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In the sixth generation (6G) wireless communication, cell-

free massive multiple-input multiple-output (MIMO) has

emerged as a promising technology due to it can improve

macro diversity gain, enhance edge user service quality, and

reduce path loss [1]. To suppress inter-user interference

and improve spectral efficiency, the design of the precoding

scheme is important.

However, the fully digital precoding scheme requires a

dedicated radio frequency (RF) link for each antenna, which

leads to high energy consumption and hardware deployment

cost [2]. Compared with fully digital precoding, hybrid pre-

coding composed of analog and digital precoders is very nec-

essary in user-centric and cell-free massive MIMO systems

because it can balance the achievable rate and energy con-

sumption [3]. To deal with the non-convex constraint such

as block diagonalization introduced by cell-free structures

during hybrid precoding design, we propose a manifold op-

timization assisted centralized hybrid precoding (MO-CHP)

scheme, which is implemented by alternate optimization and

Riemann gradient descent methods.

System model and problem formulation. We consider

a cell-free massive MIMO system with CHP architecture,

where M access point (APs) serve K single-antenna users

at the same frequency, and each AP is equipped with N

antennas and NRF RF links. The uplink channel matrix

between user k and AP m is Hm,k ∈ CN×1. At AP

m, the digital precoder and analog precoder are F
DD
m =

[FDD
m,1, . . . ,F

DD

m,K ] ∈ CNRF×K and F
RF
m ∈ CN×NRF , respec-

tively. The received baseband signal of the kth user can be

expressed as

yk = H
H

k Fksk +
K
∑

i=1,i6=k

H
H

k Fisi + nk, (1)

where H
H

k
Fi =

∑M
m=1

H
H

m,k
F

RF
m F

DD
m,i , nk ∼ (0, σ2

k
) is the

additive white Gaussian noise, and sk ∼ CN (0, 1) is the

transmit data symbol.

In practical applications, not all APs need to serve all

users, and the connection between them depends on chan-

nel conditions. In Appendix A, we define a series of diagonal

matrices Dk = blkdiag
(

D1,k, . . . ,DM,k

)

to construct the

equivalent channel Ĥ
H

k
= H

H

k
Dk for k = 1, . . . ,K, where

Dm,k = IN means that user k is served by the mth AP.

We assume that the transmitted signal follows the Gaussian

distribution, the achievable rate of kth user is
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)
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In order to maximize the sum achievable rate, the overall

optimization problem can be expressed as

(P1) : max
FRF,FDD
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F
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(

F
RF
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M
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, (3d)
∣
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where Eq. (3b) represents the transmit power constraints,

Eq. (3c) means per-AP power constraints, ρAP is the max-

imum transmit power for each AP, Eq. (3d) represents the

block-diagonal constraint, and Eq. (3e) is the unit modulus

constraint of analog precoder, respectively.

It can be seen that the optimization problem P1 needs

to maximize the sum achievable rate under consideration of

multiple non-convex constraints, which is not easy to solve.

In this regard, we can adopt a two-step approach. In the

first step, the hybrid precoding matrix Fk = F
RF

F
DD

k
is

regarded as a whole, so that the internal non-convex con-

straints are not considered, and the process of solving Fk is

simplified. In Appendix B, we solve the fully digital precoder

Fk from two different perspectives: interference cancellation
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Figure 1 (Color online) Simulation results. (a) Comparison of the sum achievable rate versus SNR; (b) comparison of ηAP versus

SNR; (c) comparison of the sum achievable rate versus the number of antenna per AP.

(IC) and weighted sum minimum mean square error (WS-

MMSE) criteria. As indicated by P2, the second step is to

decompose Fk into two parts, FRF and F
DD

k
based on the

first step, considering the non-convex constraints. From [4],

we have known that minimizing the objective function in

P2 is approximately equivalent to maximizing spectral effi-

ciency in P1.

MO-CHP. To remove non-convex constraints of analog

precoder such as block diagonalization constraint and unit

modulus constraint, we transform the optimization space

from Euclidean space to Riemann space and define the Rie-

mann gradient (see Appendix C for details).

Once we obtain the fully-digital precoders F
IC or

F
WS-MMSE according to different criteria, the next task is

to decompose them into analog and baseband digital pre-

coders while satisfying the non-convex constraint, which is

expressed as

(P2) : min
FRF,FDD

k
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∥

∥
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In the process of solving problem P2, since the two vari-

ables F
RF and F

DD will affect each other, the core idea of

our solution is alternate optimization, that is, solving prob-

lem P3 and P4 alternately until the convergence condition

is satisfied.

(P3) : min
F

DD
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∥
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s.t. (3b) and (3c). (5b)

In P3, due to F
RF is fixed and there is no constraint of

non-convex conditions such as constant modulus constraint.

The problem of solving F
DD is a classic convex optimiza-

tion problem, whose closed-form least squares solution can

be solved by Lagrangian multiplier method [5].

(P4) : min
FRF

∥

∥

∥
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In P4, although F
DD is fixed, we still cannot solve F

RF

directly because the analog precoder F
RF has non-convex

constraint. In order to remove the non-convex constraints

of analog precoder such as block diagonalization constraint

and unit modulus constraint, we first vectorize the non-zero

diagonal elements in the analog precoding matrix, then de-

fine the optimization space as the Riemann space. In the

Riemann manifold, we determine the entire optimization

search space as the product of V circles on the complex

plane, that is, the product geometry of the Riemann man-

ifold CV . Based on the Riemann gradient defined in Ap-

pendix D, we can use the conjugate gradient descent method

to solve the analog precoder F
RF with fixed F

DD. Besides,

we analyze the computational complexity of the proposed

MO-CHP scheme in Appendix D.

Conclusion and simulation results. To evaluate the per-

formance of the proposed MO-CHP scheme (see Appen-

dix E for details), Figure 1 shows the curve of the sum

achievable rate versus signal-to-noise ratio (SNR), ηAP =
Rtotal

Mactive
, and the number of antenna per AP. It can be seen

that the proposed MO-CHP scheme is very close to the fully-

digital precoder, which shows the effectiveness of the man-

ifold optimization algorithm in cell-free massive MIMO hy-

brid precoding.

To maximize the sum achievable rate, we propose a novel

MO-CHP scheme for the cell-free mmWave massive MIMO

system. To eliminate the non-convex constraint in hybrid

precoding design, the analog precoder is vectorized and then

defined as a complex circular manifold. Thus, the Riemann

gradient descent method can be used for manifold optimiza-

tion.
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