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Abstract In this paper, the issues regarding the input-to-state stability (ISS) and integral input-to-state

stability (iISS) of the stochastic delayed switching systems with Lévy noise and input control (SDSS-LN-IC)

are proposed by employing the comparison theorem approach, mode-dependent average dwell time (MDADT)

method, delay integral inequality (DII), and Lyapunov-Razumikhin (L-R) technique. Two switching situa-

tions, namely, synchronous switching and asynchronous switching, are considered. Applying integral inequal-

ities, sufficient stability conditions in both cases are given. Moreover, the sequences of this paper allow for the

coefficients for the upper-bound expectation estimation of the infinitesimal operator to be mode-dependent,

regardless of the sign and time-varying function rather than a constant, as is the case in certain existing

results, which manifests the condition of the Lyapunov-Razumikhin technique in this paper is looser and less

conservative. Finally, the validity and correctness of the theoretical results are verified by two examples and

some simulations.
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1 Introduction

Since their introduction in the late 1980s [1] and 2000s [2], respectively, input-to-state stability (ISS)
and integral ISS (iISS) have attracted interest from researchers due to their remarkable role in stochastic
system analysis [3, 4]. For systems with ISS properties, the norm estimation of the solution should
consist of an upper bound of an initial state-dependent disappearing transient term plus a term that is
proportional to the external input norm. Therefore, ISS illustrates that not only the systems without
input are asymptotically stable but also retain the property of being bounded when their external input
is bounded [5]. Lately, several invariants of ISS for different dynamical systems have been studied, such
as iISS of discrete-time systems [6], local ISS of production networks [7], and exponential-weighted ISS
of hybrid impulsive system [8].

For all we know, time delays often occur in many control applications, especially due to transmission
phenomena and measurement, causing instability, performance degradation, and oscillations in the con-
sidered systems. A delayed system is a dynamic system in which its current state rate is affected by its
bygone state. In recent decades, there have been increasing studies on time-delay systems (TDSs) [9,10],
especially ones focusing on the stability of TDSs [11]. To the best of our knowledge, the Krasovskii ap-
proach [12] and the Razumikhin method [13,14] expanded the Lyapunov direct approach to TDSs. Both
methods are highly applicable to the stabilization/stability analysis of TDSs, such as impulse TDSs [15],
functional TDSs [16], and neutral TDSs [17]. In addition, adequate conditions for the stability of TDSs
with time-invariant delays/time-varying delays are provided. When there exists a time delay in the sub-
system of switching systems, the systems can be regarded as switching time delay systems (STDSs), and
their stabilization/stability analysis has also been extensively studied in the past [18,19]. The STDSs offer
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a consolidated criterion for the mathematical modeling of artificial systems or abundant physical systems
displaying switching properties such as network control systems [20, 21] and flight control systems [22].
Different switching signals distinguish STDSs from general time-varying systems because the solutions of
STDSs depend not only on the initial conditions of the systems but also on the switched signals; thus,
research on STDS stability/stabilization has invariably posed considerable challenges. The Krasovskii
approach is slightly conservative because it is not easy to discover a communal Lyapunov-Krasovskii
(L-K) function, particularly with time delays. However, by utilizing multiple Lyapunov functions in [23],
the switching systems are exponentially stable, provided that the dwell time (DT) τ is large enough.
Moreover, certain studies identified a smaller bound of DT bound to ensure system stability [24, 25].
However, it is worth noting that in some circumstances, the development of DT switching is limited.
In [26], average DT (ADT), which is more effective and flexible for system stability analysis, is proposed.
The MDADT was shown in [27], indicating some easily verified sufficient conditions for system stability.
Chen et al. [28] investigated the ISS/iISS of impulse TDSs whose impulse time series possess the fixed
DT (FDT) characteristic.

The authors [29,30] always considered the switching signal or semi-Markovian switching in the systems.
Two probable control scenarios exist in controlled STDSs. First, synchronous switching implies that
input-controlled switching signals are consistent with controlled systems. Second, asynchronous switching
indicates that controller switching may not be exactly the same as subsystem switching. Further, a system
driven by a controller passes through a communication channel, and the present subsystem switches to
the next subsystem, which takes some time. This delay occurs due to the time taken to recognize the
activity of the subsystem and alter the controller from the present subsystem to the relevant subsystem;
the time taken is called the switching delay, and in this status, the corresponding closed-loop system
will undergo asynchronous switching [31,32]. For this type of STDSs with asynchronous switching, using
the L-K functional is difficult. In [33], the synchronous switching was considered by the L-K functional,
which cannot be directly extended to TDSs depending on ADT with asynchronous switching. This can be
attributed to the fact that the maximum increment of the current L-K functional in any mode-switching
process must be shown. Moreover, the exponential decay bounds and the limits on the maximum growth
rate about the functional need to be described in the case of match and mismatch, respectively. Moreover,
Lévy noise can describe both continuous noise and discontinuous noise, which makes the SDSS-LN-IC
noise more comprehensive and practical.

Based on the aforementioned instructions, ISS/iISS of TDSs under synchronous switching and asyn-
chronous switching are explored in this article. Different from our previous studies [34–36], the DII will be
utilized. Multiple Lyapunov functions, DII, comparison theorem approach, L-R technique, and MDADT
are used for studying the ISS/iISS of TDSs under synchronous switching. For asynchronous switching, a
novel hybrid switching signal is generated by merging switching signal technology. The contributions of
this study are given as follows.

• Sufficient conditions for the ISS/iISS for stochastic TDSs under synchronous switching and asyn-
chronous switching are gotten. In this work, the system with Brownian motion and Lévy noise is inves-
tigated, which increases the scope of the model studied.

• We consider the TDSs under asynchronous switching depend on MDADT, which reduces the con-
servatism of ADT and is more general than [37–39], wherein the synchronous switching and ADT were
investigated. Moreover, a new merging switching approach is used to handle the problem of asynchronous
switching.

• The upper bound estimate for the infinitesimal operator expectation is mode-dependent, has the
indefinite sign, and is time-varying, providing a more accurate mathematical analysis.

• A mode-dependent hypothesis related to active time (i.e., MDADT in this paper) is proposed, which
can preserve the different property subsystems of active time.

The article is structured as follows: Section 2 presents the preliminaries/definitions/models studied.
Section 3 shows the investigation of the ISS/iISS of TDSs under synchronous switching/asynchronous
switching. Examples and simulations are revealed in Section 4. Section 5 concludes the paper.

2 Problem statement and preliminaries

Notations. |x| refers to the Euclidean norm for vector x (x ∈ R
n) and its transpose is defined as xT.

(Ω,F , {Ft}t>0,P) on behalf of the complete probability space with some filtration {Ft}t>0 meets the
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general conditions. Let K denote the class of strictly increasing and continuous function φ̂ : R+ → R
+

with φ̂(0) = 0. Moreover, K∞ is unbounded and represents the subset of K functions. VK(VK∞) and
CK(CK∞) are convex and concave functions, respectively, which are also the subsets of K(K∞) functions.
Let C1,2(R+ ×PCb

Ft
([t0 − τ, t0];R

n);R+) be the family of nonnegative functions V (t, ψ) which is defined

on R
+ ×PCb

Ft
([t0 − τ, t0];R

n) that are continuously twice differentiable in ψ and once in t. PC([a, b];Rn)
on behalf of the class of sectional-continuous functions, provided that the functions have no more than
a limited amount of discontinuous jumps on (a, b] and are continuous from the right for all points [a, b).
PCb

Ft
([t0 − τ, t0];R

n) (PCb
F0

([t0 − τ, t0];R
n)) means the family for all bounded Ft(F0)-measurable, PC-

value stochastic variables ζ, which satisfies supt0−τ6t6t0
E|ζ(t)|p <∞. Let ϕ̄(t−) = lims→0− ϕ̄(t+ s) and

D+ϕ̄(t) = limsups→0+(ϕ̄(t+ s)− ϕ̄(t))/s be called the Dini derivative about ϕ̄(t). w = (w1, w2, . . . , wn)
T

represents the n-dimensional (n-D) Ft-adapted Brownian motion. Φ : R+ × R
+ → R

+ is defined as
a class of KL provided that Φ(·, t) is a class of K for arbitrarily fixed t > 0 and Φ(·, t) decreases to
zero on t → ∞. N signifies the set for positive integers. For any K1,K2 ∈ R, K1 ∨ K2 = max{K1,K2},
K1 ∧ K2 = min{K1,K2}.

Study the following stochastic delayed switching systems with Lévy noise and input control (SDSS-
LN-IC):







dx(t) = fρ(t)(t, xt, u(t))dt+ gρ(t)(t, xt, u(t))dw(t) +

∫

R

hρ(t)(t, xt, u(t), ǫ)N(dt, dǫ),

xt0 = ϑ(t+ s), − τ 6 s 6 0,

(1)

where t > t0, u(t) ∈ PC([t0,+∞);Rn) means the external input control with input disturbance and
switching signal. ϑ ∈ PCb

F0
([t0 − τ, t0];R

n), x = (x1, x2, . . . , xn) ∈ R
n stands for the system state, xt is

a PC-value random process and xt = x(t + s), s ∈ [−τ, 0]. Define an index set N = {1, 2, . . . ,N}. ρ(t) :
R

+ → N represents the switching function and is supposed as a sectional-continuous constant function
from the right side. The switching sequence of ρ(t) is defined as {(σ0, t0), (σ1, t1), . . . , (σk, tk)}, σk ∈
N , k ∈ N , which indicates the σk-th subsystem is contributing on t ∈ [tk, tk+1). For any σk ∈ N ,
fσk

(t, ψ, u) : R+×PCb
Ft
([t0−τ, t0];Rn)×R

n → R
n, gσk

(t, ψ, u) : R+×PCb
Ft
([t0−τ, t0];Rn)×R

n → R
n×n,

hσk
(t, ψ, u, ǫ) : R+ × PCb

Ft
([t0 − τ, t0];R

n)× R
n × R → R

n. Suppose that w(t), ρ(t), N(t, ǫ) are mutually
independent and presume that fσk

(t, 0, u) = 0, gσk
(t, 0, u) = 0, hσk

(t, 0, u, ǫ) = 0, t ∈ R
+, u ∈ R

n, ǫ ∈ R,
which declares the SDSS-LN-IC (1) has a trivial solution x(t) ≡ 0. Moreover, the SDSS-LN-IC (1)
satisfies the linear growth condition and Lipschtiz condition as standard hypothesis such that it possesses
a unique solution which is defined as x(t) = x(t; t0, ϑ, ρ(t0)) [40]. π̂ is the Lévy measure, Ñ(dt, dǫ) =
N(dt, dǫ)− π̂(dǫ)dt, and

∫

R
|ǫ|p ∧ 1v(dǫ) = C <∞.

For each Vσk
(t, ψ) ∈ C1,2(R+×PCb

Ft
([t0−τ, t0];Rn);R+), we define an infinitesimal operator as follows:

LVσk
(t, ψ, u) =Vσk,t(t, ψ) + Vσk,x(t, ψ)fσk

(t, ψ, u) +
1

2
trace[gTσk

(t, ψ, u)Vσk ,xx(t, ψ)gσk
(t, ψ, u)]

+

∫

R

[Vσk
(t, ψ + hσk

(t, ψ, u, ǫ))− Vσk
(t, ψ)]π̂(dǫ),

where

Vσk,t(t, ψ) =
∂Vσk

(t, ψ)

t
, Vσk,x(t, ψ) =

(∂Vσk
(t, ψ)

∂x1
, . . . ,

∂Vσk
(t, ψ)

∂xn

)

, Vσk,xx(t, ψ) =
(∂2Vσk

(t, ψ)

∂xk∂xl

)

n×n
.

According to the above formula, one could quote the underlying generalized Itô formula,

Vρ(t)(t, ψ(t)) = Vρ(t0)(t0, ψ(t0)) +Mt +

∫ t

t0

LVρ(s)(s, ψ(s), u(s))ds, (2)

where

Mt =

∫ t

t0

Vρ(s),x(s, ψ(s))gρ(s)(s, ψ(s), u(s))dw(s)

+

∫ t

t0

∫

R

[Vρ(s)(s, ψ(s) + hρ(s)(s, ψ(s), u(s), ǫ))− Vρ(s)(s, ψ(s))]Ñ (ds, dǫ).
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Definition 1 ([41]). For ∀t ∈ [t0, T ], let Nρ(t)(T, t) be the switching number for ρ(t) on (t, T ], provided
that

Nρ(t)(T, t) 6 N0 +
T − t

Ta

, N0 > 0, Ta > 0;

then N0 and Ta are called a chattering bound and ADT of ρ(t).

Definition 2 ([41]). For a switching signal ρ(t), ∀t ∈ [t0, T ], σk ∈ N , let Nρ(t),σk
(T, t) be the switching

amounts of the σk-th subsystem that is active on the interval (t, T ], and Tσk
(T, t) be the entire elapsed

time of the σk-th subsystem on (t, T ], provided that

Nρ(t),σk
(T, t) 6 N0,σk

+
Tσk

(T, t)

Ta,σk

, N0,σk
> 0, Ta,σk

> 0;

then N0,σk
and Ta,σk

represent the mode-dependent chattering bound and MDADT of ρ(t).

Moreover, for ∀i = σk ∈ N , Nρ(t)(T, t) =
∑N

i=1Nρ(t),i(T, t), T − t =
∑N

i=1 Ti(T, t). Let Save[Ta,σk
,

N0,σk
] be the family for switched signals which carry with the σk-th MDADT Ta,σk

and chattering bound
N0,σk

.

Definition 3. The SDSS-LN-IC (1) is said to be
(i) ISS, provided that there are functions Φ ∈ KL, α, ω ∈ K∞, such that for t > t0,

α(E|x(t)|) 6 Φ(E||ϑ||, t− t0) + sup
t06s6t

ω(|uρ(s)(s)|);

(ii) iISS, provided that there are functions Φ ∈ KL, α, ω ∈ K∞, such that for t > t0,

α(E|x(t)|) 6 Φ(E||ϑ||, t − t0) +

∫ t

t0

ω(|uρ(s)(s)|)ds.

3 Main results

This paper also investigates the switching signal ρ(t) in the input controller, but we study two cases.
(1) Synchronous: the switching (i.e., ρ(t)) available for the input control (i.e., u(t)) is isochronous with
the ρ(t) of the systems, such that the candidate input controller is shown as u(t) = Uρ(t)(t, x(t), ξ(t)),
and ξ(t) : [t0,+∞) → R

n is the additional input disturbance. (2) Asynchronous: the switching of
the input controller is inconsistent with the switching of the systems, such that the candidate input
controller is shown as u(t) = Uρ(t−τs)(t, x(t), ξ(t)), where τs is called the switching delay and 0 < τs <
inf{tk+1 − tk}, k = 0, 1, 2, . . ..

3.1 The ISS/iISS of TDSs under synchronous switching

In this subsection, we consider the synchronous switching signal in the SDSS-LN-IC (1) first. The
adequate conditions for the ISS and iISS of the SDSS-LN-IC (1) will be investigated by the comparison
theorem approach, MDADT, integral inequality, and L-R technique.

Theorem 1. For ∀σk ∈ N , let functions α1σk
∈ VK∞, α2σk

∈ CK∞, φσk
∈ K∞, and βσk

∈ PC([t0 −
τ,∞);R). Presume that there exist Lyapunov functions V (t, x) ∈ C1,2(R+ × PCb

Ft
([t0 − τ, t0];R

n);R+),
some positive numbers c1, c2, γσk

> 1 and δ > 1, such that
(A1) α1σk

(|x|) 6 Vσk
(t, x) 6 α2σk

(|x|);
(A2) For ∀t ∈ [tk, tk+1),

ELVσk
(t, xt) 6 βσk

(t)EVσk
(t, x(t)) + φσk

(|u(t)|),

provided EVρ(t+̺)(t+ ̺, x(t+ ̺)) 6 δEVρ(t)(t, x(t)), where ̺ ∈ [−τ, 0];
(A3) For any σk, σl ∈ N (k 6= l), EVσk

(t, x) 6 γσk
EVσl

(t, x);

(A4) Ta,σk
> T∗

a,σk
=

ln γσk

c2
and for any s ∈ [t0, t],

∫ t

s

β̄ρ(v)(v)dv 6 c1 − c2(t− s),

where β̄ρ(t)(t) = (− ln δ
τ

) ∨ βρ(t)(t). Then the SDSS-LN-IC (1) is ISS and iISS over Save.
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Proof. Assume that ᾱ = supσk∈N {α2σk
} ∈ CK∞, α = infσk∈N {α1σk

} ∈ VK∞, and L1 = ᾱ(E||ϑ||) and
let

βρ(t)(t) = βρ0(t0), t ∈ [t0 − τ, t0),

Wρ(t)(t) = Vρ(t)(t, x(t)), t > t0 − τ,

ΘN(t,t0)(t) = L1e
∫

t

t0
β̄ρ(s)(s)ds +

N(t,t0)
∏

p=1

γ−1
σp

∫ t

tN(t,t0)

e
∫

t

ς
β̄ρ(v)(v)dvφρ(ς)(|u(ς)|)dς

+

N(t,t0)
∑

p=1

p−1
∏

q=1

γ−1
σq

e
∫

t

tp
β̄ρ(v)(v)dv

∫ tp

tp−1

e
∫

t

ς
β̄ρ(v)(v)dvφρ(ς)(|u(ς)|)dς,

such that Θ0(t) = L1 = ᾱ(E||ϑ||), t ∈ [t0 − τ, t0). By (2), for t ∈ [tk, tk+1), one has

dWσk
(t) = LWσk

(t)dt+ Vx(t, x(t))gσk
(t, xt, u(t))dw(t).

Then one can easily calculate that

LWσk
(t) = LVσk

(t, xt), t ∈ [tk, tk+1).

Let t̃ be sufficiently small and t+ t̃ ∈ [tk, tk+1) and by Fubini theorem,

EWσk
(t+ t̃)− EWσk

(t) =

∫ t+t̃

t

ELWσk
(s)ds.

Therefore, one obtains for all t ∈ [tk, tk+1) that

D+
EWσk

(t) = ELWσk
(t) = ELVσk

(t, xt).

Next, the remaining proof will be written in two parts: in Part 1, the estimations are given for EWσk
(t),

while in Part 2, the ISS and iISS will be shown based on the results in Part 1.
Part 1. We would demonstrate that

EWσk
(t) 6

N(t,t0)
∏

p=1

γσp
ΘN(t,t0)(t), ∀t > t0 − τ. (3)

By condition (A1), one knows that for t ∈ [t0 − τ, t0),

EWσk
(t) 6 α2σk

(E||ϑ||) 6 Θ0(t) = L1. (4)

Then, inequality (3) is tenable for t ∈ [t0, t1), namely

EWσ0 (t) 6 L1e
∫

t

t0
β̄σ0(s)ds +

∫ t

t0

φσ0 (|u(s)|)e
∫

t

s
β̄σ0(v)dvds. (5)

For any ℵ > 0, consider relevant comparison ODE,

{

ẏ(t) = β̄σ0(t)y(t) + φσ0(|u(t)|) + ℵ, t ∈ [t0, t1),

y(t0) = L1 + ℵ.
(6)

The solution of (6) is

y(t) = (L1 + ℵ)e
∫

t

t0
β̄σ0(s)ds +

∫ t

t0

[φσ0(|u(s)|) + ℵ]e
∫

t

s
β̄σ0(v)dvds, t ∈ [t0, t1).

We claim that

EWσ0(t) < y(t), t ∈ [t0, t1). (7)



Yu P L, et al. Sci China Inf Sci November 2023 Vol. 66 212206:6

Apparently, EWσ0 (t0) < y(t0) = L1 + ℵ, which implies that inequality (7) holds for t = t0. Now, we
presume that inequality (7) is not true; then there are some t ∈ (t0, t1), such that EWσ0 (t) > y(t). Let

t⋄ = inf{t ∈ (t0, t1) : EWσ0 (t) > y(t)}.

What needs to be pointed out is that EWσ0(t), y(t) are continuous on (t0, t1); one obtains EWσ0(t
⋄) =

y(t⋄) and EWσ0 (t) > y(t) for ∀t ∈ (t⋄, t⋄ + t̄) ⊂ (t0, t1), where t̄ is a constant and sufficiently small.
Hence, for ∀t ∈ (t⋄, t⋄ + t̄), one has

EWσ0(t)− EWσ0 (t
⋄)

t− t⋄
>
y(t)− y(t⋄)

t− t⋄
,

which signifies that

D+
EWσ0 (t

⋄) > D+y(t⋄). (8)

In addition, it may be checked that

EWρ(t⋄+̺)(t
⋄ + ̺) 6 δEWρ(t⋄)(t

⋄), t⋄ ∈ (t0, t1), (9)

which would be demonstrated by the following two cases.
Case 1. t⋄ + ̺ < t0, which implies that t⋄ − t0 < −̺ 6 τ . For β̄ρ(t)(t) > − ln δ

τ
, t > t0, the following

inequality holds:

e
∫

t⋄

t0
−β̄ρ(s)(s)ds 6 δ;

then it follows from inequality (4) that when t⋄ + ̺ ∈ [t0 − τ, t0),

EWρ(t⋄+̺)(t
⋄ + ̺) 6 L1 = L1e

∫
t⋄

t0
β̄ρ(s)(s)dse

∫
t⋄

t0
−β̄ρ(s)(s)ds 6 δLe

∫
t⋄

t0
β̄ρ(s)(s)ds < δy(t⋄) = δEWρ(t⋄)(t

⋄).

Case 2. t⋄ + ̺ > t0. Similarly, because β̄ρ(t)(t) > − ln δ
τ
, t > t0, we get e

∫
t⋄

t⋄+̺ β̄ρ(s)(s)ds > δ−1, and
then

y(t⋄) =(L1 + ℵ)e
∫

t⋄

t0
β̄σ0(s)ds +

∫ t⋄

t0

(φσ0(|u(s)|) + ℵ)e
∫

t⋄

t0
β̄σ0(v)dvds

=(L1 + ℵ)e
∫

t⋄+̺

t0
β̄σ0(s)dse

∫
t⋄

t⋄+̺
β̄σ0(s)ds +

∫ t⋄

t0

(φσ0 (|u(s)|) + ℵ)e
∫

t⋄+̺

t0
β̄σ0(s)dse

∫
t⋄

t⋄+̺
β̄σ0(s)dsds

>δ−1

[

(L1 + ℵ)e
∫

t⋄+̺

t0
β̄σ0(s)ds +

∫ t⋄

t0

(φσ0 (|u(s)|) + ℵ)e
∫

t⋄+̺

s
β̄σ0(v)dvds

]

, (10)

which indicates that

y(t⋄) >δ−1

[

(L+ ℵ)e
∫

t⋄+̺

t0
β̄σ0(s)ds +

∫ t⋄+̺

t0

(φσ0 (|u(s)|) + ℵ)e
∫

t⋄+̺

t0
β̄σ0(v)dvds

]

= δ−1y(t⋄ + ̺), (11)

which yields that Eq. (9) holds for the both cases. Then we obtain by inequality (9) and condition (A2)
that

D+
EWσ0(t

⋄) 6 β̄σ0(t
⋄)EWσ0 (t

⋄) + φσ0 (|u(t
⋄)|) < β̄σ0(t

⋄)y(t⋄) + φσ0 (|u(t
⋄)|) + ℵ = D+y(t⋄),

which contradicts to (8), and Eq. (7) holds, and then, we let ℵ → 0 so that inequality (5) is obtained.
Suppose that inequality (3) is true on t ∈ [t0, tk), namely

EWσk
(t) 6

N(t,t0)
∏

p=1

γσp
ΘN(t,t0)(t), t ∈ [tm, tm+1), (12)
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for m = 0, 1, 2, . . . , k− 1. Next, we prove that inequality (3) is true on t ∈ [tk, tk+1). Letting N(t, t0) = k
for t ∈ [tk, tk+1), inequality (12) is converted to

EWσk
(t) 6

k
∏

p=1

γσp
Θk(t), t ∈ [tk, tk+1). (13)

Combining (13) with condition (A3), one gets that

EWσk
(tk) 6

k
∏

p=1

γσp
Θk(tk) , L2.

For any ℵ > 0, consider another comparison ODE,

{

ẏ(t) = β̄σk
(t)y(t) + φσk

(|u(t)|) + ℵ, t ∈ [tk, tk+1),

y(tk) = L2 + ℵ.
(14)

By the variance-of-constant formula, we have

y(t) = (L2 + ℵ)e
∫

t

tk
β̄σk

(s)ds
+

∫ t

tk

(φσk
(|u(s)|) + ℵ)e

∫
t

s
β̄σk

(v)dvds, t ∈ [tk, tk+1).

One would claim that

EWσk
(t) < y(t), t ∈ [tk, tk+1), (15)

if Eq. (15) is invalid, one can discover that EWσk
(t) > y(t) on t ∈ (tk, tk+1). In addition, we can also

easily know that EWσk
(tk) < y(tk) holds. Letting

t′ = inf{t ∈ (tk, tk+1) : EWσk
(t) > y(t)},

we know that EWσk
(t) < y(t) on t ∈ (tk, t

′), EWσk
(t′) = y(t′), and EWσk

(t) > y(t), t ∈ (t′, t′ + t̂), where
t̂ is a small enough constant, which take account of the continuity for EWσk

(t), y(t) on (tk, tk+1). Then
one has for ∀t ∈ (t′, t′ + t̂),

EWσk
(t)− EWσk

(t′)

t− t′
>
y(t)− y(t′)

t− t′
,

which implies that

D+
EWσk

(t′) > D+y(t′). (16)

Utilizing the similar proof process above,

EWρ(t′+̺)(t
′ + ̺) 6 δEWρ(t′)(t

′), t′ ∈ (tk, tk+1). (17)

Combining (17) with condition (A2),

D+
EWσk

(t′) 6 β̄σk
(t′)EWσ0 (t

′) + φσk
(|u(t′)|) < β̄σk

(t′)y(t′) + φσk
(|u(t′)|) + ℵ = D+y(t′),

which contradicts to (16) and then Eq. (15) is obtained. Letting ℵ → 0 and by (15), one obtains for
t ∈ [tk, tk+1),

EWσk
(t) 6 L2e

∫
t

tk
β̄σk

(s)ds
+

∫ t

tk

φσk
(|u(s)|)e

∫
t

s
β̄σk

(v)dvds. (18)

Substitute L2 into (18) and we calculate that

EWσk
(t) 6

k
∏

p=1

γσp
Θk(tk)e

∫
t

tk
β̄σk

(s)ds
+

∫ t

tk

φσk
(|u(s)|)e

∫
t

s
β̄σk

(v)dsds
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=

k
∏

p=1

γσp
e
∫

t

tk
β̄σk

(s)ds

(

L1e
∫ tk
t0

β̄ρ(s)(s)ds +

k
∏

p=1

γ−1
σp

∫ tk

tk

e
∫

t

v
β̄ρ(v)(v)dvφρ(ς)(|u(ς)|)dς

+

k
∑

p=1

p−1
∏

m=1

γ−1
σm

e
∫ tk
tn

β̄ρ(v)(v)dv

∫ tn

tn−1

e
∫

t

v
β̄ρ(v)(v)dvφρ(ς)(|u(ς)|)dς

)

+

∫ t

tk

φσk
(|u(s)|)e

∫
t

s
β̄ρ(v)(v)dvds

=

k
∏

p=1

γσp
L1e

∫
t

t0
β̄ρ(s)(s)ds +

k
∑

p=1

k
∏

m=p

γσm
e
∫

t

tp
β̄ρ(v)(v)dv

∫ tp

tp−1

e
∫

t

v
β̄ρ(v)(v)dvφρ(ς)(|u(ς)|)dς

+

∫ t

tk

φσk
(|u(s)|)e

∫
t

s
β̄σk

(v)dvds

=

k
∏

p=1

γσp
Θk(t).

According to the above proof process, the inequality (3) holds for ∀t > t0 − τ .
Part 2. The iISS/ISS of the system (1) would be shown in this part. For convenience, let σk = ι ∈ N ,

which could be easily checked that

N(t,s)
∏

p=1

γσp
=

N
∏

ι=1

γNι(t,s)
ι , s ∈ [t0, t]. (19)

Then by combining inequality (3), (19), and condition (A1), we get for t > t0,

α(E|x(t)|) 6
N
∏

ι=1

γNι(t,t0)
ι ᾱ(E||ϑ||)e

∫
t

t0
β̄ρ(s)(s)ds +

∫ t

tN(t,t0)

e
∫

t

ς
β̄ρ(v)(v)dvφρ(ς)(|u(ς)|)dς

+

N(t,t0)
∑

p=1

N
∏

ι=1

γNι(t,tp)
ι e

∫
t

tp
β̄ρ(v)(v)dv

∫ tp

tp−1

e
∫

t

ς
β̄ρ(v)(v)dvφρ(ς)(|u(ς)|)dς

,J1 + J2 + J3. (20)

It can also be derived from condition (A4) and Definition 2 that for s ∈ [t0, t],

N
∏

ι=1

γNι(t,s)
ι e

∫
t

s
β̄ρ(v)(v)dv 6e

∑
N

ι=1

(

N0,ι+
Tι(t,s)
Ta,ι

)

lnγιec1−c2(t−s)

6ec1+
∑

N

ι=1 N0,ι ln γιe
∑

N

ι=1 ( ln γι
Ta,ι

−c2)Tι(t,s)

=c4e
−c3(t−s), (21)

where c3 = minι∈N {c2 −
ln γι

Ta,ι
} > 0, c4 = ec1+

∑
N

ι=1 N0,ι ln γι . By (21), we have

J1 6 c4ᾱ(E||ϑ||)e
−c3(t−t0), (22)

J2 + J3 6c4

N(t,t0)
∑

p=1

∫ tp

tp−1

e
∫

t

ς
β̄ρ(v)(v)dvφρ(ς)(|u(ς)|)dς +

∫ t

tN(t,t0)

e
∫

t

ς
β̄ρ(v)(v)dvφρ(ς)(|u(ς)|)dς

6c4

∫ t

t0

e
∫

t

ς
β̄ρ(v)(v)dvφρ(ς)(|u(ς)|)dς 6 c4e

c1

∫ t

t0

e−c2(t−s)φρ(s)(|u(s)|)ds

6c4e
c1

∫ t

t0

φρ(s)(|u(s)|)ds. (23)

Substituting (22) and (23) into (20) implies that

α(E|x(t)|) 6 c4ᾱ(E||ϑ||)e
−c3(t−t0) + c4e

c1

∫ t

t0

φρ(s)(|u(s)|)ds,
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which implies that the SDSS-LN-IC (1) is iISS over Save. Moreover, we get from (23)

J2 + J3 6 c4e
c1

∫ t

t0

e−c2(t−s)φρ(s)(|u(s)|)ds 6 c4e
c1c−1

2 sup
t06s6t

{φρ(s)(|u(s)|)}; (24)

then combining (22) and (24) with (20) indicates that

α(E|x(t)|) 6 c4ᾱ(E||ϑ||)e
−c3(t−t0) + c4e

c1c−1
2 sup

t06s6t

φρ(s)(|u(s)|).

Therefore, the SDSS-LN-IC (1) is ISS over Save.

Remark 1. We used Definition 1 in the following Corollary 2 and Definition 2 in the main Theorem
1; the difference lies in the mode dependence of Definition 2. Definition 1 indicates that for all systems
modes, the ADT between arbitrarily two consecutive switched is no less than Ta. However, one only
requires the average time among the intervals about the subsystem, which is bigger than Ta,k, and the
intervals are not adjacent here provided that ρ(t) possesses the MDADT characteristic. We can deduce
that Ta,σk

6 Ta, ∀σk ∈ N , in other words, mode-dependent features reduce the conservatism existing in

Corollary 2. In reality, if Ta,σk
= Ta, then

∑

σk∈N Nρ(t),σk
(T, t) 6

∑

σk∈N N0,σk
+

Tσk
(T,t)

Ta
, ∀T > t > 0.

Then there is N0 =
∑

σk∈N N0,σk
and Ta,σk

= Ta; naturally, we have the usual situation Nρ(t)(T, t) 6

N0 +
T−t
Ta

, ∀T > t > 0. Nevertheless, the switching signals cannot be defined in the set, provided that
MDADT denotes the set of switching signals; then the consequences in [42,43] are hard to use to get the
stability for the switching system over the switched signal setting. Also, when γσk

= 1, the condition of
MDADT is redundant.

Remark 2. The system (1) is asymptotically stable when u(t) = 0, implying that there is no external
input in the system. The upper-bound estimate for the infinitesimal operator expectation is mode-
dependent and not only has an indefinite sign but is also time-varying. We are able to get Theorem 6.1
in [40] of stochastic continuous delay systems provided that βσk

(t) = −λ(λ > 0) in Theorem 1 in
this paper. In [33], authors used the condition LU(t, xt) 6 −M1U(t, x(t)) + M2U(t, xt) + ϕ(|u(t)|),
0 < M2 < M1, but we can get this condition when βσk

(t) = −M3 and δ = eM3τ in Theorem 1, where
the unique solution of −M1+M2e

M3τ +M3 = 0 is M3 (M3 > 0) and the ISS/iISS of the system (1) can
be gotten likewise. Under these circumstances, we can also get the stability visualization criterion and
the Lévy noise plays a positive role. If gρ(t)(t, xt, u(t)) = 0, hρ(t)(t, xt, u(t), ǫ) = 0, then our results can be

reduced to those in [33]. Condition (A4) is shown that, for any s ∈ [t0, t],
∫ t

s
β̄ρ(v)(v)dv 6 c1 − c2(t− s),

which indicates that β̄ρ(s)(s) is said to be a uniformly exponentially stable function with a guaranteed
decay rate c2 [42].

Corollary 1. For ∀σk ∈ N , allow the conditions (A1) and (A3) in Theorem 1 hold; let functions
φσk

∈ K∞ and βσk
∈ PC([t0− τ,∞);R). Presume that there are Lyapunov functions V (t, x) ∈ C1,2(R+×

PCb
Ft
([t0 − τ, t0];R

n);R+) and some positive numbers c1, c2, γσk
> 1, such that

(A2)∗ For ∀t ∈ [tk, tk+1),

ELVσk
(t, x(t)) 6 βσk

(t)EVσk
(t, x(t)) + φσk

(|u(t)|);

(A4)∗ Ta,σk
>

ln γσk

c2
and for s ∈ [t0, t],

∫ t

s

βρ(v)(v)dv 6 c1 − c2(t− s);

then the SDSS-LN-IC (1) without delay is ISS/iISS over Save.

Corollary 2. Study the general continuous switching system ẋ(t) = fλ(t)(x(t), u(t)), λ(t) ∈ N ; let
constants η1 > 0, η2 > 1 and functions α1 ∈ VK∞, α2 ∈ CK∞, ψ ∈ K∞; assume that there are Lyapunov
functions V (t, x) ∈ C1,2(R+ × R

n;R+), such that, ∀i ∈ N

α1(|x|) 6 Vi(t, x) 6 α2(|x|),

V̇i(t, x) 6 −η1Vi(t, x) + ψi(|u(t)|),

and ∀(p, q) ∈ N ×N , p 6= q,

Vp(t, x) 6 η2Vq(t, x);

then the system is iISS/ISS with Ta > T∗
a = ln η1

η2
.
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3.2 The ISS/iISS of TDSs under asynchronous switching

In the preceding theorem, the synchronous switching is investigated in the SDSS-LN-IC (1). Next, we will
investigate the asynchronous switching and also study the ISS/iISS for the SDSS-LN-IC (1). For the sake
of overcoming the difficulties generated by asynchronous switching, we consider the case of the merging
switching approach, which can be seen in [44]. Define a new merging switching: ρ̄(t) = (ρ(t), ρ(t − τs)) :
[t0,+∞) → N×N . Then let ⊕ denote the merging action, ρ̄(t) = ρ(t)⊕ρ(t−τs), and ρ1(t) = ρ(t), ρ2(t) =
ρ(t− τs). According to this definition, the set of switched times of ρ̄(t) = ρ(t)⊕ ρ(t− τs) is the union of
the sets of switched times of ρ(t) and ρ(t− τs). Before we manifest the main conclusion, we outline two
lemmas worth noting.

Lemma 1 ([45]). Supposing that ρ1(t) ∈ Save[Ta,ι, N0,ι], we have ρ2(t) ∈ Save[Ta,ι, N0,ι +
τs

Ta,ι
], for

∀ι ∈ N .

Lemma 2 ( [45]). For ∀ι ∈ N , let Hι(t, t0) be the total time of ρ1(t) = ρ2(t) = ι and H̄ι(t, t0) =
Tι(t, t0)−Hι(t, t0), provided

τs(aι + bι) 6 (aι − āι)Ta,ι, aι, bι > 0, āι ∈ [0, aι);

then

−aιHι(t, t0) + bιH̄ι(t, t0) 6 dι − āιTι(t, t0), t > t0,

where dι = (aι + bι)N0,ιτs.

Remark 3. One can notice that for k ∈ N , ρ(t) = σk, t ∈ [tk, tk+1), ρ(t − τs) = σk, t ∈ [tk + τs, tk+1),
such that ρ̄(t) = (σk, σk), t ∈ [tk + τs, tk+1), ρ̄(t) = (σk, σk−1), t ∈ [tk, tk + τs), which means that ρ̄(t)
has the switching time instants t0, t0 + τs, t1, t1 + τs, . . . , such that the sequence of ρ̄(t) can be shown as
{(ρ0, t0), (ρ1, t0 + τs), (ρ2, t1), . . . , (ρ2k, tk), (ρ2k+1, tk + τs)}.

Theorem 2. For ∀ρk ∈ N , let functions α1ρk
∈ VK∞, α2ρk

∈ CK∞, φρk
∈ K∞, and βρk

∈ PC([t0 −
τ,∞);R). Assume that there are Lyapunov functions V (t, x) ∈ C1,2(R+×PCb

Ft
([t0 − τ, t0];R

n);R+), and

some positive numbers c1, c2, cs,ρk
, cu,ρk

, c̄s,ρk
∈ R, c̄u,ρk

∈ R, and δ̂ > 1, such that
(B1) α1ρk

(|x|) 6 Vρk
(t, x) 6 α2ρk

(|x|);
(B2) For ∀t ∈ [tk, tk+1),

ELVρk
(t, xt) 6 βρk

(t)EVρk
(t, x(t)) + φρk

(|u(t)|),

provided EVρ̄(t+̺)(t+ ̺, x(t+ ̺)) 6 δ̂EVρ̄(t)(t, x(t)), where ̺ ∈ [−τ, 0];
(B3) For any (ρi, ρj , ρk, ρl) ∈ N ×N ×N ×N , and ρi 6= ρk, ρj 6= ρl,

EVρi,ρj
(t, x) 6 γρi,ρj

EVρk ,ρl
(t, x),

where γρi,ρj
= γρi

> 1(ρi 6= ρk), γρi,ρj
= 1(ρi = ρk);

(B4) Ta,ρk
> T∗

a,ρk
=

ln γρk
ec̄s,ρk +(cs,ρk+cu,ρk

)τs
cs,ρk

, and for any tk + τs 6 s < t < tk+1,

∫ t

s

β̄ρ̄(v)(v)dv 6 c̄s,ρk
− cs,ρk

Hρk
(t, s);

for any tk 6 s < t < tk + τs,

∫ t

s

β̄ρ̄(v)(v)dv 6 c̄u,ρk
+ cu,ρk

H̄ρk
(t, s),

where β̄ρ̄(t)(t) = (− ln δ̂
τ

) ∨ βρ̄(t)(t). Then the SDSS-LN-IC (1) is ISS and iISS over Save.

Proof. Let µ0, µ1, µ2, . . . , µNρ̄(t)(t,t0) denote the switching times of ρ̄(t) in (t0, t), µ0 = t0, and △t =

t − µNρ̄(t)(t,t0)+1, such that µNρ̄(t)(t,t0)+1 = t − △t , T , where △t < tk+1 − tk. Assume that α̂ =

supρk∈N {α2ρk
} ∈ CK∞, α̌ = infρk∈N {α1ρk

} ∈ VK∞, and L̂1 = α̂(E||ϑ||) and let

Υ1,ρk
= γρk

ec̄s,ρk ,Υ2,ρk
= ec̄u,ρk ,
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βρ̄(t)(t) = βρ0(µ0), t ∈ [µ0 − τ, µ0),

Wρ̄(t)(t) = Vρ̄(t)(t, x(t)), t > µ0 − τ,

ΩN(t,µ0)(t) = L̂1e
∫

t

µ0
β̄ρ̄(s)(s)ds +

N(t,µ0)
∏

p=1

γ−1
ρp

∫ t

tN(t,µ0)

e
∫

t

ς
β̄ρ̄(v)(v)dvφρ̄(ς)(|u(ς)|)dς

+

N(t,µ0)
∑

p=1

p−1
∏

q=1

γ−1
ρq

e
∫

t

µp
β̄ρ̄(v)(v)dv

∫ µp

µp−1

e
∫

t

ς
β̄ρ̄(v)(v)dvφρ̄(ς)(|u(ς)|)dς,

such that Ω0(t) = L̂1 = α̂(E||ϑ||), t ∈ [µ0 − τ, µ0).
Using (2), we get for t ∈ [µk, µk+1)

dWρk
(t) = LWρk

(t)dt+ Vx(t, x(t))gρk
(t, xt, u(t))dw(t).

Then, we can calculate

LWρk
(t) = LVρk

(t, xt), t ∈ [µk, µk+1);

let µ̃ be sufficiently small and t+ µ̃ ∈ [µk, µk+1), by the Fubini theorem,

EWρk
(t+ µ̃)− EWρk

(t) =

∫ t+µ̃

µ

ELWρk
(s)ds.

Hence, for ∀t ∈ [µk, µk+1), we have

D+
EWρk

(t) = ELWρk
(t) = ELVρk

(t, xt).

Next, the proof will be also divided into two parts: in Part 1, we give the estimation for EWρk
(t); the

iISS/ISS of system (1) with asynchronous switching will be shown in Part 2.
Part 1. We demonstrate that

EWρk
(t) 6

N(t,µ0)
∏

p=1

γρp
ΩN(t,µ0)(t), ∀t > µ0 − τ. (25)

By condition (B1) one can know that for t ∈ [µ0 − τ, µ0),

EWρk
(t) 6 α2ρk

(E||ϑ||) 6 Ω0(t) = L̂1. (26)

Next, we would show Eq. (25) is true for t ∈ [µ0, µ1), namely

EWρ0 (t) 6 L̂1e
∫

t

µ0
β̄ρ0(s)ds +

∫ t

µ0

φρ0(|u(s)|)e
∫

t

s
β̄ρ0 (v)dvds. (27)

For any ℘ > 0, consider correlative comparison ODE,

{

ẏ(t) = β̄ρ0(t)y(t) + φρ0(|u(t)|) + ℘, t ∈ [µ0, µ1),

y(µ0) = L̂1 + ℘.
(28)

The solution of (28) can be drawn as

y(t) = (L̂1 + ℘)e
∫

t

µ0
β̄ρ0(s)ds +

∫ t

µ0

(φρ0(|u(s)|) + ℘)e
∫

t

s
β̄ρ0 (v)dvds, t ∈ [µ0, µ1).

It is shown that

EWρ0 (t) < y(t), t ∈ [µ0, µ1). (29)
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Obviously, EWρ0 (µ0) < y(µ0) = L̂1 + ℘, which means Eq. (29) holds when t = µ0. Assuming that
Eq. (29) is not true, there exist some t ∈ (µ0, µ1), such that EWρ0 (t) > y(t). Let

µ∗ = inf{t ∈ (µ0, µ1) : EWρ0 (t) > y(t)}.

What needs to be pointed out is that EWρ0 (t), y(t) are continuous on (µ0, µ1). One has EWρ0 (µ
∗) = y(µ∗)

and EWρ0 (t) > y(t) for ∀t ∈ (µ∗, µ∗+ µ̄) ⊂ (µ0, µ1), and µ̄ is a constant and sufficiently small. Therefore,
for ∀t ∈ (µ∗, µ∗ + µ̄), one has

EWρ0 (t)− EWρ0 (µ
∗)

t− µ∗
>
y(t)− y(µ∗)

t− µ∗
,

which indicates that

D+
EWρ0(µ

∗) > D+y(µ∗). (30)

It may be checked in the same way as Theorem 1 that

EWρ̄(µ∗+̺)(µ
∗ + ̺) 6 δEWρ̄(µ∗)(µ

∗), µ∗ ∈ (µ0, µ1). (31)

Then, by (31) and condition (B2), one obtains

D+
EWρ0 (µ

∗) 6 β̄ρ0(µ
∗)EWρ0 (µ

∗) + φρ0 (|u(µ
∗)|) < β̄ρ0(µ

∗)y(µ∗) + φρ0 (|u(µ
∗)|) + ℘ = D+y(µ∗),

which contradicts (30), and then inequality (25) holds for t ∈ [µ0, µ1). Assuming that inequality (25)
holds for t ∈ [µ0, µk), k ∈ N , one gets

EWρk
(t) 6

N(t,µ0)
∏

p=1

γρp
ΩN(t,µ0)(t), t ∈ [µm, µm+1), (32)

for m = 0, 1, 2, . . . , k− 1. Next, we show that Eq. (32) also holds for t ∈ [µk, µk+1). Let N(t, µ0) = k, for
t ∈ [µk, µk+1), which is equivalent to proving that

EWρk
(t) 6

k
∏

p=1

γρp
Ωk(t), t ∈ [µk, µk+1). (33)

Combining (33) with condition (B3),

EWρk
(µk) 6

k
∏

p=1

γρp
Ωk(µk) , L̂2.

For any ℘ > 0, consider another comparison ODE,

{

ẏ(t) = β̄ρk
(t)y(t) + φρk

(|u(t)|) + ℘, t ∈ [µk, µk+1),

y(µk) = L̂2 + ℘.
(34)

Eq. (34) has the following solution:

y(t) = (L̂2 + ℘)e
∫

t

µk
β̄ρk

(s)ds
+

∫ t

µk

(φρk
(|u(s)|) + ℘)e

∫
t

s
β̄ρk

(v)dvds, t ∈ [µk, µk+1).

We may show that

EWρk
(t) < y(t), t ∈ [µk, µk+1). (35)

If Eq. (35) does not hold, we have EWρk
(t) > y(t) on t ∈ [µk, µk+1). Also, we can easily know that

EWρk
(µk) < y(µk) holds. Letting

µ′ = inf{t ∈ (µk, µk+1) : EWρk
(t) > y(t)},
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we know that EWρk
(t) < y(t) on t ∈ (µk, µ

′), EWρk
(µ′) = y(µ′), and EWρk

(t) > y(t), t ∈ (µ′, µ′ + µ̂),
where µ̂ is sufficiently small, which are all due to the continuity of EWρk

(t), y(t) on (µk, µk+1). Then, for
t ∈ (µ′, µ′ + µ̂), we obtain

EWρk
(t)− EWρk

(µ′)

t− µ′
>
y(t)− y(µ′)

t− µ′
,

which implies that

D+
EWρk

(µ′) > D+y(µ′). (36)

One can also get the following inequality by the identical approach to Theorem 1:

EWρ̄(µ′+̺)(µ
′ + ̺) 6 δEWρ̄(µ′)(µ

′), µ′ ∈ (µk, µk+1). (37)

Combining (37) with condition (B2), one has

D+
EWρk

(µ′) 6 β̄ρk
(µ′)EWσ̄0 (µ

′) + φρk
(|u(µ′)|) < β̄ρk

(µ′)y(µ′) + φρk
(|u(µ′)|) + ℘ = D+y(µ′),

which contradicts (36) and then, Eq. (35) is true. Using (35) and letting ℘ → 0, for t ∈ [µk, µk+1), we
have

EWρk
(t) 6 L̂2e

∫
t

µk
β̄ρk

(s)ds
+

∫ t

µk

φρk
(|u(s)|)e

∫
t

s
β̄ρk

(v)dvds. (38)

Substituting L̂2 into (38), one calculates that

EWρk
(t) 6

k
∏

p=1

γρp
Ωk(µk)e

∫
t

µk
β̄ρk

(s)ds
+

∫ t

µk

φρk
(|u(s)|)e

∫
t

s
β̄ρk

(v)dsds

=

k
∏

p=1

γρp
e
∫

t

µk
β̄ρk

(s)ds

(

L̂1e
∫

µk
µ0

β̄ρ̄(s)(s)ds +

k
∏

p=1

γ−1
ρp

∫ µk

µk

e
∫

t

ς
β̄ρ̄(v)(v)dvφρ̄(ς)(|u(ς)|)dς

+

k
∑

p=1

p−1
∏

m=1

γ−1
ρm

e
∫

µk
µp

β̄ρ̄(v)(v)dv
∫ µp

µp−1

e
∫

t

ς
β̄ρ̄(v)(v)dvφρ̄(ς)(|u(ς)|)dς

)

+

∫ t

µk

φρk
(|u(s)|)e

∫
t

s
β̄ρ̄(v)(v)dvds

=

n
∏

p=1

γ−1
ρp
L̂1e

∫
t

µ0
β̄ρ̄(s)(s)ds +

∫ t

µk

φρk
(|u(s)|)e

∫
t

s
β̄ρk

(v)dvds

+
k
∑

p=1

k
∏

m=p

γρm
e
∫

t

µp
β̄ρ̄(v)(v)dv

∫ µp

µp−1

e
∫

t

ς
β̄ρ̄(v)(v)dvφρ̄(ς)(|u(ς)|)dς

=

k
∏

p=1

γρp
Ωk(t),

such that inequality (33) holds for t > µ0 − τ .
Part 2. The iISS and ISS of the system (1) are presented here. For simplicity, let ℓ = ρ̄(t) ∈ N ,

t ∈ [µk, µk+1), and it can be checked that

N(t,s)
∏

p=1

γρp
=

N
∏

ι=1

γ
Nℓ(t,s)
ℓ , s ∈ [µ0, t]. (39)

Then, combining (25), (39), and condition (B1), for t > µ0, we have

α̌(E|x(t)|) 6
N
∏

ℓ=1

γ
Nℓ(t,µ0)
ℓ α̂(E||ϑ||)e

∫
t

µ0
β̄ρ̄(s)(s)ds +

∫ t

µN(t,µ0)

e
∫

t

ς
β̄ρ̄(v)(v)dvφρ̄(ς)(|u(ς)|)dς
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+

N(t,µ0)
∑

p=1

N
∏

ℓ=1

γ
Nℓ(t,µp)
ℓ e

∫
t

µp
β̄ρ̄(v)(v)dv

∫ µp

µp−1

e
∫

t

ς
β̄ρ̄(v)(v)dvφρ̄(ς)(|u(ς)|)dς

,I1 + I2 + I3. (40)

For condition (B4), there are cℓ ∈ (0, cs,ℓ) satisfying
ln γℓ+c̄s,ℓ

Ta,ι
< cℓ < cs,ℓ −

(cs,ℓ+cu,ℓ)τs
Ta,ℓ

, ℓ ∈ N . It can

also be derived from Definition 2 and Lemma 2 that for s ∈ [µ0, t],

N
∏

ℓ=1

γ
Nℓ(t,s)
ℓ e

∫
t

s
β̄ρ̄(v)(v)dv

6
N
∏

ℓ=1

Υ
Nρ1(t),ℓ

(t,s)

2,ℓ

N
∏

ℓ=1

Υ
Nρ2(t),ℓ(t,s)

1,ℓ e
∑

N

ℓ=1[−cs,ℓHℓ(t,s)+cu,ℓH̄ℓ(t,s)]

6 e
∑

N

ℓ=1 Nρ1(t),ℓ(t,s) lnΥ2,ℓe
∑

N

ℓ=1 Nρ2(t),ℓ(t,s) lnΥ1,ℓe
∑

N

ℓ=1[−cs,ℓHℓ(t,s)+cu,ℓH̄ℓ(t,s)]

6 e
∑

N

ℓ=1 [N0,ℓ+
Tℓ(t,s)

Ta,ℓ
]c̄u,ℓ

e
∑

N

ℓ=1 [N0,ℓ+
τs

Ta,ℓ
+

Tℓ(t,s)

Ta,ℓ
] ln γℓe

c̄s,ℓ

e
∑

N

ℓ=1[−cs,ℓHℓ(t,s)+cu,ℓH̄ℓ(t,s)]

6△1 e
∑

N

ℓ=1 [
ln γℓe

c̄s,ℓ

Ta,ℓ
−cℓ]

Tℓ(t, s) =△1 e−ĉ(t−s), (41)

where △1= e
∑

N

ℓ=1 N0,ℓ[c̄u,ℓ+ln γℓe
c̄s,ℓ ]+

∑
N

ℓ=1
τs

Ta,ℓ
lnγℓe

c̄s,ℓ

× e
∑

N

ℓ=1(cs,ℓ+cu,ℓ)N0,ℓτs , ĉ = minℓ∈N {cℓ −
ln γℓe

c̄s,ℓ

Ta,ℓ
}.

By (41), we have

I1 6△1 α̂(E||ϑ||)e
−ĉ(t−µ0), (42)

I2 + I3 6 △1

N(t,µ0)
∑

p=1

∫ µp

µp−1

e
∫

t

ς
β̄ρ̄(v)(v)dvφρ̄(ς)(|u(ς)|)dς +

∫ t

tN(t,µ0)

e
∫

t

ς
β̄ρ̄(v)(v)dvφρ̄(ς)(|u(ς)|)dς

6 △1

∫ t

µ0

e
∫

t

ς
β̄ρ̄(v)(v)dvφρ̄(ς)(|u(ς)|)dς

6 △2

∫ t

µ0

φρ̄(s)(|u(s)|)ds, (43)

where △2=△1 ec̄s,ℓ+c̄u,ℓ . Substituting (42)–(43) to (40) implies that

α̌(E|x(t)|) 6△1 α̂(E||ϑ||)e
−ĉ(t−µ0)+ △2

∫ t

µ0

φρ̄(s)(|u(s)|)ds,

which implies that the SDSS-LN-IC (1) is iISS over Save. Moreover, we can get from (43)

I2 + I3 6△2

∫ t

µ0

e−ĉ(t−s)φρ̄(s)(|u(s)|)ds 6△2 ĉ
−1 sup

µ06s6t

{φρ̄(s)(|u(s)|)}; (44)

then, combining (42), (44) with (40) indicates that

α̌(E|x(t)|) 6△1 α̂(E||ϑ||)e
−ĉ(t−µ0)+ △2 ĉ

−1 sup
µ06s6t

φρ̄(s)(|u(s)|).

Thus, the SDSS-LN-IC (1) is ISS over Save.

Remark 4. In Theorem 2, we have reordered the switching serial (i.e., asynchronous switching), and a
new switching signal ρ̄(t) is proposed. The constants c̄s,ρk

, c̄u,ρk
are incorporated into Υ1,ρk

,Υ2,ρk
, which

are distinct from Theorem 1, and Υ1,ρk
> 1,Υ2,ρk

> 1 without any restriction. Condition (B2) is also a
more lenient L-R stability condition, which is related to the asynchronous switching.

Remark 5. The conditions (B1) and (B3) generally exist in some pre-existing studies [40,44,46]. Due
to the input control in the SDSS-LN-IC (1) being u(t) = Uρ(t−τs)(t, x(t), ξ(t)), the Itô operator is shown
as the criterion (B2) with the coefficient βρk

(t) rather than the condition (A2). In addition, we suppose
that the ordering of the delayed switching signal ρ(t − τs) is the same as the ordering of the correlative
switching times of ρ(t) whenever τs is time-varying.
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Figure 1 (Color online) The trajectories of the considered system (45) (a) without external control and (b) with external control

u(t) = (sint, cost)T.

4 Numerical simulations

In this section, two examples are provided to highlight the feasibility and theoretical rationality of the
major theorems. Example 1 shows the results of system (1) under synchronous switching, whereas
Example 2 shows those under asynchronous switching.

Example 1. Consider the TDSs with Lévy noise and input control under synchronous switching as
follows:

dx(t) = [fρ(t)(t, xt) + u(t)]dt+ gρ(t)(t, xt)dw(t) +

∫

R

hρ(t)(t, xt, ǫ)N(dt, dǫ) (45)

with t > t0, where ρ(t) ∈ N = {1, 2}, x(t) = (x1(t), x2(t))
T, w(t) = (w1(t), w2(t))

T, w1(t), w2(t) are 1-D
Brownian motion, π̂(dǫ) = áπ̆(dǫ), á is the strength for the Poisson distribution, the probability intensity
of standard normally distributed variable ǫ is π̆, and

f1 =

[

− 3
4x1(t)sint + x2(t− τ)|cost|

3
2x1(t− τ)sint + 1

2x2(t)|cost|

]

, g1 =
[

√

|cost|x1(t)
√

|cost|x2(t)
]T

, h1 =
√

|cost|x1(t)ǫ,

f2 =

[

x1(t− τ)sint + x2(t)sint

x1(t)|cost|+ x2(t− τ)sint

]

, g2 =
[

√

|cost|x1(t)

√

2|cost|

2
x2(t)

]T

, h2 =
√

|cost|x2(t)ǫ.

Then for subsystem 1, letting V1 = x21(t) + x22(t), δ = 2, α11 = 0.9, α21 = 1, and á = 1/4,C = 2,
the condition (A2) of Theorem 1 satisfies ELV1(t, xt) 6 (3|cost|+ 3

2 sint +
5
4 )EV1(t, x(t)) + 2ũ21(t), which

means β1(t) = 3|cost| + 3
2 sint +

5
4 , u1(t) = 2ũ21(t), β1(

2k+1
2 π) = − 1

4 < 0, k = 2n + 1, n = 0, 1, 2, . . ., and
β1(kπ) =

15
4 > 0, k = 0, 1, 2, . . ..

For subsystem 2, let V2 = 1
2 (x

2
1(t)+ x22(t)), δ = 2, α21 = 0.9, α22 = 1, á = 1/2, and C = 1. One can get

the condition (A2) of Theorem 1 satisfies ELV2(t, xt) 6 (4sint + 3|cost|+ 5
2 )EV2(t, x(t)) + 2ũ22(t), which

implies that β2(t) = 4sint + 3|cost|+ 5
2 , u2(t) = 2ũ22(t), β2(

2k+1
2 π) = − 3

2 < 0, k = 2n+ 1, n = 0, 1, 2, . . .,
and β2(kπ) =

13
2 > 0, k = 0, 1, 2, . . ..

Taking τ = 0.25, γ1 = e, and γ2 = e3, we can get c2 = 1/4,T∗
a,1 = 4 in subsystem 1 and c2 =

3/2,T∗
a,2 = 3 in subsystem 2 can be obtained. To sum up, the above example satisfies all the conditions

of Theorem 1; that is, the system (45) is ISS/iISS in the mean square under synchronous switching.
Figures 1(a) and (b) respectively show the state trajectories of 100 sample paths for system (45) without
input control and with input control u(t) = (sint, cost)T, where (x1(t), x2(t))

T = [−1 1] and the red
dotted line presents the trajectory of E|x(t)|.

Example 2. Consider the TDSs with Lévy noise and input control under asynchronous switching as
follows:

dx(t) =[Aρ̄(t)x(t) + Fρ̄(t)(t, xt, u(t))]dt+Gρ̄(t)(t, xt)dw(t) +

∫

R

Hρ̄(t)(t, xt, ǫ)N(dt, dǫ) (46)
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Figure 2 (Color online) The trajectories of (a) poisson process, (b) switching signals ρ(t) and ρ(t − τs).

with t > t0, where x(t), w(t), π̂, á have the same definitions as Example 1, ρ̄(t) = ρ1(t)⊕ρ2(t), ρ1(t) = ρ(t),

and ρ2(t) = ρ(t − τs). We set V = |x(t)|2 with α11 = α21 = α12 = α22 = 1, γ1 = γ2 = 1.001, δ̂ = 4, τs =
7/3, á = 1/3,C = 2, and

A1 =

[

1/8 1

−1 −7/8

]

, A2 =

[

1/6 1

−1 7/8

]

,

H1(t, xt) =
1

2
x1(t)ǫ, H2(t, xt) =

1

2
x2(t)ǫ,

G1(t, xt) =
[

0 − x1(t)cost+
1

2
x2(t)cost

]T

,

G2(t, xt) =
[

0 − x1(t− τ)sint−
1

2
x2(t− τ)sint

]T

,

F1(t, xt, u(t)) =

[

0

− 1
2x2(t)cos

2t+ x2(t− τ)cos2t− u(t)

]

,

F2(t, xt, u(t)) =

[

0

−x1(t− τ)sin2t+ 1
2x2(t− τ)sin2t− u(t)

]

.

Then for subsystem 1, when t ∈ [tk, tk + τs), u(t) =
177
26 x2(t) −

185
52 x2(t − τ) + ξ(t)cos2t; then condition

(B2) of Theorem 2 satisfies ELV11(t, xt) 6 (14cos2t−
1
8 )EV11(t, xt) + (sin4t+ 169

52 sin
2t)ξ2(t), which means

β11(t) =
1
4cos2t−

1
8 , φ11(t) = (sin4t+ 169

52 sin2t)ξ2(t). When t ∈ [tk+τs, tk+1), u(t) = − 161
26 x1(t)+

153
52 x1(t−

τ) + ξ(t)cos2t, similarly, ELV12(t, xt) 6 (158 cos2t+1)EV12(t, xt) + (sin4t− 169
52 sin2t)ξ2(t), which indicates

β12(t) =
15
8 cos2t+ 1, φ12(t) = (sin4t− 169

52 sin
2t)ξ2(t).

For subsystem 2, when t ∈ [tk, tk + τs), u(t) =
11
4 x2(t) −

27
8 x2(t − τ) + ξ(t)sin2t; then the condition

(B2) of Theorem 2 satisfies ELV21(t, xt) 6 (cos2t− 1
2 )EV21(t, xt) + (sin4t− 5

8 sin
2t)ξ2(t), which indicates

β21(t) = cos2t − 1
2 , φ21(t) = (sin4t − 5

8 sin
2t)ξ2(t). When t ∈ [tk + τs, tk+1), u(t) =

89
12x1(t) −

169
24 x1(t −

τ) + ξ(t)sin2t, similarly, ELV22(t, xt) 6 (− 1
4cos2t+

1
8 )EV22(t, xt) + (sin4t+ 3

8 sin
2t)ξ(t), which indicates

β22(t) = − 1
4cos2t +

1
8 , φ22(t) = (sin4t + 3

8 sin
2t)ξ2(t). Based on above results we can get c̄s,1 = c̄u,1 =

1/2, c̄s,2 = c̄u,2 = −1/8, cs,1 = cu,1 = 1/3, cs,2 = cu,2 = 1/8,T∗
a,1 = 23/6, and T∗

a,2 = 11/3. Thus, all the
conditions in Theorem 2 are satisfied and state that the TDSs (46) under asynchronous switching are
ISS/iISS in the mean square. Figure 2(a) gives the Poisson process, Figure 2(b) shows the switching signal
ρ(t) and ρ(t−τs), and the system states without input and with u(t) = (sint, cost)T are respectively shown
in Figures 3(a) and (b), showing the trajectories of 100 sample paths, where (x1(t), x2(t))

T = [−1 1] and
the red dotted line refers to the trajectory of E|x(t)|.



Yu P L, et al. Sci China Inf Sci November 2023 Vol. 66 212206:17

0 10 15 20

t (s)

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

|x
(t

)|

E|x(t)| E|x(t)|

5 0 10 15 20

t (s)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

|x
(t

)|

5

(a) (b)

Figure 3 (Color online) The trajectories of the considered system (46) (a) without external control and (b) with external control

u(t) = (sint, cost)T.

5 Conclusion

In this work, the ISS/iISS of SDSS-LN-IC (1) under synchronous switching and asynchronous switching
were studied using the L-R method, DII, MDADT, and comparison theorem approach. In terms of
asynchronous switching, a new merging switching approach was used. In addition, to overcome the
difficulty of switching and randomness, we fully implemented the comparison theorem approach and DII.
The upper bound of the Lyapunov function expectation was time-varying and mode-dependent regardless
of the sign, which can be well reflected in the above two examples. These results are less conservative and
more widely applied compared with previous studies [33,40]. In practice, the MDADT used in this article
is less restrictive than usual ADT, and the DT under asynchronous mode is considered, which is different
from general MDADT. Subsequently, we will consider the stability of nonlinear switching delayed systems
with adaptive controllers and attempt to generalize the hypothesis in the main conclusion. In addition,
for general TDSs, it is imperative to explore the ISS-type character of a Lévy noise or impulse driven
system when discrete dynamics subsystems cannot be ISS. In this regard, neutral systems, particularly
the challenging task of handling neutral operators, are worth considering.
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