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Sparse synthetic aperture radar (SAR) systems always ob-

tain a wide swath by reducing the pulse repetition frequency

(PRF). However, the reduction of PRF will cause azimuth

ambiguity, and even lead to failed reconstruction of the ob-

servation scenes in SAR imaging because traditional sparse

SAR imaging models do not consider the azimuth ambi-

guity terms and cannot effectively suppress ambiguity. To

solve this problem, an unambiguous sparse SAR imaging

model was proposed, which achieves unambiguous sparse

reconstruction by solving an L2,1-norm regularization prob-

lem [1]. However, it is not highly effective in suppressing

azimuth ambiguity [2, 3]. As the reduction of PRF is the-

oretically equivalent to the down-sampling of echo data, a

novel L2,1/2-norm regularization-based unambiguous sparse

SAR imaging method is proposed to further improve SAR

imaging performance with down-sampled data and applied

for the high-quality recovery of large-scale sparse surveil-

lance area.

Method. The center frequency fa of ambiguity areas can

be written as fa = fdc + i · PRF, i ∈ Z and i 6= 0, where

fdc is the Doppler center frequency, and i ∈ Z+ and i ∈ Z−

denote the azimuth ambiguity terms in the right and left

sides of the main imaging area in the azimuth direction, re-

spectively. Incorporating the azimuth ambiguity terms into

the two-dimensional (2-D) unambiguous sparse SAR imag-

ing model, since the main image term and azimuth ambi-

guity terms have the same support set, the group sparsity

between them could be used for the scene recovery by solv-

ing [3]
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where Y ∈ CNa×Nr is the 2-D down-sampled data with Nr

and Na being the number of samples in the range and az-

imuth directions, respectively, Ξa is the azimuth sampling

matrix, X and Xi are the backscattering coefficients of the

surveillance region and the ith azimuth ambiguity term,

respectively, and ◦ is the Hadamard product. M (·) and

Mi (·) are the echo simulation operators, which are the in-

verse procedures of typically matched filtering (MF) imaging

algorithm R (·) and Ri (·), respectively [3]. X̂ is the recov-

ered sparse SAR image and ‖Xall‖
q
2,q is defined as
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where Xna and Xi,na are the nath row of X and Xi, re-

spectively. na = 1, 2, . . . , Na. β1 and β2 are the regular-

ization parameters which control the sparsity of the entire

scenes Xall and X. For the model in (1), iterative thresh-

olding [4] is used for scene recovery. Considering q = 1/2,

which is more advantageous than q = 1 [5], and the thresh-

olding operator Fµ,β,q(Z) for matrix Z ∈ CNa×Nr can be

written as

Fµ,β,q(Z) = [fµ,β,q(z)]Na×Nr , (3)

where z = Z(na, nr), nr = 1, 2, . . . , Nr , the thresholding

function fµ,β,q(·) is [5]
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0, otherwise,

(4)

µ controls the algorithm convergence speed and is usually

set to a constant, β is the regularization parameter, and
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Figure 1 Flow diagram of the proposed method.

gµ,β(z) can be written as
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The detailed steps are shown in Figure 1. |U(t−1)|K+1 is

the (K + 1)th largest component of amplitude |U(t−1)| in

descending order.

Let M = Na × Nr and N = Np × Nq, the number of

iterative steps required by the proposed method is T , and

the number of azimuth ambiguity terms considered in the

model is I. The computational complexity of the proposed

method primarily comprises three parts. Consider a sin-

gle iteration process, wherein the first part is the MF and

inverse MF processes of the main image term and I az-

imuth ambiguity terms, and the computational complexity

is O((I + 1)M logM) [1]. The second part is the computa-

tional complexity of the threshold iterative operation, given

by O(2N). The third part is the computational complexity

of the iteration operation of the whole scene, given by O(N).

Therefore, the computational complexity of the proposed

method can be expressed as O(T ((I + 1)M logM + 3N)).

Experiments and results. For the azimuth ambiguity sup-

pression in SAR imaging, the proposed method is compared

with MF-based, Lq-norm regularization-based and existing

L2,1-norm regularization-based methods. Detailed results

are presented in Appendix A due to space limitations.

Conclusion. A novel L2,1/2-norm regularization-based

sparse imaging method is proposed and applied to the un-

ambiguous sparse reconstruction of large-scale areas. It has

good performance in enhancing the quality of the recovered

image, especially in terms of azimuth ambiguity suppression.
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