph into a feasible one or re-

cover a tampered graph, and the distributed optimization approach can resume its solver capability with the

modified graphs. Several examples are provided to demonstrate the efficiency of the main results.

Keywords distributed optimization, modified graph system, neurodynamic optimization, communication

graph

Citation Xia Z C, Liu Y, Wang D Y, et al. Modified graph systems for distributed optimization. Sci China Inf

Sci, 2023, 66(12): 222202, https://doi.org/10.1007/s11432-022-3781-4

1 Introduction

With the development of multiagent system (MAS) techniques and parallel computing approaches, dis-
tributed optimization has become a research hotspot in the area of control and computer technology. The
desirable distinguishing features of distributed optimization are summarized as: distributed optimization
approach reduces communication consumption since it merely needs local information rather than global
information; it has strong fault-tolerance and is safer; and the scalability of optimization approaches is
increased. Thanks to the above advantages, various distributed optimization approaches are developed
and applied in many areas, including sensor networks [1], resource allocation [2, 3], smart grid [4, 5],
machine learning [6, 7], and so on [8–12].

As an optimization approach via multiagent systems, a noteworthy feature of distributed optimization
is that the communication of optimization information is realized by the graph of multiple agents. Specif-
ically, in the basic structure of distributed optimization, a node denotes an agent and each node (agent)
has a local objective function. The global objective function is the sum of local objective functions. Every
node cooperates to achieve the global optimization objective through information interaction with neigh-
bor nodes. Therefore, the study of communication graphs becomes a hot point in distributed optimization
and many types of graphs have been designed and applied to distributed optimization approaches: undi-
rected graphs [4,6,7,10,13–19], strongly connected and weight-balanced graphs [2,3,11,20–22], uniformly
jointly connected graphs [23,24], and so on [9,25]. For example, in the studies of distributed optimization
over undirected graphs, the undirected graphs applied to distributed optimization approaches should be
connected to guarantee optimal solutions in consensus constraints. In [2, 20], digraphs are adopted in
distributed optimization approaches. To obtain the optimal solutions, the digraphs should be strongly
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connected and weight-balanced. In [21], the weights of communication graphs are adaptive and the
graphs are weight-balanced. In [25], although it only needs weight-unbalanced graphs, the considered
optimization problem has a weaker constraint, called approximate consensus constraint, than consensus
constraints in the problems considered in distributed optimization. In [23], an accelerated convergence
algorithm with time-varying general directed graphs is designed for distributed optimization and the
time-varying digraphs should be B0-strongly connected. The aforementioned studies provide several suf-
ficient conditions of communication graphs for distributed optimization. If communication graphs are
tampered or destroyed so that they do not satisfy these conditions, we may hardly obtain the optimal
solutions for distributed optimization problems with these graphs. Thus, a feasible graph is important
in a distributed optimization method.

The research on communication graphs shows that if an undirected connected graph or a strongly con-
nected and weight-balanced graph is applied to distributed optimization approaches, it can guarantee the
consensus constraints in distributed optimization [20] or the consensus of gradient-value in distributed
resource allocation [3, 26]. Based on the consensus, the optimization problems can be solved in a dis-
tributed manner. However, if communication graphs are not feasible for the optimization approach, or the
initially feasible graphs are tampered or destroyed later, it is hard for existing distributed optimization
approaches to obtain the optimal solutions.

To this end, we develop two modified graph systems (MGSs) to modify infeasible communication
graphs or recover the communication graphs which are feasible initially but are tampered or destroyed
later. The contributions are summarized as follows:

(1) For developing MGSs, two new optimization problems (Problems (7) and (14)) are established
for obtaining an undirected graph and a weight-balanced graph, respectively. Two new optimization
problems are transformed into vector forms (Problems (13) and (16)) in which a matrix for constructing
undirected graphs and a matrix for constructing weight-balanced graphs are derived (see Lemmas 4 and
6). Besides, several properties of the proposed matrices are provided (see Lemmas 5 and 7).

(2) Based on the new optimization problems, two MGSs (MGSs (17) and (18)) are derived. The
equilibrium points of the MGSs are proven to be the optimal solutions to the proposed optimization
problems (Theorem 1) and their convergence is proven (Theorems 2 and 3).

(3) A coordination mechanism consisting of a distributed optimization approach and an MGS is pro-
posed (see in (1) of Remark 2). The simulations show that, via the coordination mechanism, an infeasible
graph or a tampered or destroyed graph can be modified into a feasible one. Besides, the MAS for solving
optimization problems can run normally via the coordination mechanism.

The rest of this paper is organized as follows: In Section 2, the notations and problem formulation are
provided. In Section 3, two MGSs are developed and their convergence is proven. Besides, a coordination
mechanism consisting of a distributed optimization approach and a modified graph system is developed.
In Section 4, a numerical example is elaborated to illustrate the validity of the main results. In Section 5,
a conclusion is made.

2 Preliminaries and problem formulation

2.1 Preliminaries

Notations. Let R, R+, and R
n denote the set of all real numbers, the set of all positive numbers, and the

set of all n-dimension real vectors, respectively. × denotes the Cartesian product operator and ⊗ denotes
the Kronecker product operator. A denotes an n×m matrix and A(i, j) denotes the (i, j)-th element of
A for i = 1, . . . , n and j = 1, . . . ,m. Rowi(A) denotes the i-th row of A and Coli(A) denotes the i-th
column of A. Vec(A) := [Row1(A), . . . ,RowN(A)]T ∈ R

nm×1. For a group of vectors: x1, x2, . . . , xN ,

col[x1, x2, . . . , xN ] := (xT
1 , x

T
2 , . . . , x

T
N )T. For an n × n matrix M and ∀ x ∈ R

n, ‖x‖M :=
√
xTMx.

‖ · ‖ denotes the Euclidean norm. In denotes an n-dimension identity matrix, and 1n(v) denotes an
n-dimension vector with the v-th component being 1 and other components being 0.

Graph theory fundamentals. G(V , E , A) denotes a graph with N nodes. V = {1, . . . , N} is the
set of all nodes in graph G. E ⊂ V × V is the set of all edges in graph G. A ∈ R

N×N is the weighted
adjacency matrix of G. A(i, j) > 0 if (i, j) ∈ E . Otherwise, A(i, j) = 0. Let Ni = {j : A(i, j) 6= 0} be the
set of the neighbors of node i. L denotes the Laplacian matrix of graph G, where L(i, i) =

∑n
j=1 A(i, j)

for ∀i = 1, . . . , N and L(i, j) = −A(i, j) for i 6= j. A directed graph is said to be strongly connected if
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there exists a path from i to j for ∀i, j ∈ V . Besides, G is undirected if and only if A(i, j) = A(j, i) for
∀i, j = 1, . . . , N , and an undirected graph is said to be connected if there exists a path from i to j for
∀i, j ∈ V . G is said to be weight-balanced if

∑N
j=1 A(i, j) =

∑N
j=1 A(j, i), ∀i = 1, . . . , N .

Definition 1. x̄ is said to be an equilibrium point of the system ẋ = f(x) (f : Rn → R
n) if 0n = f(x̄).

Lemma 1 ([27]). For projection operation PΩ(x) = argminy∈Ω ‖x− y‖ with Ω ⊂ R
n, it holds that

(y − PΩ(y))
T(PΩ(y)− x) > 0, ∀y ∈ R

n, ∀x ∈ Ω, (1)

‖PΩ(y)− PΩ(x)‖ 6 ‖y − x‖, ∀x, y ∈ R
n, (2)

‖PΩ(y)− PΩ(x)‖2 6 (y − x)T (PΩ(y)− PΩ(x)), ∀x, y ∈ R
n. (3)

Lemma 2 (KKT conditions [28]). Consider a constrained convex optimization problem as follows:

min f(x) s.t. Mx = 0m, x ∈ Ω, (4)

with convex objective function f : Rn → R, x ∈ R
n, M ∈ R

m×n, and convex set Ω ⊂ R
n, the following

two statements hold:
(1) x∗ is an optimal solution to Problem (4) if and only if there exists λ∗ ∈ R

n such that PΩ(x
∗ −

∇f(x∗) +MTλ∗)− x∗ = 0n and Mx∗ = 0m.
(2) If M is of a row full rank, then x∗ is an optimal solution to Problem (4) if and only if there exists

y∗ such that 0n = M̃PΩ(y
∗) + (I − M̃)(y∗ − PΩ(y

∗) +∇f((I − M̃)PΩ(y
∗))) with M̃ = MT(MMT)−1M

and x∗ = PΩ(y
∗).

2.2 Problem formulation

Consider an optimization problem with N agents as follows:

min
∑N

i=1 fi(xi) s.t. xi = xj ∈ R
n, ∀i, j = 1, . . . , N, (5)

where fi : Rn → R is convex for ∀i = 1, . . . , N and the communication graph of agents is defined as
G(V , E , A).

To solve Problem (5), we introduce an MAS developed based on the KKT conditions as follows:

{

dx(t)
dt = −∇f(x)− Lµ− αLx,

dµ(t)
dt = Lx,

(6)

where x = col[x1, . . . , xN ], f(x) =
∑N

i=1 fi(xi), L = L ⊗ In, and L is the Laplacian matrix of graph G.
µ is a Lagrangian multiplier for the constraint xi = xj for i, j = 1, . . . , N . α is a positive parameter and
its selection principle can be found in [20]. In addition, the design method of MAS (6) can be found
in [13, Theorem 2].

A lemma is introduced to show the sufficient conditions such that MAS (6) solves Problem (5).

Lemma 3 ([7, 20]). If G is undirected and connected or G is strongly connected and weight-balanced,
then, from any initial state, MAS (6) converges to an optimal solution to Problem (5).

According to Lemma 3, in this paper, graph G is said to be feasible for MAS (6) if it is an undirected
and connected graph or a strongly connected and weight-balanced graph. Besides, graph G is said to be
infeasible for MAS (6) if MAS (6) cannot converge to the optimal solution to Problem (5) with graph G.
To this end, two cases need to be tackled for MAS (6).

Case 1. Graph G is infeasible for MAS (6).
Case 2. Graph G is feasible for MAS (6) initially, but it is tampered or destroyed during the operation

of MAS (6). The considered tampering behaviors or destroying behaviors are the tampering of the
elements of the adjacency matrix.

For two cases, especially for Case 2, if we do not know when or where the tampering behaviors happen
to the graph, we need to develop a dynamic mechanism to recover or modify the tampered graph to
a feasible one constantly during the operation of MAS (6). According to Lemma 3, MAS (6) is a
dynamic mechanism and it is globally stable at an optimal solution to Problem (5). Inspired by this
idea, we define new optimization problems with proper objective functions and constraints such that
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the optimal solutions to the defined optimization problems are feasible graphs for MAS (6). Then, by
the similar idea of developing MAS (6), we can develop dynamic mechanisms for solving the defined
optimization problems. Since the developed dynamic mechanisms can modify the graph for MAS (6),
they are said to be MGSs in this paper. Besides, the existing distributed optimization approaches
(e.g., [2–8, 10, 11, 13–17, 20, 21, 23, 24, 29]) cannot tackle two cases since most of them choose a feasible
graph before running the systems.

3 Main results

In this section, we develop two types of MGSs to modify graph G for MAS (6). In detail, two new
optimization problems are established for obtaining undirected graphs and weight-balanced graphs. The
proposed problems are transformed into vector forms as Problem (4). According to new vector-form
problems, two MGSs are developed and their convergence is proven.

3.1 Optimization problems for undirected graphs

In this subsection, we consider an optimization problem as follows:

min
A

C(A)

s.t. A(i, j) = A(j, i), ∀i, j = 1, . . . , N,

A(i, j) ∈ [A(i, j), A(i, j)], ∀i, j = 1, . . . , N, i 6= j,

A(i, i) = 0, ∀i = 1, . . . , N, (7)

where A ∈ R
N×N . A(i, j) and A(i, j) denote the given lower bound and upper bound of A(i, j) with

0 6 A(i, j) 6 A(i, j). Note that A is a weighted adjacency matrix of an undirected graph when it satisfies
the constraints of Problem (7). C(A) is an objective function and it can be adjusted to satisfy some
requirements.

The decision variable of Problem (7) is a matrix. To adopt the KKT conditions in Lemma 2 better,
we need to reformulate it as the form of Problem (4). Now, we provide a lemma to transform the first
equality constraint of Problem (7).

Lemma 4. Let Mu ∈ R
(N(N−1)/2)×N2

with

Mu(v, w) =











1, v ∈ [v(k), v̄(k)], w = w1(v, k), k = 1, . . . , N − 1,

−1, v ∈ [v(k), v̄(k)], w = w2(v, k), k = 1, . . . , N − 1,

0, otherwise,

(8)

where

v(k) =

k
∑

p=1

(N − p)−N + k + 1, (9)

v̄(k) =

k
∑

p=1

(N − p), (10)

w1(v, k) = (v − v(k)) + (k − 1)(N + 1) + 2, (11)

w2(v, k) =(k − 1)(N + 1) + 1 +N(w1(v, k)− ((k − 1)(N + 1) + 1)). (12)

Then, A(i, j) = A(j, i), ∀i, j = 1, . . . , N, if and only if MuVec(A) = 0N(N−1)/2.

Proof. Note that Roww(Vec(A)) = A(i, j) if and only if w = N(i − 1) + j. Assume that w1 satisfies
Roww1(Vec(A)) = A(i, j) for i < j and ∀ i = 1, . . . , N − 1. The proof begins with two parts: (i) If there
exists w2 such that w2 = (i−1)(N+1)+1+N(w1− ((i−1)(N+1)+1)), then Roww2(Vec(A)) = A(j, i);
(ii) For ∀ k = 1, . . . , N − 1 and ∀ v ∈ [v(k), v̄(k)], Roww1(v,k)(Vec(A)) = A(k, k + v − v(k) + 1).

Now, we prove (i). It can be obtained that w1 = N(i − 1) + j. Moreover, w2 = (i − 1)(N + 1) + 1 +
N((N(i− 1) + j)− ((i − 1)(N + 1) + 1)) = N(j − 1) + i which implies that Roww2(Vec(A)) = A(j, i).
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Next, we prove (ii). From (11), w1(v, k) − (N(k − 1) + k + v − v(k) + 1) = (v − v(k)) + (k − 1)(N +
1) + 2 − N(k − 1) − k − v + v(k) − 1 = 0. Thus, w1(v, k) = N(k − 1) + k + v − v(k) + 1 which implies
Roww1(v,k)(Vec(A)) = A(k, k + v − v(k) + 1).

Based on (ii), (9), and (10), v − v(k) + 1 ∈ [1, N − k] holds for ∀ k = 1, . . . , N − 1. Hence, for
∀ k = 1, . . . , N − 1, {A(k, k+ v− v(k)+ 1)}v∈[v(k),v̄(k)] = {A(k, k+1), A(k, k+2), . . . , A(k,N)}. Besides,
v(k+1)− v̄(k) =

∑k+1
p=1(N − p)−N + k+2−∑k

p=1(N − p) = 1, i.e., [v(k), v̄(k)]∩ [v(k+1), v̄(k+1)] = ∅
for ∀ k = 1, . . . , N − 2. Let B̄ := {Roww1(v,k)(Vec(A))}k=1,...,N−1,v∈[v(k),v̄(k)] and let B denote the set
of entries in the upper triangle of A. Thus, B̄ = B and Rowv(Mu)Vec(A) = Roww1(v,k)(Vec(A)) −
Roww2(v,k)(Vec(A)) hold for ∀ k = 1, . . . , N − 1.

Suppose that MuVec(A) = 0N(N−1)/2 holds; then for ∀ v ∈ [1, N(N − 1)/2], we have that Rowv(Mu)
Vec(A) = 0 which implies Roww1(v,k)(Vec(A)) = Roww2(v,k)(Vec(A)). Based on (i) and B̄ = B, A(i, j) =
A(j, i), i < j, ∀i, j = 1, . . . , N holds, which is equal to A(i, j) = A(j, i), ∀i, j = 1, . . . , N. Conversely,
suppose that A(i, j) = A(j, i), ∀i, j = 1, . . . , N holds; then A(i, j) = A(j, i), i < j, ∀i, j = 1, . . . , N holds.
Based on (i), Roww1(v,k)(Vec(A)) = Roww2(v,k)(Vec(A)) for ∀ k = 1, . . . , N − 1 and ∀ v ∈ [v(k), v̄(k)].
Owing to B̄ = B, then Rowv(Vec(A)) = 0 for ∀ v ∈ [1, N(N − 1)/2], which implies MuVec(A) =
0N(N−1)/2. The proof is complete.

In (2) of Lemma 2, the matrix of the linear equality constraint should be of a row full rank, thus, the
following lemma is provided.

Lemma 5. Mu is of a row full rank, i.e., rank(Mu) = N(N − 1)/2.

Proof. Based on (8), note that [v(k), v̄(k)] ∩ [v(k + 1), v̄(k + 1)] = ∅ for k = 1, . . . , N − 2 (according

to the proof of Lemma 4) and
∑N−1

k=1 (v̄(k) − v(k) + 1) =
∑N−1

k=1 k = N(N − 1)/2. Besides, we have that
Colw1(v,k)(Mu) = 1(v) and Colw2(v,k)(Mu) = −1(v) for ∀ k = 1, . . . , N − 1 and ∀ v ∈ [v(k), v̄(k)]. Since
B̄ = B, we have that Colw(Mu) = 0N(N−1)/2, w = {1, . . . , N2} \ ({w1(v, k), w2(v, k)}k=1,...,N−1, v ∈
[v(k + 1), v̄(k + 1)]). Then,

rank(Mu) = rank([Colw1(v(1),1)(Mu),Colw1(v(1)+1,1)(Mu), . . . ,Colw1(v̄(1),1)(Mu),

Colw1(v(2),2)(Mu),Colw1(v(2)+1,2)(Mu), . . . ,Colw1(v̄(2),2)(Mu),

. . . ,Colw1(v(N−1),N−1)(Mu), . . . ,Colw1(v̄(N−1),N−1)(Mu),

Colw2(v(1),1)(Mu),Colw2(v(1)+1,1)(Mu), . . . ,Colw2(v̄(1),1)(Mu),

Colw2(v(2),2)(Mu),Colw2(v(2)+1,2)(Mu), . . . ,Colw2(v̄(2),2)(Mu),

. . . ,Colw2(v(N−1),N−1)(Mu), . . . ,Colw2(v̄(N−1),N−1)(Mu)])

= rank([Colw1(v(1),1)(Mu),Colw1(v(1)+1,1)(Mu), . . . ,Colw1(v̄(1),1)(Mu),

Colw1(v(2),2)(Mu),Colw1(v(2)+1,2)(Mu), . . . ,Colw1(v̄(2),2)(Mu),

. . . ,Colw1(v(N−1),N−1)(Mu), . . . ,Colw1(v̄(N−1),N−1)(Mu)])

= rank
(

I∑N−1
k=1 (v̄(k)−v(k)+1)

)

= rank
(

I∑N−1
k=1 k

)

=

N−1
∑

k=1

k =
N(N − 1)

2
,

which completes the proof.

Example 1. An example of Mu with N = 3 is provided as follows:

Mu =









0 1 0 −1 0 0 0 0 0

0 0 1 0 0 0 −1 0 0

0 0 0 0 0 1 0 −1 0









.

If A(i, j) = A(j, i) for any i, j = 1, 2, 3, then we can obtain that MuVec(A) = 03. Vice versa. In addition,
rank(Mu) = 3.

Let aVec = Vec(A) ∈ R
N2

and C̃
(

a
Vec
)

= C(A); an optimization problem is shown in the following:

min C̃
(

a
Vec
)

s.t. Mua
Vec = 0N(N−1)/2, ∀i 6= j, i, j = 1, . . . , N,

a
Vec ∈ Ω, (13)
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where Ω =
∏N2

i=1 Ωi in which Ωi = {0} if i = 1 + (k − 1)(N + 1), k = 1, . . . , N and ΩN(i−1)+j =

[A(j, i), A(j, i)], ∀i, j = 1, . . . , N, i 6= j.

Corollary 1. A∗
u is an optimal solution to Problem (7) if and only if aVec

u
∗
= Vec(A∗

u) is an optimal
solution to Problem (13).

According to Lemma 4, we have that A(i, j) = A(j, i), ∀i, j = 1, . . . , N, if and only if Mua
Vec =

0N(N−1)/2. In addition, A(i, j) ∈ [A(i, j), A(i, j)], ∀i, j = 1, . . . , N, i 6= j, and A(i, i) = 0, ∀i = 1, . . . , N if
and only if aVec ∈ Ω. Therefore, Corollary 1 holds obviously. According to Corollary 1, Problem (7) is
converted into Problem (13).

3.2 Optimization problems for weight-balanced graphs

Similar to Problem (7), we consider an optimization problem whose decision variable is a weighted
adjacency matrix of a weight-balanced graph:

min
A

C(A)

s.t.

N
∑

j=1

A(i, j) =

N
∑

j=1

A(j, i), ∀i = 1, . . . , N,

A(i, j) ∈ [A(i, j), A(i, j)], ∀i, j = 1, . . . , N, i 6= j,

A(i, i) = 0, ∀i = 1, . . . , N. (14)

Similar to the transformation of Problem (7), in the following lemma, the first equality constraint of
Problem (14) is reformulated in a vector form.

Lemma 6. Let Md ∈ R
N×N2

with

Rowk(Md) =

{

∑v̄(k)
q1=v(k) Rowq1(Mu)−

∑k−1
q2=1 Rowv̄(q2)(Mu), k = 1, . . . , N − 1,

−∑k−1
q2=1 Rowv̄(q2)(Mu), k = N,

(15)

where v(k), v̄(k), and Mu are from Lemma 4. Then,
∑N

j=1 A(i, j) =
∑N

j=1 A(j, i), ∀i = 1, . . . , N, if and
only if MdVec(A) = 0N .

Proof. We just need to prove the statement: ∀i = 1, . . . , N , Rowi(Md)Vec(A) = 0 if and only if
∑N

j=1 A(i, j) =
∑N

j=1 A(j, i). Suppose that Rowi(Md)Vec(A) = 0; then one can obtain that





v̄(i)
∑

q1=v(i)

Rowq1(Mu)−
i−1
∑

q2=1

Rowv̄(q2)(Mu)



Vec(A) = 0.

For i = 1, . . . , N−1, combining (9) with (10), it holds that
∑v̄(i)

q1=v(i) Rowq1(Mu)Vec(A) =
∑N

j=i+1 A(i, j)−
∑N

i=j+1 A(j, i) and
∑i−1

q2=1 Rowv̄(q2)(Mu)Vec(A) = −∑i−1
j=1 A(i, j)+

∑i−1
j=1 A(j, i). Thus,

∑N
j=i+1 A(i, j)−

∑N
i=j+1 A(j, i) − (−∑i−1

j=1 A(i, j) +
∑i−1

j=1 A(j, i)) =
∑N

j=1,j 6=i A(i, j) − ∑N
j=1,j 6=i A(j, i) = 0. Thus,

∑N
j=1,j 6=i A(i, j) =

∑N
j=1,j 6=i A(j, i) which implies

∑N
j=1 A(i, j) =

∑N
j=1 A(j, i). Conversely, suppose

that
∑N

j=1 A(i, j) =
∑N

j=1 A(j, i) holds; then Rowi(Md)Vec(A) = 0 follows in the same way.

Similar to Lemma 5, the following lemma provides the ranks of Md and its augmented form M̃d.

Lemma 7. (1) rank(Md) = N − 1;

(2) Letting Ms = [
1 0

1×(N2−1)

0(N−1)×1 0
(N−1)×(N2−1)

] ∈ R
N×N2

and M̃d = Md +Ms, then M̃d is of a row full rank,

i.e., rank(M̃d) = N .

Proof. The proof of (1) begins with three statements:
(i) Colw(Md) = 0N for w = (k − 1)(N + 1) + 1, k = 1, . . . , N ;
(ii) Colw(Md) = 1N (k)− 1N (k + v − v(k) + 1) for v ∈ [v(k), v̄(k)], w = w1(v, k), k = 1, . . . , N − 1;
(iii) Colw1(v,k)(Md) + Colw2(v,k)(Md) = 0N for v ∈ [v(k), v̄(k)], k = 1, . . . , N − 1.
Combining (15) with (8), (11), and (12), (i) and (iii) hold. For (ii), based on (15) and (8), we

have Md(k, w1(v, k)) = 1 for ∀v ∈ [v(k), v̄(k)], k = 1, . . . , N − 1. Then, comparing (15) at different
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k = 1, . . . , N − 1, Md(k + v − v(k) + 1, w1(v, k)) = −1 holds for v ∈ [v(k), v̄(k)], k = 1, . . . , N − 1 which
leads to (iii). To sum up with (i), (ii), and (iii), the rank of Md is equal to the following matrix M ′

d:

M ′
d =









1T
N−1

01×(N−2)

1T
N−2

· · · 0n−1×(N−n)

1T
N−n

· · · 0N−1

1

−IN−1 −IN−2 · · · −IN−n · · · −1









.

Thus, rank(Md) = rank(M ′
d) = N−1. The proof of (2) can be obtained easily: rank(M̃d) = rank(Md+

Ms) = rank([1N (1) M ′
d]) = N.

Example 2. Based on Mu in Example 1 and (15), an example of Md with N = 3 is provided as follows:

Md =









0 1 1 −1 0 0 −1 0 0

0 −1 0 1 0 1 0 −1 0

0 0 −1 0 0 −1 1 1 0









.

Note that MdVec(A) = 03 if
∑3

j=1 A(i, j) =
∑3

j=1 A(j, i), ∀i = 1, 2, 3. Vice versa. In addition, we can

calculate rank(Mu) = 2. Meanwhile, M ′
d and M̃d can be calculated as follows:

M ′
d =









1 1 −1 0 −1 0

−1 0 1 1 0 −1

0 −1 0 −1 1 1









,

M̃d =









1 1 1 −1 0 0 −1 0 0

0 −1 0 1 0 1 0 −1 0

0 0 −1 0 0 −1 1 1 0









.

Then, we can obtain that rank(M ′
d) = N − 1 and rank(M̃d) = N .

To proceed, with the similar settings in Problem (13), an optimization problem is proposed as follows:

min C̃(aVec)

s.t. M̃da
Vec = 0N , ∀i 6= j,

a
Vec ∈ Ω, ∀i, j = 1, . . . , N. (16)

Corollary 2. A∗
d is an optimal solution to Problem (14) if and only if aVec

d

∗
= Vec(A∗

d) is an optimal
solution to Problem (16).

According to Corollary 2, Problem (14) is converted into Problem (16).

Remark 1. Solving Problems (13) and (16) can provide an undirected graph and a weight-balanced
graph, respectively. However, the obtained graphs can hardly be applicable to the conditions in Lemma 3
since they may not be connected or strongly connected. As mentioned in Subsection 3.1, the objective
function can be adjusted to satisfy some requirements. Thus, we can adjust a suitable objective function
to guarantee the connectivity. For example, a connected graph (or a strongly connected graph) Â is
provided in advance. Let âVec := Vec(Â). To guarantee the connectivity of the optimal solution, we can

set C(A) =
∑N

i=1

∑N
j=1(A(i, j)−Â(i, j))2, i.e., C̃(aVec) = ‖aVec− â

Vec‖2. From the example in Section 4,
the given objective function can lead to a connected optimal solution or a strongly connected optimal
solution.

3.3 Modified graph systems

In this subsection, we focus on developing MGSs for solving Problems (13) and (16). Based on the
invertibility of Mu or M̃d, let Pu = (Mu)

T(Mu(Mu)
T)−1Mu and Pd = (M̃d)

T(M̃d(M̃d)
T)−1M̃d.

Now, we propose two systems to solve Problems (13) and (16) as follows:
{

daVec

dt = −a
Vec + PΩ(a

Vec −∇C̃(aVec) +MTλ),
dλ
dt = −Ma

Vec,
(17)
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where M ∈ {Mu,Md}, aVec ∈ R
N2

, and λ ∈ {λu, λd} with λu ∈ R
N(N−1)/2 and λd ∈ R

N .

{

a
Vec = PΩ(a),

da
dt = −Pa

Vec − (I − P )(a− a
Vec +∇C̃

(

(I − P )aVec
)

),
(18)

where P ∈ {Pu, Pd} and a,aVec ∈ R
N2

.
Then, we present three theorems (Theorems 1–3) to prove the convergence of MGS (17) or MGS (18).

Theorem 1. If C̃
(

a
Vec
)

is convex, then the following four statements hold:

(1) If M = Mu, let col[aVec
u

∗
, λ∗

u] be an equilibrium point of MGS (17); then a
Vec
u

∗
is an optimal

solution to Problem (13).
(2) If M = Md, let col[aVec

d

∗
, λ∗

d] be an equilibrium point of MGS (17); then a
Vec
d

∗
is an optimal

solution to Problem (16).
(3) If P = Pu, let a

∗
u be an equilibrium point of MGS (18); then a

Vec
u

∗
= PΩ(a

∗
u) is an optimal solution

to Problem (13).
(4) If P = Pd, let a

∗
d be an equilibrium point of MGS (18); then a

Vec
d

∗
= PΩ(a

∗
d) is an optimal solution

to Problem (16).

Proof. For (1), based on Definition 1, 0N2 = −a
Vec
u

∗
+PΩ(a

Vec
u

∗−∇C̃(aVec
u

∗
)+MTλ∗

u) and MT
a
Vec
u

∗
=

0N(N−1)/2 hold. Then according to (1) in Lemma 2, aVec
u

∗
is an optimal solution to Problem (13). In

a similar way, Eq. (2) holds. For (3), based on Definition 1, aVec
u

∗
= PΩ(a

∗
u) and 0N2 = −Pa

Vec
u

∗ −
(IN2 −P )(a∗

u −a
Vec
u

∗
+∇C̃((IN2 −P )aVec

u
∗
)) hold. Then according to (2) in Lemma 2, a∗

u is an optimal
solution to Problem (16). In a similar way, Eq. (4) holds.

Assumption 1. C̃(aVec) is differentiable and strictly convex.

Theorem 2. Under Assumption 1, if C̃(aVec) is twice differentiable, then the following two statements
hold:

(1) If M = Mu, then from any initial state col[aVec(0), λu(0)] ∈ Ω× R
N(N−1)/2, MGS (17) converges

to an optimal solution to Problem (13).
(2) If M = Md, then from any initial state col[aVec(0), λd(0)] ∈ Ω × R

N , MGS (17) converges to an
optimal solution to Problem (16).

Proof. For the proof of (1), according to [30, Lemma 3], it can be obtained that from any initial state
col[aVec(0), λu(0)] ∈ Ω×R

N(N−1)/2, col[aVec(t), λu(t)] ∈ Ω×R
N(N−1)/2. Let M = Mu and col[aVec

u
∗
, λ∗

u]
be an equilibrium point of MGS (17). According to (1) in Theorem 1, aVec

u
∗
is an optimal solution to

Problem (13). A Lyapunov function is constructed as follows:

V
(

a
Vec, λu

)

=
1

2

(

∥

∥

∥
a
Vec − a

Vec
u

∗
∥

∥

∥

2

+ ‖λu − λ∗
u‖2
)

+
∥

∥Mua
Vec
∥

∥

2

−
(

∇C̃(aVec)−MT
u λu

)T (

PΩ

(

a
Vec −∇C̃(aVec) +MT

u λu

)

− a
Vec
)

− 1

2

(

∥

∥

∥
PΩ(a

Vec −∇C̃(aVec) +MT
u λu)− a

Vec
∥

∥

∥

2

+
∥

∥Mua
Vec
∥

∥

2
)

.

Let ∆ = ∇C̃(aVec)−MT
u λu. According to Lemma 1, we have

−∆T
(

PΩ

(

a
Vec −∆

)

− a
Vec
)

+
∥

∥Mua
Vec
∥

∥

2 − 1

2

(

∥

∥PΩ

(

a
Vec −∆

)

− a
Vec
∥

∥

2
+
∥

∥Mua
Vec
∥

∥

2
)

> −∆T
(

PΩ

(

a
Vec −∆

)

− a
Vec
)

+
∥

∥Mua
Vec
∥

∥

2 −
(

∥

∥PΩ

(

a
Vec −∆

)

− a
Vec
∥

∥

2
+
∥

∥Mua
Vec
∥

∥

2
)

= −∆T
(

PΩ

(

a
Vec −∆

)

− a
Vec
)

−
∥

∥PΩ

(

a
Vec −∆

)

− a
Vec
∥

∥

2

= −
(

PΩ

(

a
Vec −∆

)

−
(

a
Vec −∆

))T (
PΩ

(

a
Vec −∆

)

− a
Vec
)

> 0.

Thus, V
(

a
Vec, λu

)

> 0. Besides, if aVec 6= a
Vec
u

∗
or λu 6= λ∗

u, then ‖aVec − a
Vec
u

∗‖2 + ‖λu − λ∗
u‖2 > 0.

Hence, V (aVec, λu) > 0 when a
Vec 6= a

Vec
u

∗
or λu 6= λ∗

u.
Next, ∇V and V̇ (aVec, λu) are derived as follows:

∇V = G1(a
Vec, λu)− (∇G1(a

Vec, λu)− I)G2(a
Vec, λu) + col[aVecT, λu]− col[aVec

u

∗
, λ∗

u]
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with

G1(a
Vec, λu) =

(

∆

Mua
Vec

)

,

∇G1(a
Vec, λu) =

(

∇2C̃
(

a
Vec
)

−MT
u

Mu 0

)

,

and

G2(a
Vec, λu) =

(

PΩ

(

a
Vec −∆

)

− a
Vec

−Mua
Vec

)

.

V̇ (aVec, λu) = ∇V Tcol[ȧVec, λ̇u]

= (G1(a
Vec, λu) + col[aVec, λu]− col[aVec

u

∗
, λ∗

u])
TG2(a

Vec, λu)

+ ‖G2(a
Vec, λu)‖2 −G2(a

Vec, λu)
T∇G1(a

Vec, λu)G2(a
Vec, λu). (19)

Then, based on (1), we can obtain that

(

G2(a
Vec, λu) + col[aVec, λu]− col[aVec

u

∗
, λ∗

u]
)T

(G1(a
Vec, λu) +G2(a

Vec, λu))

=

(

PΩ(a
Vec −∆)− a

Vec
u

∗

−Mua
Vec + λu − λ∗

u

)T(

PΩ(a
Vec −∆)− (aVec −∆)

0N(N−1)/2

)

= (PΩ(a
Vec −∆)− a

Vec
u

∗
)T(PΩ(a

Vec −∆)− (aVec −∆)) 6 0,

which leads to

(

G1(a
Vec, λu) + col[aVec, λu]− col[aVec

u

∗
, λ∗

u]
)T

G2(a
Vec, λu)

6 −G1(a
Vec, λu)

T
(

col[aVec, λu]− col[aVec
u

∗
, λ∗

u]
)

− ‖G2(a
Vec, λu)‖2.

Thus, Eq. (19) is converted into

V̇
(

a
Vec
u , λu

)

6 −G1(a
Vec, λu)

T
(

col[aVec
u , λu]− col[aVec

u

∗
, λ∗

u]
)

−G2(a
Vec, λu)

T∇G1(a
Vec, λu)G2(a

Vec, λu). (20)

The convexity of C̃(aVec) yields −G1(a
Vec, λu)

T(col[aVec
u , λu]− col[aVec

u
∗
, λ∗

u]) 6 0. In addition, with
the convexity of C̃(aVec) and the form of ∇G1(a

Vec, λu), we obtain

−G2(a
Vec, λu)

T∇G1(a
Vec, λu)G2(a

Vec, λu) 6 0.

To sum up, V̇ (aVec, λu) 6 0.
Finally, let āVec and λ̄u satisfy V̇

(

ā
Vec, λ̄u

)

= 0. We obtain that

0 =

(

∇C̃(āVec)−∇C̃(aVec∗)−MT
u

(

λ̄u − λu
∗
)

Mu(ā
Vec − a

Vec∗)

)T

(col[āVec, λ̄u]− col[aVec
u

∗
, λ∗

u]) (21)

and ‖PΩ(ā
Vec −∇C̃

(

ā
Vec
)

+MT
u λ̄u)− ā

Vec‖2
∇2C̃(āVec)

= 0.

Based on [30], Eq. (21) yields λ̇u = 0N(N−1)/2, i.e., M
T
u ā

Vec = 0N(N−1)/2. Owing to the strict convexity

of C̃(aVec), ∇2C̃(aVec) is positive definite. Hence, PΩ(ā
Vec−∇C̃(āVec)+MT

u λ̄u)− ā
Vec = 0N2 . Further,

based on (1) in Theorem 1, it can be obtained that V̇ (aVec, λu) < 0 if and only if a
Vec 6= a

Vec∗ =
ā
Vec and λu 6= λu

∗ = λ̄u. Thus, aVec(t) and λu(t) are bounded. Let k(t) = col[aVec(t), λu(t)]. By
the invariant set theorem, MGS (17) converges to a largest invariant set M = {k(t)|dV (k(t))/dt = 0}.
Now, we need to prove that dV (k(t))/dt = 0 if and only if dk(t)/dt = 0. It is easy to obtain that

if dk(t)/dt = 0, then dV (k(t))/dt = 0. Suppose that dV (k(t))/dt = 0 with k̂(t) = col[âVec, λ̂] ∈ M.
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Based on (20), since G1(k̂)
T(k̂ − k∗) > 0, G1(k̂)

T(k̂ − k∗) + GT
2 (k̂)∇G1(k̂)G2(k̂) = 0 holds. Therefore,

(G1(k̂)−G1(k
∗))T(k̂ − k∗) = 0 and G2(k̂)

T∇G1(k̂)G2(k̂) = 0. Equation (G1(k̂)−G1(k
∗))T(k̂ − k∗) = 0

implies that ‖(âVec − a
Vec∗)‖2

∇2C̃(aVec
σ )

= 0 where a
Vec
σ = â

Vec + σ(aVec∗ − â
Vec). Thus, âVec = a

Vec∗

which implies dλu/dt = 0. G2(k̂)
T∇G1(k̂)G2(k̂) = 0 leads to (âVec−∇C̃(âVec)+MT

u λ̂u)
+ = â

Vec. Thus,
daVec/dt = 0. Finally, we have that dV (k(t))/dt = 0 if and only if dk(t)/dt = 0, i.e., MGS (17) converges
to an equilibrium point. According to Theorem 1, the proof of (1) completes. The proof of (2) is similar
to the proof of (1) when we adjust the dimensions accordingly and substitute λd for λu and Md for Mu,
respectively.

Theorem 3. Under Assumption 1, the following two statements hold:
(1) If P = Pu, then MGS (18) converges to its equilibrium point a∗

u from any initial state a(0).
(2) If P = Pd, then MGS (18) converges to its equilibrium point a∗

d from any initial state a(0).

Proof. For the proof of (1), consider a Lyapunov function as follows:

Ṽ (a) =
1

2

(

‖a− PΩ(a
∗
u)‖2 − ‖a− PΩ(a)‖2

)

+
1

2
‖a− a

∗
u‖2Pu

.

Based on (1), there is
(

‖a− PΩ(a
∗
u)‖2 − ‖a− PΩ(a)‖2

)

− ‖PΩ(a)− PΩ(a
∗
u)‖2 = 2(a− PΩ(a))

T(PΩ(a)− PΩ(a
∗
u)) > 0.

Thus, we can derive that Ṽ (a) > ‖PΩ(a) − PΩ(a
∗
u)‖2/2 + ‖a − a

∗
u‖2Pu

/2 > 0. Note that Ṽ (a) > 0

when a
Vec
u

∗ 6= a
Vec. Next, ∇Ṽ and ˙̃V (a) are derived as follows. Based on [28, Lemma 4], ∇Ṽ =

Pu(a− a
∗
u) + a

Vec − a
Vec
u

∗
. Thus, it holds

˙̃V (a) = ∇Ṽ T
ȧ 6 (Pu(a− a

∗
u) + a

Vec − a
Vec
u

∗
)T(δ(a)− δ(a∗

u))

6 −‖aVec − a
Vec
u

∗‖2Pu
− (aVec − a

Vec
u

∗
)T(a− a

∗
u) + ‖aVec − a

Vec
u

∗‖2
I
N2−Pu

+ φ(a),

where δ(a) = −Pua
Vec−(IN2 −Pu)(a−a

Vec+∇C̃((IN2 −Pu)a
Vec)) and φ(a) = −(aVec−a

Vec
u

∗
)T(IN2 −

Pu)(∇C̃((IN2 − Pu)a
Vec)−∇C̃((IN2 − Pu)a

Vec
u

∗
)).

Then, based on (2), (3), and ‖IN2 −Pu‖ 6 1, it can be obtained that ‖aVec−a
Vec
u

∗‖2
I
N2−Pu

6 (aVec−
a
Vec
u

∗
)T(a− a

∗
u). Besides, according to the convexity of C̃, φ(a) 6 0. Hence, ˙̃V (a) = −‖aVec − a

Vec
u

∗‖2Pu

+ φ(a) 6 0. Thus, a(t) is bounded, then ‖ȧ(t)‖ is bounded, and we set the boundedness to be U . Let
O(a) = ‖aVec+a

Vec
u

∗‖2Pu
+φ(a). According to [28], we have that aVec = PΩ(a) is an optimal solution if and

only if O(a) = 0, i.e., O(a∗) = 0. Let {τκ} be an increasing time sequence with limκ→∞ τκ = +∞ and let
â = limκ→+∞ a (τk). Now, we prove that O(â) = 0 by contradiction. Assume that O(â) > 0, then ∃ δ0 >
0 and ∃ ǫ > 0 such that O(â) > ǫ for all a ∈ {a | ‖a− â‖ 6 δ0}. Since limκ→+∞ a (τκ) = â, there exists
an integer N0 > 0 such that ‖a (τκ)− â‖ 6 δ0/2 for ∀ κ > N0. Then for t ∈ [τκ − δ0/4U, τκ + δ0/4U ]
with κ > N0, ‖a (t) − â‖ 6 ‖a (t) − a (τκ) ‖ + ‖a (τk) − â‖ 6 δ0/2 + G|t − τκ| 6 δ0 holds. It implies

that O (a (t)) > 0 for ∀ t ∈ [τκ − δ0/4U, τk + δ0/4U ]. Therefore,
∫ +∞

t0
O (a (t)) = +∞. Furthermore,

because V (a) > 0 and V̇ (a) 6 0, there exists V̂ = limt→+∞ V (a(t)). We can obtain that
∫ +∞

t0
O (a (t)) =

− limζ→+∞

∫ ζ

t0
V̇ (a(t)) = −(limζ→+∞ V (a(ζ)) − V (a(t0))) 6 +∞ which leads to a contradiction. Thus,

limt→+∞ a (t) = limκ→+∞ a (τκ) = â = a
∗ and a

Vec∗
u = PΩ (a∗). Thus, the proof of (1) completes.

The proof of (2) is similar to the proof of (1) if we adjust the dimensions of the matrices and vectors
accordingly and substitute Pd for Pu.

Remark 2. MAS (6) is a distributed optimization approach for solving Problem (5), and MGS (17) or
(18) is a centralized dynamic mechanism for recovering or modifying the graph employed MAS by (6).
They are not at the same level, but in a coordination mechanism with two levels: an upper level and a
lower level. At the upper level, MGSs recover or modify the tampered graph to a feasible one constantly.
At the lower level, MAS (6) solves Problem (5) in a distributed manner. An illustrated example is shown
in Figure 1.

If (i, j) /∈ E , how to guarantee A(i, j) = 0 during the optimization process should be discussed.

Theorem 4. (1) In (17), for any i, j = 1, . . . , N , if a
Vec
N(i−1)+j(0) = 0 and ΩN(i−1)+j = {0}, then

a
Vec
N(i−1)+j(t) = 0 for t > 0.

(2) In (18), for any i, j = 1, . . . , N , if ΩN(i−1)+j = {0}, then a
Vec
N(i−1)+j(t) = 0 for t > 0.
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Figure 1 (Color online) A coordination mechanism consisting of MAS (6) and an MGS (the explanation is provided in (1) of

Remark 2).

Proof. For (1), in (17), we have that

ȧ
Vec
N(i−1)+j = −a

Vec
N(i−1)+j + PΩN (i−1)+j(∗),

where ∗ is the (N(i− 1)+ j)-th component of vector aVec −∇C̃
(

a
Vec
)

. Since ΩN(i−1)+j = {0}, we have
that

ȧ
Vec
N(i−1)+j = −a

Vec
N(i−1)+j + P{0}(∗) = −a

Vec
N(i−1)+j + 0 = −a

Vec
N(i−1)+j.

Thus, aVec
N(i−1)+j(t) = a

Vec
N(i−1)+j(0)e

−t. Since a
Vec
N(i−1)+j(0) = 0, aVec

N(i−1)+j(t) = a
Vec
N(i−1)+j(0)e

−t = 0 for
t > 0, which completes the proof.

For (2), in (18), we have that a
Vec
N(i−1)+j(t) = PΩN(i−1)+j

(aN(i−1)+j(t)). Since ΩN(i−1)+j = {0},
a
Vec
N(i−1)+j(t) = P{0}(aN(i−1)+j(t)) = 0 for t > 0, which completes the proof.

From Theorem 4, if (i, j) /∈ E , let a
Vec
N(i−1)+j(0) = 0 and ΩN(i−1)+j = {0} in (17); A(i, j) = 0 can

be guaranteed during the optimization process there is no communication channel between i and j. If
(i, j) /∈ E , let ΩN(i−1)+j = {0} in (18); then A(i, j) = 0 can be guaranteed during the optimization
process when there is no communication channel between i and j.

Remark 3. According to Theorem 2, we can tackle two cases mentioned in Subsection 2.2 by MGS (17).
For Case 1, the graph is infeasible for MAS (6) initially. We can regard this graph as an initial state of
MGS (17) with M = Mu. Then by running MGS (17) with M = Mu and MAS (6) at the same time, we
can modify the infeasible graph into a feasible undirected graph by MGS (17). According to Lemma 3,
with the feasible undirected graph which is modified by MGS (17) with M = Mu, MAS (6) can converge
to the optimal solution to Problem (5). For Case 2, a feasible undirected graph is provided for MAS (6)
initially, but it is tampered or destroyed during the operation of MAS (6). By running MGS (17) with
M = Mu and MAS (6) at the same time, we can recover the graph which is tampered or destroyed to
be an infeasible graph into a feasible undirected graph constantly. With the feasible undirected graph
recovered by MGS (17) with M = Mu, MAS (6) can converge to the optimal solution. Similarly, by
running MGS (17) with M = Md and MAS (6) at the same time, we can also tackle Cases 1 and 2.
Different from MGS (17) with M = Mu, MGS (17) with M = Md can modify or recover an infeasible
graph into a feasible weight-balanced graph rather than a feasible undirected graph. Similarly, according
to Theorem 3, MGS (18) can also tackle two cases. For a clear understanding, Figure 2 is provided to
explain the functions of MGSs (17) and (18) in the coordination mechanism.

Remark 4. We give the differences between MGS (17) and MGS (18): The convergence of MGS (17)
is from the initial states being in Ω. While the convergence of MGS (18) is from any initial states. Thus,
MGS (17) can only recover the graph which is tampered or destroyed but is still in Ω. However, if the
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Figure 2 (Color online) Schematic diagram of the usage of MGSs (17) and (18) in the coordination mechanism.

graph is tampered or destroyed in any large range (especially outside of Ω), then MGS (18) can also
recover it theoretically.

Remark 5. The proposed methods are developed under the notion of time-invariant graphs. Although
the weights of the graph modified by MGSs are time-varying, the distributed optimization approach
(system (6)) can achieve the optimal objective only if the states of the MGSs are stable (i.e., the graph
is time-invariant if the MGS is stable). However, just like [23, 24], the assumed graphs are time-varying.
Developing MGSs for distributed optimization approaches over time-varying graphs is challenging. The
challenge is mainly from two aspects: (1) If we need to recover time-varying graphs (they are a sequence
of graphs with respect to time t), the final states of the proposed MGSs should satisfy the corresponding
time-varying attributes (e.g., “B0-strongly connected” in [23] and “uniformly jointly strongly connected”
in [24]), which may not be stable. (2) The distributed optimization approaches in [23, 24] are discrete-
time. Thus, the MGSs should be also developed in a discrete-time manner. In sum, developing MGSs for
distributed optimization approaches over time-varying graphs is challenging, but it deserves deep research
and is interesting.

4 An illustrated example

In this section, an optimization problem is provided to illustrate the validity of the main results. Besides,
the systems are implemented and simulated in MATLAB R2017b and run on Intel(R) Core(TM) i5-8257U
CPU @ 1.40 GHz, Intel Iris Plus Graphics 645 1536 MB, 8 GB 2133 MHz LPDDR3, macOS 10.15.7.

Example 3. Consider an optimization problem as follows:

min f(x) =

N
∑

i=1

fi(xi) s.t. xi = xj ∈ R
n, i, j = 1, . . . , N, (22)

where x = col[x1, x2, x3, x4], f1(x1) = (x1 − 77)2, f2(x2) = (x2 − 7)2, f3(x3) = (x3 + 112)2, and
f4(x4) = (x4 − 2)2.

To tackle Case 1. We can obtain the optimal solution by MAS (6) with an undirected and connected
G or a strongly connected and weight-balanced G (see Lemma 3). Now, we use the system below which
consists of MAS (6) and MGS (17) or MGS (18):















dx
dt = −∇f(x)− Lµ− αLx,
dµ
dt = Lx,

(17) or (18).

(23)

L in MAS (6) is fixed, but L in MAS (23) is determined by a
Vec(t). In detail, in MAS (23), Vec(A(t)) =

a
Vec(t) and L(t) = L(t) ⊗ In where L(t)(i, i) =

∑n
j=1,j 6=i A(t)(i, j) for ∀i = 1, . . . , N and L(t)(i, j) =

−A(t)(i, j) for i 6= j.
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Figure 3 (Color online) Transient states of (a) xi for i = 1, 2, 3, 4 and (b) a
Vec in Case 1.
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Figure 4 (Color online) Transient states of xi for i = 1, 2, 3, 4 in Case 2. (a) MGS (17) with Mu; (b) MGS (17) with Md;

(c) MGS (18) with Pu; (d) MGS (18) with Pd.

Let the objective function C̃(aVec) = (aVec − s)2 with s = [0, 2, 0, 1, 2, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0]T. Note
that C̃(aVec) guarantees with Assumption 1. By MATLAB, we run MAS (6) with an undirected and
connected graph and an infeasible graph, respectively. Besides, we run (23) (by (17) and M = Mu)
with an infeasible graph. In Figure 3(a), the blue solid line shows that MAS (6) with an undirected and
connected graph can solve Problem (22), and the optimal solution is x1 = x2 = x3 = x4 = −6.5. The
black dotted line shows that MAS (6) with an infeasible graph cannot realize the consensus and cannot
obtain the optimal solution to Problem (22). The red solid line implies that Eq. (23) beginning with
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Figure 5 (Color online) Transient states of aVec in Case 2. (a) MGS (17) with Mu; (b) MGS (17) with Md; (c) MGS (18) with

Pu; (d) MGS (18) with Pd.
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Figure 6 (Color online) Transient states of xi for i = 1, 2, 3, 4 in [20, System (11)] in Case 2.

an infeasible graph can also solve Problem (22). Figure 3(b) depicts the transient states of A(i, j), and
it shows that the infeasible graph A becomes an undirected and connected graph, which illustrates the
validity of the proposed MGSs for tackling Case 1. Note that MAS (6) without any MGS is System (3)
in [29]. Compared with System (3) in [29], MAS (6) with MGS (17) tackles Case 1 well.

To tackle Case 2. In this case, the graph is feasible initially, but it is tampered or destroyed during
the operation of MAS (6). We also use the MAS (23). There are four forms in MAS (23): (1) MGS
(17) with Mu; (2) MGS (17) with Md; (3) MGS (18) with Pu; (4) MGS (18) with Pd. We simulate
the tampering and the destroying at t = 20 and t = 70 by changing the entries of aVec(t) randomly.
Now, we run four forms by using MATLAB, and we can obtain Figures 4 and 5. Figure 4 shows that
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four forms can all tackle Case 2 and solve Problem (22). Figure 5 implies that four forms can recover
the graph which is tampered or destroyed during the operation of MAS (6). Besides, comparing (17)
(Figures 5(a) and (b)) with (18) (Figures 5(c) and (d)), we can obtain that Eq. (17) can only recover the
graph which is tampered or destroyed but is still in Ω, and Eq. (18) can also recover the graphs which
are tampered or destroyed in any large range (especially outside of Ω). Now, we compare MAS (6) (with
MGS (18)) with [20, System (11)] by tackling Case 2. We run [20, System (11)] under the same tampering
in Figure 4(d). Compared with Figure 4(d), Figure 6 shows that Ref. [20, System (11)] cannot converge
to the optimal solution, which implies that MAS (6) with an MGS tackles Case 2 well.

5 Conclusion

In this paper, to obtain the feasible graphs or to recover the tampered or destroyed graphs, two MGSs
are designed for the distributed optimization approaches. The MGSs are derived from the designed
optimization problems and their convergence is proven. An example is given to demonstrate the efficiency
of the main results. The simulations show that we can effectively modify an infeasible communication
graph into a feasible one or recover the tampered or destroyed graph which is feasible initially by a
coordination mechanism consisting of a distributed optimization approach and a modified graph system.
Future work may focus on the MGSs for distributed optimization over time-varying graphs.
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