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Abstract Different nodes in a graph neighborhood generally yield different importance. In previous work

of graph convolutional networks (GCNs), such differences are typically modeled with attention mechanisms.

However, as we prove in our paper, soft attention weights suffer from undesired smoothness large neigh-

borhoods (not to be confused with the oversmoothing effect in deep GCNs). To address this weakness, we

introduce a novel framework of conducting graph convolutions, where nodes are discretely selected among

multi-hop neighborhoods to construct adaptive receptive fields (ARFs). ARFs enable GCNs to get rid of the

smoothness of soft attention weights, as well as to efficiently explore long-distance dependencies in graphs.

We further propose GRARF (GCN with reinforced adaptive receptive fields) as an instance, where an optimal

policy of constructing ARFs is learned with reinforcement learning. GRARF achieves or matches state-of-the-

art performances on public datasets from different domains. Our further analysis corroborates that GRARF

is more robust than attention models against neighborhood noises.
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1 Introduction

After a series of explorations and modifications [1–6], graph convolutional networks (GCNs)1) have gained
considerable attention in the machine learning community. Typically, a graph convolutional model can be
abstracted as a message-passing process [7] — nodes in the neighborhood of a central node are regarded
as contexts, who individually pass their messages to the central node via convolutional layers. The central
node then weighs and transforms these messages. This process is recursively conducted as the depth of
network increases. We use the term contexts to denote the neighbor nodes, and receptive field to denote
the set of contexts that the convolutions refer to.

Neighborhood convolutions proved to be widely useful on various graph data. However, some in-
conveniences also exist in current GCNs. While different nodes may yield different importance in the
neighborhood, early GCNs [2, 8] did not discriminate contexts in their receptive fields. These models
either treated contexts equally, or used normalized edge weights as the weights of contexts. As a result,
such implementations failed to capture critical contexts — contexts that pose greater influences on the
central node, close friends among acquaintances, for example. Graph attention networks (GATs) [3] re-
solved this problem with attention mechanisms [9, 10]. Soft attention weights were used to discriminate
importance of contexts, which allowed the model to better focus on relevant contexts to make decisions.
With impressive performances, GATs became widely used in later generations of GCNs including [5, 11].
However, we observe that using soft attention weights in hierarchical convolutions does not fully solve
the problem. Firstly, we will show as Proposition 1 that under common conditions, soft attention weights
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1) We use the name GCN for a class of deep learning approaches where information is convolved among graph neighborhoods,

including but not limited to the vanilla GCN [2].
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Figure 1 (Color online) Comparison between hierarchical convolutions and convolutions with ARF. Left: GCNs with ARFs better

focus on critical nodes and filter out noises in large neighborhoods. Right: ARFs more efficiently explore LDDs.

almost surely approach 0 as the neighborhood sizes increase. This smoothness hinders the discrimination
of context importance in large neighborhoods. Secondly, we will show by experiments in Subsection 4.2
that GATs cannot well distinguish true graph nodes from artificial noises: attention weights assigned
to true nodes and noises are almost identical in distribution, which further leads to a dramatic drop of
performance.

Meanwhile, an ideal GCN architecture is often expected to exploit information on nodes with various
distances. Most existing GCNs use hierarchical convolutional layers, in which only one-hop neighborhoods
are convolved. As a result, one must increase the model depth to detect long-distance dependencies
(LDDs) (informative nodes that are distant from the central nodes). This is particularly an issue in large
graphs, as the complexity of the graph convolutions is exponential to the model depth2). In large graphs,
the model depths are often set as 1, 2 or 3 [3, 8]. Accordingly, no dependencies longer than 3 hops are
exploited in these models.

Motivated by the discussions above, we propose the idea of adaptive receptive fields (ARFs). Figure 1
illustrates the differences between hierarchical convolutions and convolutions with ARFs. An ARF is
defined as a subset of contexts that are most informative for a central node, and is constructed via
selecting contexts among the neighborhood. Nodes in an ARF can be at various distances from the
central node. The discrete selection process of contexts gets rid of the undesired smoothness of soft
weights (see Section 2). In addition, by allowing ARFs to choose contexts on different hops from the
central node, one can efficiently explore dependencies with longer distances. Experiments also show that
ARFs are more robust to noises (see Section 4). We further propose GRARF (GCNs with reinforced
adaptive receptive fields) as an instance for using ARFs in node-level tasks. In GRARF, an optimal
policy of constructing ARFs is learned with reinforcement learning (RL). An RL agent (constructor)
successively expands the ARF via a two-stage process: a contact node in the intermediately-constructed
ARF is firstly selected; a context among the direct neighbors of the contact node is then added to the
ARF. The reward of the constructor is defined as the performance of a trained GCN (evaluator) on the
constructed ARF.

GRARF is validated on datasets from different domains including three citation networks, one social
network, and an inductive protein-protein interaction dataset. GRARFmatches or improves performances
on node classification tasks compared with strong baselines3). Moreover, we design two tasks to test the
models’ abilities in focusing on informative contexts and leveraging LDDs by injecting node noises in
graphs with different strategies.

2 Preliminaries and theories

Notations. In our paper, we consider node-level supervised learning tasks on attributed graphs. An
attributed graph G is generally represented as G = (V,A,X), where V = {v1, . . . , vn} denotes the set
of nodes, A ∈ {0, 1}n×n denotes the (binary) adjacency matrix, and X ∈ R

n×d0 denotes the input node
features, xv ∈ R

d0 the features of node v. E is used as the set of edges. We use N(vi) to denote the
one-hop neighborhood of node vi, with vi itself included. We use H(l) ∈ R

n×dl as the matrix containing

2) With sparse adjacency matrices, the average complexity of graph convolutions is O(dL), where L is the model depth and d

is the graph degree (or the neighborhood-sampling sizes in [8]).

3) We mainly show the results of node classification tasks in our paper, whereas GRARF is intrinsically adapted to all node-level

supervised learning tasks.
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dl-dimensional hidden representations of nodes in the l-th layer, h
(l)
v that of node v. Â denotes the

symmetrically normalized adjacency matrix with Â = D−1/2(A + In)D
−1/2 and D = diag(d), di =

∑

j(A+ In)ij . We use bold letters for neural network parameters.
The smoothness of GATs. As a pioneering work of simplifying architectures of graph neural

networks, the vanilla GCN layers in [2] were defined as follows:

H(l+1) = σ(ÂH(l)
W

(l)) = σ





∑

j∈N(vi)

Âijh
(l)
j W

(l)



 , l = 0, 1, . . . . (1)

In each layer, the node representations in one-hop neighborhoods were transformed with W and averaged
by normalized edge weights Âij . GATs [3] elaborated the average scheme in (1) with attention mecha-

nisms [9,10]. Instead of using Âij , an attention weight αij between node vi and vj was calculated in GAT
layers as

eij = fθ (hi, hj) , αij = softmaxj (eij) =
exp(eij)

∑

k∈N(vi)
exp(eik)

, (2)

where fθ(·) is often called the energy function with parameter θ. GATs implicitly enabled specifying
different weights in a neighborhood. However, under some common assumptions and as the neighbor-
hood size increases, these attention weights, normalized with the softmax function, suffer from undesired
smoothness: all attention weights approach 0 as the neighborhood size increases. We formally introduce
and prove this claim as Lemma 1 and Proposition 1.

Lemma 1 (Smoothness of softmax). If random variables X1, X2, . . . are uniformly bounded with prob-
ability 1, that is, for any i and some C, P (|Xi| > C) = 0, then the softmax values taking {Xi}

n
i=1 as

inputs approach 0 almost surely when n → ∞, i.e.,

eXi

/

n
∑

j=1

eXj → 0 a.s. (3)

Proof. The proof is simple noting that eXi/
∑n

j=1 e
Xj > 0, and that with probability 1,

eXi

/

n
∑

j=1

eXj < eC
/

ne−C → 0, n → ∞.

Proposition 1 (Smoothness of attention weights). If the representation of nodes (random vectors)
H1, H2, . . . ∈ R

d are uniformly bounded with probability 1 (for any i and some C, P (‖H1‖ > C) = 0),
and for any (fixed) node vi, the energy function fθ(hi, ·) is continuous on any closed set D ∈ R

d, then
the attention weights in the neighborhood of vi approach 0 almost surely when n → ∞, i.e.,

αij =
exp(fθ(hi, Hj))

∑

k∈N(vi)
exp(fθ(hi, Hk))

→ 0 a.s. (4)

Proof. Following the a.s. boundedness {Hi}s and the continuity condition on fθ(·), the random energies
Eij = fθ(hi, Hj) are also bounded a.s.. The desired result then follows Lemma 1.

Note that the continuity condition on fθ(hi, ·) in Proposition 1 can be satisfied with almost any
commonly used non-linear functions and (regularized) parameters in deep learning, specifically, those
in the official version of GATs (eij = aT [Whi‖Whj ], where ‖ is the operator of concatenation). Also,
the boundedness of inputs is trivial in deep learning.

GCNs with ARFs overcome smoothness. What Proposition 1 shows is that in large neighbor-
hoods, attention weights are smoothed to 0, thus hindering the discrimination of context importance. In
addition, such smoothness can be immediately generated to any other form of normalized weights as long
as αij > 0 uniformly and

∑

j∈N(vi)
αij = 1. We alleviate the smoothness with ARFs by incorporating

discreteness. Specifically, let us denote the convolution in the evaluator as

h′
i = σ





∑

j∈Na(u)

ηijhjW



 = σ





∑

j∈Nk(u)

η̃ijhjW



 , η̃ij =

{

ηij , j ∈ Na(u),

0, j /∈ Na(u),
(5)
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where Na(u) is an ARF, k is the maximum hop that the ARF explores, and Nk is the entire k-hop
neighborhood. Accordingly, η̃ij is not subjected to smoothness: if ηij has a uniform lower bound D > 0,
then for p ∈ Na(u) and q /∈ Na(u), we have η̃ip − η̃iq > D, regardless of the sizes of N (k). Note that
ηij > 0 uniformly can be guaranteed in most cases when the maximum ARF size is limited, for example,
with uniform weights or softmax weights of bounded energies.

Deep RL on graphs. As the discrete context selection process is non-differentiable, we apply deep
RL approaches to learn the policy of construting ARFs in GRARF, specifically, the deep Q-learning
(DQN) [12] algorithm. DQN uses deep neural networks to approximate the action value function (Q-
function), and chooses the action that maximizes it in each step. The Q-function is defined iteratively as
follows:

Q∗(st, at) = R(st, at, st+1) + γmax
a∈A

Q∗(st+1, a), (6)

where R(·) is the reward function, A is the action space, and γ is a discount factor. A reward shaping
technique [13] is also used in GRARF to alleviate the sparsity of rewards, which decorates the original
reward R(·) with a potential energy F (·), yielding an immediate reward R̂(·). Denoted in formula,

F (s, a, s′) = Φ(s′)− Φ(s), R̂(s, a, s′) = R(s, a, s′) + F (s, a, s′), (7)

where Φ(·) is a fixed potential function of states that does not change during training. Ref. [13] proved
that the optimal policies of Markov decision processes (MDPs) remain invariant if R(·) is replaced by
R̂(·).

There are other recent studies implementing RL on graphs. For example, graph convolutional policy
network (GCPN) [14] proposed an RL agent for generating graph representations of biomedical molecules,
and graph convolutional reinforcement learning (DGN) [15] introduced a multi-agent RL approach where
the agents in the system formed a dynamic network. The successive molecule generation process in
GCPN inspired us in designing the ARF constructor in GRARF, whereas the two models are of different
motivations.

ARFs and neighborhood sampling. It should be noted that GRARF can also be interpreted as a
neighborhood sampling approach. Neighborhood sampling was proposed as a necessary process to apply
GCNs to large graphs with arbitrarily large neighborhoods. GraphSAGE [8] proposed a general framework
of neighborhood sampling and aggregation, where contexts were uniformly sampled. Later work improved
the sampling strategy with importance sampling [16] and explicit variance reduction [8, 17]. Sub-graphs
instead of subsets of neighborhoods were directly sampled in [18]. Indeed, selecting ARF nodes takes
a specific form of neighborhood sampling. However, the aim of constructing ARFs is to ignore trivial
information and to focus on critical contexts, rather than to estimate the neighborhood average as is the
primary target of neighborhood sampling. Therefore, despite the similarity, the two approaches are in
different directions.

3 Proposed method: GRARF

3.1 ARF construction as MDP

An ARF is defined as a set of nodes Na(u) with regard to a central node u. Nodes in Na(u) can be at
various distances from u, and u itself should be contained in its ARF. We also assume that the induced
subgraph of an ARF must be (weakly) connected, under the motivation that if a far context poses great
influence on the central node, then at least one path connecting it to the central node should be included
in the ARF. The ARF construction process is modeled as an MDP M = (S,A, P,R, γ), where S = {si}
is the state space of all possible ARFs; A = {ai} describes all possible (two-stage) actions a = (a1, a2); P
is the transition dynamics p(st+1|st, at) which describes how nodes are added to ARFs; R is the reward
function of an ARF, and γ is the discount factor.

Figure 2 introduces the general structure of our model. GRARF is composed of a constructor and
an evaluator. The constructor implements an RL agent to learn an optimal policy of the MDP with
DQN, and the evaluator conducts graph convolutions on constructed ARFs. Specifically, in the training
phase, the constructor and the evaluator are trained alternately, where rewards of the constructor are
derived from the performances of the evaluator; in the prediction phase, the evaluator convolves over the
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Figure 2 (Color online) General architecture of GRARF. Red and blue arrows together demonstrate the training process. Blue

arrows along demonstrate the prediction process.

ARFs constructed for the target node by the constructor and then predicts the result. No gradient flows
between the constructor and the evaluator.

3.2 Model architecture

We hereby specify the MDP of ARF construction, the evaluator, and the training scheme.
States. At step t, the state st is defined as the intermediately generated ARF, which is encoded as a

vector representation st by a function fs, and then observed by the constructor. Formally,

st , N (t)
a (u), st , fs(N

(t)
a (u)). (8)

We initialize the ARF as N
(0)
a (u) = {u}. The transition dynamics in GRARF is deterministic: nodes

selected by the RL agent is added to the ARF, i.e., N
(t+1)
a (u) = N

(t)
a (u) ∪ a2t .

Actions. For each action, the constructor chooses a node to add to the ARF among all nodes adjacent
to the ARF. The average complexity of directly choosing among all adjacent candidates is O(nt × d),
where nt is the ARF size at step t and d is the graph degree. We reduce the complexity to O(nt + d)
by decomposing the action into two stages, denoted as at = (a1t , a

2
t ). In the first stage, the constructor

chooses a contact node a1t ∈ N
(t)
a (u), who limits the candidates of the next stage in its own direct

neighborhood. In the second stage, the constructor searches among the neighborhood of a1t for a node
a2t to add to the ARF. The optimal Q-function can accordingly be rewritten as

Q∗
1(st, a

1
t ) = max

a2∈N(a1
t)
Q∗

2(st, a2), (9)

Q∗
2(st, a

2
t ; a

1
t ) = R(st, a

2
t , st+1) + γ max

a1∈N
(t+1)
a (u)

Q∗
1(st+1, a1). (10)

We do not design explicit stop actions, and the process stops after a fixed number of steps (T ). Mean-

while, we do not require that a2t /∈ N
(t)
a (u), so a node may be selected multiple times in an ARF. Note

that if a node already in the ARF is selected, the state ceases to change, and no new nodes will be
selected. Therefore, various ARF sizes are implicitly allowed. The actions (i.e., candidate nodes) in both
stages are encoded with fa, and the approximated Q-function in GRARF is parameterized as

Q1(st, a
1
t ) = w

T
1

[

fa(a
1
t )‖fs(st)

]

+ b1, (11)

Q2(st, a
2
t ; a

1
t ) = w

T
2

[

fa(a
1
t )‖fa(a

2
t )‖fs(st)

]

+ b2. (12)

Rewards. The reward of the constructor is defined as the performance of the GCN evaluator. As con-
ducting step-wise evaluations is much time-costly, we sample the reward once the ARF is fully constructed,
that is,

R(st, a
2
t , st+1) ,

{

0, t < T,

eval(N
(t)
a (u)) = −loss(GCN(N

(t)
a (u))), t = T.

(13)

The loss in (13) is specified by the downstream supervised node-level (or node-pair-level) tasks, such as
node classification and link prediction. We further adopt the reward shaping technique [13] to guide and
accelerate the training process. Considering the desired properties of critical contexts and ARFs, we

propose the following heuristic potential functions: (i) Φ1(s) = |N
(t)
a (u)|, the sizes of ARFs, to encourage
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the variety of contexts; (ii) Φ2(s) =
∑

v∈Na(u)
deg(v), the sum of degrees in the ARF, as nodes with

higher degrees are intuitively more informative; (iii) Φ3(s) =
∑

v∈Na(u)
sim(v, u) =

∑

v∈Na(u)
xv · xu, the

inner product of input features between the central node and the ARF nodes, to empirically encourage
more relevant contexts. According to (7) with so-defined Φs, the immediate rewards of the constructor is

R̂(st, a
2
t , st+1) =















0, t < T and a2t ∈ N
(t)
a (u),

1 + deg(a2t ) + xa2
t
· xu, t < T and a2t /∈ N

(t)
a (u),

−loss(GCN(N
(t)
a (u))), t = T.

(14)

Evaluator. Given a central node u and the constructed ARF Na(u), the evaluator takes the ARF
as neighborhood and convolves over it, generating the representation of the central node. An example
of evaluator would be the one defined in (5). The representation is then used to conduct downstream
tasks. Theoretically, any graph convolutional layers can be used as the evaluator. It is worth noting that
although in our experiments we only perform a one-layer graph convolution on the constructed ARF,
multiple convolutional layers can be applied on the subgraph induced by the ARF node set. We leave
this as future work.

Training. In order to mutually train the constructor and the evaluator in GRARF, we propose an
alternate training strategy, somehow analogous to the training of GAN [19]. Specifically, the evaluator is
first pre-trained for the given downstream task, taking direct neighborhoods as receptive fields. We then
fix the evaluator to derive constant task-aware rewards for the training of the constructor. The alternate
process goes recursively until convergence. In details, as the training of the evaluator converges much
faster than the constructor, we train the constructor with more steps in the alternate process. Empirically,
10:1 is a promising choice of the ratio.

4 Experiments

4.1 Experiment setup

Datasets. We evaluate GRARF on public real-world datasets including 3 citation networks, a social
network, and a protein-protein interaction dataset. Some interesting statistics of the datasets are shown
in Table 1. In the citation networks (cora, citeseer, and pubmed)4), nodes correspond to publications
in disjoint fields, and edges to (undirected) citation relationships. The social network (github)5) consists
of website users (nodes) and their friendships (edges). We reduce the number of input features of social
networks to the figures in Table 1 by selecting most frequent ones (all features binary and sparse). The
protein-protein interaction (ppi) dataset6) contains 24 graphs, each representing a human tissue, where
nodes denote different proteins and edges denotes the interactions in between. We use the preprocessed
data of GraphSAGE [8].

Baselines. We pick up 5 GCN baselines to compare GRARF against, including vanilla GCN [2],
GraphSAGE [8], GAT [3], GIN [4], MixHop [6], SGAT [20], GeniePath [11], and NeuralSparse [21]. For
fairness, the dimensions of all hidden representations are set as d = 128 and an identical two-layer setup
is used in all baselines. Hyper-parameters such as learning rates in all models are tuned to achieve
best performances on the validation sets. All neural models are trained with adequate epochs with the
early-stopping strategy. More details of baselines are included in Appendix A.

GRARF implementation. In the constructor, all graph nodes are first encoded with a GraphSAGE
layer (hc

u = elu(Wc[xu‖
1
n

∑

v∈N(u) xv] + bc)). For the state encoder fs, we use linear transformations of

concatenations of central node representations and ARF-averaged node representations, i.e., fs(Na(u)) =
Ws[h

c
u‖

1
n

∑

v∈Na(u)
hc
v]+bs. For the action encoder fa, we directly use the hidden representations of nodes,

i.e., fa(v) = hc
v. The discount factor is chosen as γ = 0.9. In the evaluator, a simple GraphSAGE layer

convolves over constructed ARFs as he
u = elu(We[xu‖

1
n

∑

v∈Na(u)
xv] + be). The hidden representations

he
u are later used in node-level tasks with only one fully-connected layer. The same as all baselines,

dimensions of all hidden representations in GRARF (hc
u, he

u, and st) are 128. To demonstrate the
effectiveness of ARFs, we also conduct experiments with a random baseline, Random RF, where actions

4) https://linqs.soe.ucsc.edu/data.

5) http://snap.stanford.edu/data/.

6) http://snap.stanford.edu/graphsage/ppi.zip.

https://linqs.soe.ucsc.edu/data
http://snap.stanford.edu/data/
http://snap.stanford.edu/graphsage/ppi.zip
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Table 1 Interesting statistics of the datasets used in this papera)

cora citeseer pubmed github ppi
∗

# Nodes 2708 3327 19717 37700 56944

# Links 5429 4732 44338 289003 818716

# Classes 7 6 3 2 121∗

# Features 1433 3703 500 600 50

Average degree 2.00 1.42 2.25 7.67 28.8

a) * represents multi-label task.

Table 2 Performances of GRARF and baselines on node classification tasks (% micro-f1)

cora citeseer pubmed github ppi

Vanilla GCN [2] 87.40 ± 0.36 78.09 ± 0.35 86.18 ± 0.10 81.72 ± 0.14 59.26 ± 0.03

GraphSAGE [8] 82.02 ± 0.31 70.23 ± 0.51 86.26 ± 0.33 78.09 ± 1.23 56.97 ± 0.94

GAT [3] 87.80 ± 0.11 76.43 ± 0.73 85.39 ± 0.12 81.78 ± 0.52 47.29 ± 2.30

GIN [4] 85.08 ± 0.83 73.87 ± 0.52 84.88 ± 0.17 79.05 ± 0.88 60.35 ± 1.14

MixHop [6] 88.70± 0.19 74.59 ± 0.27 85.60 ± 0.10 79.68 ± 1.00 58.55 ± 0.14

SGAT [20] 87.96 ± 0.99 76.55 ± 0.45 85.96 ± 0.44 82.07 ± 1.35 60.73 ± 0.87

GeniePath [11] 85.75 ± 0.21 76.26 ± 2.35 85.59 ± 0.35 83.51 ± 2.44 62.44 ± 0.92

NeuralSparse [21] 87.39 ± 0.35 77.24 ± 0.48 86.23 ± 1.35 85.38 ± 2.36 61.25 ± 0.34

Random RF 86.93 ± 1.22 77.31 ± 1.37 86.87 ± 1.30 79.81 ± 7.82 63.27 ± 2.38

GRARF 88.34 ± 0.82 79.24± 0.88 88.20± 0.33 87.30± 2.54 66.54± 1.12

are chosen completely randomly, but strictly following the setup of GRARF. More details of GRARF are
included in Appendix B.

4.2 Results

Performances of node classification tasks. Table 2 shows the micro-f1s of GRARF and baselines on
the node classification tasks including means and standard deviations across 10 replicas. The datasets
are uniformly split to 5:2:3 as training, validation and test sets, except for ppi, where 20 graphs are used
as training set, 2 as validation set, and 2 as test set, identical to that in [8]. Tasks are transductive
on citation and social network and inductive on ppi. GRARF shows very competitive performances on
both types of tasks: on citation graphs where neighborhoods are small (degree ≈ 2), GRARF matches
or improves by margin the performances of other baselines; on github and ppi datasets with larger
neighborhoods (degree > 7), GRARF displays a significant advantages over other baselines. This is in
concordance with our expectations, as we have shown that GRARF overcomes the undesired smoothness
and thus better focuses on informative contexts in larger neighborhoods.

Capturing informative contexts and LDDs. To demonstrate the benefits of using ARFs, we
design two experiments through adding artifical noises in cora with different strategies. In the denoising
setup, we generate r× |V | noise nodes and randomly connects them to true nodes. An amount of r× |E|
edges between true nodes and noises are added, so that the proportion of noises in the neighborhood
is approximately r

1+r . In the LDD setup, we assign a split number k drawn from Poisson(λ) on each
edge, and then split each edge to a (k + 1)-hop path (do nothing if k = 0) by inserting k noises. The
one-hop dependencies are hence stretched longer and more difficult for the models to detect. In both
experiments, features of noises are drawn from marginal distributions of individual dimensions. We
conduct experiments with 5 replicas per model and report the averaged performances and 95% confidence
intervals. Figure 3 shows examples and performances of GRARF, vanilla GCNs under two setups. We
also show the performances of raw-feature baseline for comparison (which fully ignores the noises).

In the denoising experiment, GRARF displays a significantly better ability in capturing informative
nodes while ignoring noises. The performances of vanilla GCNs and GATs drop dramatically as r increases
and even below the raw baseline when r > 1, whereas the performances of GRARF drops only marginally.
A similar phenomenon is observed in the LDD experiment, which corroborates that the constructed ARFs
in GRARF better collect the information from far-hop neighbors through exploring the neighborhood in
a more flexible manner.

We further analyzed the behavior of GATs and GRARF on real and noisy data. Figure 4(a) shows
the distributions of attention weights that GATs assign to neighbors of central nodes (with degree ds) on
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Figure 3 (Color online) Examples and results of two designed experiments. (a), (b) The denoising experiment. (c), (d) The

long-distance dependency experiment. GRARF displays robustness to noises in both experiments, whereas performances of vanilla

GCNs and GATs drop dramatically.
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Figure 4 (Color online) Analysis of behaviors in GAT and GRARF. (a) A box-plot of attention weights on cora with regard to

node degrees, where medians, Q1s, Q3s, and a 95% intervals are displayed. (b)–(d) Histograms of attention weights assigned to

true nodes and noises in the denoising experiments (r = 1), with different node degrees (d = 2, 5, 10). (e) The ratios of noises in

constructed ARFs with regard to node degrees, in the denoising experiments (r = 1).

original cora. The majority of attention weights lie in a very thin interval around 1/d which continues to
shrink as d increases. This is empirical evidence of Proposition 1. Figures 4(b)–(d) show distributions of
attention weights assigned to true nodes and noises in the denoising experiment with r = 1 and d = 2, 5, 10
(calculated in true nodes’ neighborhoods only). Attention weights assigned to true nodes and noises are
almost identical, especially with larger d. This indicates that GATs cannot well distinguish noises from
true nodes with attention weights. We also report the ratios of noises in constructed ARFs in the same
experiment. The noise ratios in the ARFs stay far below the noise ratio in the graph, and remain almost
invariant to the sizes of neighborhoods. This suggests that the ARF constructor learns to ignore noises
in the graph neighborhoods. More analysis of GRARF are included in Appendix C.

5 Conclusion & future work

In this paper, we proposed the idea of ARFs and GRARF as an instance. We showed both theoretically
and empirically that GCNs with ARFs address the smoothness of attention weights, and hence better
focus on critical contexts instead of common ones or noises. Meanwhile, as nodes in ARFs can be at
various distances from the central node, GCNs with ARFs explore LDDs more efficiently. Nevertheless,
the ARFs in our paper are simplified as sets of nodes, whose structures are mostly ignored. For future
work, a straight direction is to learn an optimal convolutional structures on constructed ARFs, or to
jointly learn both. Finding fast approximations of RL is also attracting. Another promising prospect
is to provide the constructor with more global-level information, for currently constructor only observes
local neighborhoods.
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Appendix A Details on experimental setup of baselines

Code preparation. We downloaded the code of all baselines (vanilla GCN7), GraphSAGE8), GAT9), GIN10), and MixHop11))

from corresponding official GitHub repositories. The original version of GIN only worked on graph classification tasks and we

adapted it to node classification tasks. The multi-layer perceptrons in GIN have 2 layers.

Hyperparameter selection. For baselines containing recommended hyperparameters in the source code, including GAT on

cora, MixHop, and Vanilla GCN on cora, citeseer, and pubmed, we directly adopted their settings. Meanwhile, we conducted

additional tests to adjust their learning rate and model dimension and confirmed that their official settings are almost the best

choices. Specifically, GAT had an initial learning rate of 0.005, a hidden state dimension of 8, and 8 attention heads. MixHop’s

initial learning rates are 1, 0.5, and 0.25 on cora, citeseer, and pubmed, respectively. Vanilla GCN had an initial learning rate of

0.01 and a hidden state dimension of 1612).

When there is no recommended setting of hyperparameters, or the settings are not affordable on our device, we performed

hyperparameter selection on learning rate, dropout rate, and model dimension. We tested the initial learning rates 0.1, 0.01, 0.001,

0.0001 and the dropout rates 0.1, 0.3, 0.5, 0.7, 0.9 for all models. For fair comparison, we constrained the number of layers at 2

and the dimension of hidden states at 128. All methods used a batch size of 512. Specifically, for MixHop, we performed dropout

rate selection on input and hidden layers and tested the layer capacities 18, 20, 24, 30. For GIN, we adopted GIN-0 at each layer.

Appendix B Details on GRARF implementation

Constructor. We decomposed the actions into two stages. Each stage corresponded to a specific sub-constructor. In both stages,

all graph nodes were first encoded with a GraphSAGE layer hc
u = elu(Wc[xu‖

1
n

∑

v∈Na(u) xv ] + bc). For the state encoder fs, we

used linear transformations of concatenations of central node representations and ARF-averaged node representations, i.e.,

fs(Na(u)) = Ws



hu

∥

∥

∥

1

n

∑

v∈Na(u)

hv



 + bs. (B1)

For the action encoder fa, we used the hidden representations of nodes, i.e., fa(v) = hc(v). The approximated Q-function in

GRARF was parameterized as

Q1(st, a
1
t ) = w

T
1 [fa(a

1
t )‖fs(st)] + b1, (B2)

Q2(st, a
2
t ; a

1
t ) = w

T
2 [fa(a

1
t )‖fa(a

2
t )‖fs(st)] + b2, (B3)

where a1
t was the node selected in the first stage. In the training of the constructors, we set the discount rate as γ = 0.9, and

the exploration with linear decay. After 200 steps, the exploration rate decayed to 0.05 and remained unchanged. The size of the

memory pool was set as 50000. For each action, the constructor chose a node to add to the ARF among all nodes adjacent to the

7) https://github.com/tkipf/gcn.
8) https://gihub.com/williamleif/GraphSAGE.
9) https://gihub.com/PetarV-/GAT.
10) https://gihub.com/weihua916/powerful-gnns.
11) https://github.com/samihaija/mixhop.
12) We tried the hidden state dimension 128 in Vanilla GCN and the hidden state dimension 16 in GAT, while no improvement

was observed.

https://doi.org/10.1038/nature14236
https://arxiv.org/abs/1406.2661
https://doi.org/10.1109/TKDE.2021.3072345
https://github.com/tkipf/gcn
https://gihub.com/williamleif/GraphSAGE
https://gihub.com/PetarV-/GAT
https://gihub.com/weihua916/powerful-gnns
https://github.com/samihaija/mixhop
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Figure C1 (Color online) Training loss. (a)–(f) correspond to the training loss curves of cora, citeseer, pubmed, github, and ppi

datasets, respectively. The red lines represent step loss and the blue lines represent sliding mean loss (sliding window size is 25).
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Figure C2 (Color online) (a) Entropy of each action step. The red line is the entropy of each action step, and the blue line is

the sliding mean entropy (sliding window size is 25). (b) Micro-f1s of different maximum ARFs sizes and confidence intervals.

ARF. Due to memory constraints, we limited the size of nodes adjacent to the ARF to 300 by sampling. This design was for nodes

with large numbers of degrees specifically. The hidden representation of states and actions (i.e., outputs of fs and fa) were defined

to be 128-dimensional.

Hyperparameter selection. In all settings, we performed hyperparameter selection on the learning rate, training steps,

maximum ARFs size, and update frequency of constructor. In the pretraining phase, we trained the evaluator with the same

training nodes as in GRARF. The initial learning rate in the pretraining phase was 0.001. In the training phase for GRARF,

we performed a parameter sweep on initial learning rates over 0.01, 0.001, 0.0001 with step-wise learning rate decay at every 3

steps. The decay γ was set as 0.95. For dataset cora, citeseer, pubmed, we updated the target constructors every 20 steps. For

dataset github, ppi, we updated the target constructors every 30 steps. We performed a parameter sweep on training steps over

400, 500, 600. The specific batch number in each step was decided by the training size of each dataset. For cora, citeseer datasets,

the maximum ARFs size was set as 2. For pubmed dataset, the maximum ARFs size was set as 4, and for github and ppi, the

maximum ARFs size was set as 8. To train the evaluator, we used the cross-entropy loss over the softmax output for single-class

node classification and the sigmoid output for multi-class node classification; to train the constructor, we used the mean-square-error

loss.

Appendix C Further analysis

Training curves. The training loss curves of GRARF is shown in Figure C1. In our implementation, the step loss would not reach

near 0, but converge to a constant value. The strategies given by constructors would also become stable as the number of training

steps grown. To illustrate the stability of strategy, we visualized the entropy of q-values in Figure C2(a) given by constructors. With

the number increasing, the entropy of q-values of each step decreased in fluctuations, and finally reached a constant approaching 0.

This shows GRARF learns stable policies.

Effects of maximum ARFs sizes. To explore the relationship between the performances of GRARF and maximum ARFs

sizes, we designed experiments on different maximum ARFs sizes on cora. Results are shown in Figure C2(b). The performance

of GRARF remained consistent as the maximum ARF size varies. We believe that this indicates the neighborhood can indeed be

depicted with sparse contexts.

Distance distribution on LDD experiments. To further demonstrate the benefits of using ARFs in LDD, we show the

dependency length distributions of nodes having the same degree in Figure C3. In these experiments, maximum ARFs size was

set as 5. We selected LDD with λ = 2.0 and divided central nodes according to their degrees. For low-degree central nodes, ARFs

tended to include long-dependency nodes to exploit more information. For high-degree central nodes, ARF nodes with dependency
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Figure C3 (Color online) Dependency length of nodes in LDD experiments (λ = 2.0). (a)–(l) Correspond to central nodes of

which degrees range from 2 to 13.

length at 2 and 3 appeared more frequently. Note that in the LDD setup, we assigned a split number k drawn from Poisson(λ) on

each edge, and then split each edge to a (k+1)-hop path (do nothing if k = 0) by inserting k noises. Under this setting, informative

nodes are pulled away from central nodes, which means GCNs need to “look” further to aggregate informative nodes.
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