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Abstract In this study, we investigate the decentralized output-feedback control problem for a class of

triangular large-scale nonlinear impulsive systems (TLSNISs) with time-varying delays. Unlike existing de-

sign approaches in impulsive systems, a gain scaling approach is proposed for the first time to counteract the

structural uncertainties of interconnected nonlinearities. Specifically, by fully exploiting the static gain, novel

delay-independent impulsive observers are delicately constructed to estimate the unavailable states. Further-

more, the undesirable effects of time-varying delays and impulsive disturbances are eliminated using the

comparison principle and average impulsive interval technique. The designed gain-scaling-based decentral-

ized output-feedback controllers have concise linear-like forms and are independent of time delays. Moreover,

by strengthening the gain scaling mechanism, we further develop an improved control scheme that endows

the controllers with the capability to tolerate unknown external disturbances, thus improving its robustness.

It is shown that the system states converge exponentially to the origin in the disturbance-free case with the

designed controllers (or to an adjustable neighborhood of the origin in the presence of disturbance). Finally,

two examples, including an engineering system design example, are provided to demonstrate the effectiveness

of the designed controllers for both lower TLSNISs and upper TLSNISs.
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1 Introduction

Over the past few decades, impulsive systems have gained much attention due to their widespread ap-
plications in electronic communication, satellite orbital transmission, and chemical industries; see [1–3].
Impulsive systems, an important class of hybrid systems, consist of three parts: the continuous-time
dynamics, which is described by differential equations and exhibits the evolution of system states be-
tween impulses; the discrete-time dynamics, which is represented by difference equations and describes
the abrupt changes in system states at impulse moments; and an impulsive law, which determines when
those impulses occur [4].

The impulsive disturbance problem is known to be a widely studied area in the field of impulsive
systems [5–7]. It is essentially a control problem in which control systems without impulse effects have
certain performance and yet maintain corresponding performance even when subjected to abrupt distur-
bances [7]. Impulsive disturbances are encountered in a wide variety of fields, including biology, electricity,
and mechanics. For example, in biological neural networks, electrical stimuli transmitted through recep-
tors can be regarded as impulsive disturbances [7]. Impulsive disturbances are a class of discontinuous
disturbances that can lead to some complex dynamical behaviors, including instabilities and oscillations.
Up to now, valuable results have been obtained by scholars in the field of impulsive systems with impul-
sive disturbances; see [5–9]. Remarkably, most existing results were restricted to state-feedback control
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strategy obtained within the framework of a single system. In fact, nearly all industrial systems are
nonlinear and contain coupled interconnected subsystems, such as power systems [10] and transportation
networks [11]. Moreover, the states of such systems may not be fully available due to physical constraints
or implementation costs, which suggests that there may be significant challenges for state-feedback control
strategies in practical systems. In recent years, triangular large-scale nonlinear systems, which consist
of multiple interconnected subsystems, have been attracting significant attention from researchers [12].
However, when impulsive disturbances are involved, existing results on triangular large-scale nonlinear
systems with continuous-time dynamics, such as [10–13], are invalid due to the discontinuity of system
states. Consequently, the research on triangular large-scale nonlinear impulsive systems (TLSNISs) is
still not performed until now, not to mention in the case of output-feedback control.

Time delays exist in many practical systems, and are an important factor causing performance dete-
rioration and even instability; see [14–16]. Therefore, it is crucial to address these undesirable effects.
Recently, many excellent results have been reported for systems containing time delays; see [17–19]. From
these results, we can see that the Lyapunov-Krasovskii functional (LKF) is a key tool for analyzing time-
delay systems. However, as mentioned in [20, 21], constructing an LKF is not just a simple extension of
the delay-free case. In particular, a strict restriction needs to be imposed on the type of time delay, i.e.,
slow time delay τ(t) with τ̇(t) < 1, in the LKF design framework, which makes it very difficult, and even
impossible, to solve fast time delay problems using the LKF tool. Therefore, it is extremely challenging
to study TLSNISs with more general time delays.

The gain scaling approach is known to be an effective tool for control problems of nonlinear systems
with triangular structures [22–24]. The controller construction problem can be transformed into a gain
design problem by introducing a suitable scaling gain in the state transformation [25]. When the system
uncertainties arising from system parameters and/or system nonlinearities are relatively mild, such as a
known constant growth rate, a static/constant gain [26] or a bounded time-varying gain [27] is usually
enough to achieve the control objective. The gain scaling approach can avoid the complex design pro-
cedure involved in an iterative design approach and can construct a controller with a concise form [28].
Hence, the gain scaling approach is favored by many scholars due to its unique advantages, especially in
the realm of output-feedback control.

To the best of our knowledge, no prior work has been devoted to studying the decentralized output-
feedback control problem for TLSNISs with time-varying delays. Moreover, many existing results in
impulsive systems are obtained based on the linear matrix inequality (LMI) approach without incorpo-
rating the gain scaling approach into the design framework. It should be noted that many existing LMI-
based results are invalid when serious structural uncertainties exist in system nonlinearities. Motivated
by these considerations, our objective is to apply the gain scaling approach to study the decentralized
output-feedback control problem for a class of TLSNISs with time-varying delays. The main contributions
of this paper are summarized as follows.

• In terms of system model: The novelty of the system model can be distilled into the following three
points. (i) The most significant is that impulsive disturbances have been considered for the first time in
the framework of triangular large-scale nonlinear systems, which is significantly more challenging than it is
for either single impulsive systems [7,29] or triangular systems with continuous-time dynamics [11,12,30]
due to the effect of interconnected subsystems and discrete-time dynamics. (ii) Compared with studies
by [7, 11, 12, 30], a more general type of time-varying delay is considered in this paper. The boundaries
of the time delays are allowed to be unknown, which means that the system dynamics can involve
unmeasurable time delays. Additionally, the derivative restrictions on time delays are removed, which
indicates that either slow or fast time delays can be contained in system dynamics. (iii) Disturbance
evaluations are carried out for lower TLSNISs and upper TLSNISs, respectively, which is more in line
with practical requirements. More detailed comparisons can be found in Table 1.

• In terms of design approach: In contrast to the LMI-based design approach for impulsive systems in
existing studies [7,29], a gain scaling approach is expected to compensate for the structural uncertainties
of interconnected nonlinearities. Moreover, compared with iterative design approaches, including the
backstepping design approach [31,32] and forwarding and saturation design approach [33,34], the proposed
design approach can simplify design processes and reduce complex calculations. Crucially, the gain scaling
approach provides a new design perspective for lower TLSNISs and upper TLSNISs, respectively.

• In terms of control strategy: Unlike the state-feedback control strategies in [7,30], two decentralized
output-feedback control strategies are designed. Particularly, two novel delay-independent impulsive
observers are constructed to estimate the unavailable states. Moreover, the designed decentralized output-
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feedback controllers have concise linear-like forms and are independent of time delays.

The remainder of the paper is organized as follows. Preliminaries and problem formulation are de-
scribed in Section 2. The decentralized output-feedback controllers of the lower and upper TLSNISs
are designed in Sections 3 and 4, respectively. In Section 5, two examples are given to demonstrate the
effectiveness of the designed controllers. Finally, the conclusion is presented in Section 6.

Notations. Let Z+, R, R+, and Rnk denote the set of positive integer numbers, the set of real numbers,
the set of non-negative real numbers, and the real nk-dimensional vector space, respectively. 0 and I are
used to represent the zero column vector and identity matrix with appropriate dimensions, respectively.
AT denotes the transpose of the matrix A. λmin(A) and λmax(A) denote the minimum and maximum
eigenvalues of the matrix A, respectively. For any interval S1 ⊆ R and any set S2 ⊆ Ri, 1 6 i 6 2nk,
we put PC(S1, S2) = {ϕ: S1 → S2 is continuous everywhere except at a finite number of points t, at
which ϕ(t−), ϕ(t+) exist and ϕ(t+) = ϕ(t)}. For a, b ∈ R, a < b, let PC([a, b],Ri) denote the set of the
piecewise right continuous function ϕ: [a, b] → Ri with the norm defined by ‖ϕ‖[a,b] = supa6t6b ‖ϕ(t)‖.
For given τ̄ > 0, let PCi

τ̄ = PC([t0 − τ̄ , t0],R
i) and ‖ϕ‖τ̄ = ‖ϕ‖[t0−τ̄ ,t0].

2 Preliminaries and problem formulation

In this section, preliminaries and problem formulation are described in detail.

2.1 Preliminaries

Definition 1 ([5]). The average impulsive interval of the impulse time sequence {tm}m∈Z+ is said to
be not less than ϑ, if there exist positive constants N0 and ϑ, such that, for t0 6 s 6 t,

N(t, s) 6
t− s

ϑ
+N0,

where N(t, s) is the number of impulses of the time sequence {tm}m∈Z+ occurring on the interval (s, t],
ϑ is the average impulsive interval constant, and N0 is the elasticity number.

Lemma 1 ([8]). Let functions φ1(t), φ2(t) ∈ PC([t0 − τ̄ ,+∞),R+), and h(t) ∈ PC([t0,+∞),R+). If
there exist σ̄1 ∈ R, σ̄2 ∈ R+, and σ̄3 ∈ R+, such that

{

D+φ1(t) 6 σ̄1φ1(t) + σ̄2φ1(t− τ(t)) + h(t), t 6= tm, t > t0,

φ1(t) 6 σ̄3φ1(t
−), t = tm, m ∈ Z+,

and
{

D+φ2(t) > σ̄1φ2(t) + σ̄2φ2(t− τ(t)) + h(t), t 6= tm, t > t0,

φ2(t) > σ̄3φ2(t
−), t = tm, m ∈ Z+,

then φ1(t) 6 φ2(t) for t0 − τ̄ 6 t 6 t0 implies that φ1(t) 6 φ2(t) for t > t0.

Lemma 2 ([8]). Assume that there exist functions φ(t) ∈ PC([t0−τ̄ ,+∞),R+), h(t) ∈ PC([t0,+∞),R+),
constants σ̄1 ∈ R, σ̄2 ∈ R

+, and σ̄3 ∈ R
+, such that

{

D+φ(t) 6 σ̄1φ(t) + σ̄2φ(t − τ(t)) + h(t), t 6= tm, t > t0,

φ(t) 6 σ̄3φ(t
−), t = tm, m ∈ Z+.

It then holds that, for t > t0,

φ(t) 6 φ(t0)σ̄
N(t,t0)
3 eσ̄1(t−t0) +

∫ t

t0

σ̄
N(t,s)
3 eσ̄1(t−s)(σ̄2φ(s− τ(s)) + h(s))ds.

Lemma 3 ([12, 22]). There exist real numbers ak,i, bk,i, i = 1, 2, . . . , nk, and positive definite matrices
Pk, k = 1, 2, . . . ,N , satisfying the following inequalities:

PkΞk + ΞT
kPk 6 −I2nk

, k = 1, 2, . . . ,N ,

where N ∈ Z+ denotes the number of matrices, Ξk = [
Bk akΓ̄T

k
0nk×nk

Ak
], Ak = Λk − akΓ̄

T
k , Bk = Λk − Γkb

T
k ,

Λk = [
0nk−1 I(nk−1)×(nk−1)

0 0
T
nk−1

], ak = [ak,1, ak,2, . . . , ak,nk
]T, bk = [bk,1, bk,2, . . . , bk,nk

]T, Γ̄k = [1, 0, . . . , 0]T ∈
Rnk , and Γk = [0, . . . , 0, 1]

T ∈ Rnk , k = 1, 2, . . . ,N .
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2.2 Problem formulation

Consider the following large-scale nonlinear impulsive system with time-varying delays:

















































ẋk,i(t) = xk,i+1(t) + fk,i(t, x(t), u(t), x(t − τ(t)), u(t − τ(t))), i = 1, 2, . . . , nk − 1,

ẋk,nk
(t) = uk(t) + fk,nk

(t, x(t), u(t), x(t − τ(t)), u(t − τ(t))),

yk(t) = xk,1(t), t 6= tm, t > t0,

xk,j(t) = gk,j(t
−, x(t−)), j = 1, 2, . . . , nk, t = tm, m ∈ Z+,

xk(t) = ςk(t) ∈ PC
nk

τ̄ , t ∈ [t0 − τ̄ , t0], k = 1, 2, . . . , N,

(1)

where xk(t) = [xk,1(t), xk,2(t), . . . , xk,nk
(t)]

T ∈ Rnk (nk > 2), uk(t) ∈ R, and yk(t) ∈ R are the

state, input, and output of the kth subsystem; x(t) =
[

xT
1 (t), x

T
2 (t), . . . , x

T
N (t)

]T ∈ Rn1+n2+···+nN ;

u(t) = [u1(t), u2(t), . . . , uN (t)]
T ∈ RN ; N denotes the number of subsystems; t0 is the initial mo-

ment; ẋk,i(t) is the upper right-hand derivative of xk,i(t); τ(t) denotes the time-varying delay; fk,i(·):
R+×Rn1+n2+···+nN ×RN ×Rn1+n2+···+nN ×RN → R, i = 1, 2, . . . , nk are called unknown nonlinear inter-
connected functions between the kth subsystem and other subsystems, and gk,i(·): R+×R

n1+n2+···+nN →
R, i = 1, 2, . . . , nk are called impulsive jump functions. To prevent the occurrence of accumulation points,
such as Zeno phenomenon, the impulse time sequence {tm}m∈Z+ is considered to satisfy 0 6 t0 < t1 <

· · · < tm → +∞, as m → +∞. Throughout this paper, we assume that the solutions of all dynamical
systems are right continuous, i.e., x(t) = x(t+) = limǫ→0+ x(t + ǫ). Next, we make the following mild
assumptions for system (1).

Assumption 1. The time-varying delay τ(t) is unknown, and there exists an unknown nonnegative
constant τ̄ , such that

0 6 τ(t) 6 τ̄ .

Assumption 2. For nonlinear impulsive jump functions gk,i(·), i = 1, 2, . . . , nk, the structure is known,

gk,i(t,0) ≡ 0, and there exist known constants µk > 1, k = 1, 2, . . . , N , such that, for all ~(t) and ~̂(t),

|gk,i(t, ~(t))− gk,i(t, ~̂(t))| 6 µk|~k,i(t)− ~̂k,i(t)|,

where ~(t) = [~1,1(t), . . . , ~k,i(t), . . . , ~N,nN
(t)]T and ~̂(t) = [~̂1,1(t), . . . , ~̂k,i(t), . . . , ~̂N,nN

(t)]T.

Assumption 3. The nonlinear interconnected functions fk,i(·), i = 1, 2, . . . , nk, k = 1, 2, . . . , N satisfy
either (i) or (ii).

(i) For i = 1, 2, . . . , nk, there exist known nonnegative constants θk, k = 1, 2, . . . , N , such that

|fk,i(·)| 6 θk

N
∑

p=1





min{np,i}
∑

q=1

(

|xp,q(t)|+ |xp,q(t− τ(t))|
)



 .

(ii) For i = 1, 2, . . . , nk, there exist known nonnegative constants θ̄k, k = 1, 2, . . . , N , such that

|fk,i(·)| 6 θ̄k

N
∑

p=1





np+1
∑

q=max{i+2+np−nk,1}

(

|xp,q(t)|+ |xp,q(t− τ(t))|
)

+ |up(t)|+ |up(t− τ(t))|



 ,

where fk,nk
(·) = 0 and xk,nk+1(t) = xk,nk+1(t− τ(t)) = 0.

Remark 1. Assumption 1 allows the boundary of the time delay to be unknown and has no restriction
on the derivative of time delay, which is weaker than assumptions in [7, 11, 12, 30]. It can be seen that
the type of time delay involved in the system dynamics can be unmeasurable, slow or fast. Notably,
due to the existence of impulsive disturbances, Assumption 2, as one of the most significant highlights,
makes the considered system essentially different from systems with continuous-time dynamics [11,12,30].
Moreover, compared with [7,29], Assumption 2 allows impulsive disturbances to be nonlinear rather than
merely linear.

Remark 2. In Assumption 3, the restrictions on the state types of nonlinear interconnected functions are
different. Generally speaking, system (1) satisfying (i) belongs to a class of lower TLSNISs, while system
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Table 1 Comparisons between our work and existing relevant studies

Ref.
Subsystem
number

Impulsive
disturbance

Time
delay

External
disturbance

Structure of
nonlinearities

Design
approach

Control
strategy

[7] 1 Linear No Matched Known,
fk,i = 0

LMI-based
approach

State
feedback

[30] 1 No No Matched Unknown Gain scaling
approach

State
feedback

[29] 1 Linear Slow/
fast

Matched &
unmatched Known LMI-based

approach
Output
feedback

[11] N > 1 No Slow No Unknown Gain scaling
approach

Output
feedback

[12] N > 1 No Slow No Unknown Gain scaling
approach

Output
feedback

This
paper

N > 1 Nonlinear Slow/
fast

Matched &
unmatched

Unknown Gain scaling
approach

Output
feedback

(1) satisfying (ii) belongs to a class of upper TLSNISs. Both classes of systems have extensive research
backgrounds in fields such as mechanics and electricity. For example, referring to [35], the coupled inverted
pendulums can be modeled as a class of lower TLSNISs due to the abrupt changes in angle and angular
velocity arising from the irregular spring contraction; the liquid level control resonant circuit systems
can be modeled as a class of upper TLSNISs in view of the persistent impulsive disturbances generated
by frequent trigger switching and unknown ground network factors. Due to the different restrictions on
nonlinear interconnected functions, the impulsive observers constructed for lower TLSNISs will not apply
to upper TLSNISs. Therefore, it brings great challenges to accurately estimate the unavailable states of
lower TLSNISs and upper TLSNISs, respectively. In Table 1, we present some comparisons of our work
and relevant studies. Up to now, no prior work has considered the control design for system (1) satisfying
Assumptions 1–3.

Control objective. This paper aims to design the decentralized output-feedback controllers, such
that all the signals of the resulting closed-loop impulsive system are globally bounded, and system states
xk,i(t), i = 1, 2, . . . , nk, k = 1, 2, . . . , N converge exponentially to the origin in the disturbance-free case
(or to an adjustable neighborhood of the origin in the presence of disturbance).

3 Decentralized output-feedback control of lower TLSNISs

In this section, we design the decentralized output-feedback controllers for system (1) under Assump-
tions 1, 2, and 3(i).

3.1 Decentralized output-feedback controllers design of lower TLSNISs

First, to estimate unavailable states of system (1), a novel delay-independent high-gain impulsive observer
is constructed for the kth subsystem as follows:























{

˙̂xk,i(t) = x̂k,i+1(t) + ak,ir
i(yk(t)− x̂k,1(t)), i = 1, 2, . . . , nk − 1,

˙̂xk,nk
(t) = uk(t) + ak,nk

rnk(yk(t)− x̂k,1(t)), t 6= tm, t > t0,

x̂k,j(t) = gk,j(t
−, x̂(t−)), j = 1, 2, . . . , nk, t = tm, m ∈ Z

+,

x̂k(t) = ς̂k ∈ Rnk , t ∈ [t0 − τ̄ , t0] , k = 1, 2, . . . , N,

(2)

where ak,i, i = 1, 2, . . . , nk are constants determined in Lemma 3, x̂k(t) = [x̂k,1(t), x̂k,2(t), . . . , x̂k,nk
(t)]T,

ς̂k = [ς̂k,1, ς̂k,2, . . . , ς̂k,nk
]
T
, k = 1, 2, . . . , N , x̂(t) =

[

x̂T
1 (t), x̂

T
2 (t), . . . , x̂

T
N (t)

]T
, and r is a static gain to be

determined later.
Then, the following state transformations are introduced, for t > t0 − τ̄ ,

ηk,i(t) =
x̂k,i(t)

ri
, ek,i(t) =

xk,i(t)− x̂k,i(t)

ri
, i = 1, 2, . . . , nk, k = 1, 2, . . . , N. (3)

Next, the decentralized output-feedback controllers are designed as follows, for t > t0,

uk(t) = −rnk+1
nk
∑

i=1

bk,iηk,i(t), k = 1, 2, . . . , N, (4)
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where bk,i, i = 1, 2, . . . , nk, k = 1, 2, . . . , N are constants determined in Lemma 3.
By (2)–(4), we have























{

η̇k,i(t) = rηk,i+1(t) + rak,iek,1(t), i = 1, 2, . . . , nk − 1,

η̇k,nk
(t) = −r

∑nk

j=1 bk,jηk,j(t) + rak,nk
ek,1(t), t 6= tm, t > t0,

ηk,j(t) =
1
rj
gk,j(t

−, x̂(t−)), j = 1, 2, . . . , nk, t = tm, m ∈ Z+,

ηk(t) = χ̂k ∈ Rnk , t ∈ [t0 − τ̄ , t0] , k = 1, 2, . . . , N,

(5)

where ηk(t) = [ηk,1(t), ηk,2(t), . . . , ηk,nk
(t)]T and χ̂k = [ 1

r
ς̂k,1,

1
r2
ς̂k,2, . . . ,

1
rnk

ς̂k,nk
]T, k = 1, 2, . . . , N .

Based on (5), the following matrix form is obtained:















η̇k(t) = rBkηk(t) + rakek,1(t), t 6= tm, t > t0,

ηk,j(t) =
1
rj
gk,j(t

−, x̂(t−)), j = 1, 2, . . . , nk, t = tm, m ∈ Z+,

ηk (t) = χ̂k ∈ Rnk , t ∈ [t0 − τ̄ , t0] , k = 1, 2, . . . , N,

(6)

where Bk and ak, k = 1, 2, . . . , N are given in Lemma 3.
Moreover, it follows from (1)–(3) that























{

ėk,i(t) = rek,i+1(t)− rak,iek,1(t) +
1
ri
fk,i(t, t− τ(t)), i = 1, 2, . . . , nk − 1,

ėk,nk
(t) = −rak,nk

ek,1(t) +
1

rnk
fk,nk

(t, t− τ(t)), t 6= tm, t > t0,

ek,j(t) =
1
rj

(

gk,j(t
−, x(t−))− gk,j(t

−, x̂(t−))
)

, j = 1, 2, . . . , nk, t = tm, m ∈ Z+,

ek (t) = χ̄k (t) ∈ PC
nk

τ̄ , t ∈ [t0 − τ̄ , t0] , k = 1, 2, . . . , N,

(7)

where ek(t) = [ek,1(t), ek,2(t), . . . , ek,nk
(t)]T and χ̄k(t) = [ 1

r
(ςk,1(t)−ς̂k,1),

1
r2
(ςk,2(t)−ς̂k,2), . . . ,

1
rnk

(ςk,nk
(t)

−ς̂k,nk
)]T, k = 1, 2, . . . , N .

Then, by (7), the following matrix form is derived:















ėk(t) = rAkek(t) + f̄k(t, t− τ(t)), t 6= tm, t > t0,

ek,j(t) =
1
rj

(

gk,j(t
−, x(t−))− gk,j(t

−, x̂(t−))
)

, j = 1, 2, . . . , nk, t = tm, m ∈ Z+,

ek(t) = χ̄k(t) ∈ PC
nk

τ̄ , t ∈ [t0 − τ̄ , t0], k = 1, 2, . . . , N,

(8)

where Ak is given in Lemma 3, and f̄k(t, t−τ(t)) =
[

1
r
fk,1(t, t−τ(t)), 1

r2
fk,2(t, t−τ(t)), . . . , 1

rnk
fk,nk

(t, t−
τ(t))

]T
, k = 1, 2, . . . , N .

Let ξk(t) = [ηTk (t), e
T
k (t)]

T, k = 1, 2, . . . , N . Combining (6) and (8), the closed-loop impulsive system
can be represented in the following compact form:















ξ̇k(t) = rΞkξk(t) + F̄k(t, t− τ(t)), t 6= tm, t > t0,

ξk(t) = Gk(t
−), t = tm, m ∈ Z+,

ξk(t) = ζk(t) ∈ PC
2nk

τ̄ , t ∈ [t0 − τ̄ , t0], k = 1, 2, . . . , N,

(9)

where Ξk is given in Lemma 3, F̄k(t, t − τ(t)) =
[

0T
nk
, f̄T

k (t, t− τ(t))
]T

, Gk(t
−) =

[

1
r
gk,1(t

−, x̂(t−)),
1
r2
gk,2(t

−, x̂(t−)), . . . , 1
rnk

gk,nk
(t−, x̂(t−)), 1

r

(

gk,1(t
−, x(t−))−gk,1(t

−, x̂(t−))
)

, 1
r2

(

gk,2(t
−, x(t−))−gk,2(t

−,

x̂(t−))
)

, . . . , 1
rnk

(

gk,nk
(t−, x(t−))− gk,nk

(t−, x̂(t−))
)]T

, and ζk(t) =
[

χ̂T
k , χ̄

T
k (t)

]T
, k = 1, 2, . . . , N .

3.2 Main results of lower TLSNISs

Under the framework of lower TLSNISs, we formally state the main results in the following theorem.

Theorem 1. Consider system (1) under Assumptions 1, 2, and 3(i). If the static gain r and constants
ϑ, N0 satisfy the following conditions:

r > max

{

max
k=1,...,N

{c1,k}+ max
k=1,...,N

{λmax(Pk)}
(

σ2µ
2N0 + 2∆1 lnµ

)

, 1

}

, (10)
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ϑ >
2 lnµ

σ1 − σ2µ2N0
> 0, (11)

where c1,k, σ1, σ2, µ are positive constants to be determined later, ∆1 is an adjustable positive constant,
and Pk, k = 1, 2, . . . , N are positive definite matrices satisfying Lemma 3, then by decentralized output-
feedback controllers (4), all the signals of the resulting closed-loop impulsive system are globally bounded
and system states xk,i(t), i = 1, 2, . . . , nk, k = 1, 2, . . . , N converge exponentially to the origin.
Proof. Choose a Lyapunov function candidate, for t > t0,

V (t) =
N
∑

k=1

ξTk (t)Pkξk(t), (12)

where the positive definite matrices Pk, k = 1, 2, . . . , N are determined in Lemma 3.
Now, for t 6= tm, m ∈ Z+, taking the time derivative of (12) along the trajectory of system (9), one

has

D+V (t) 6
N
∑

k=1

(

− r‖ξk(t)‖2 + 2ξTk (t)PkF̄k(t, t− τ(t))
)

. (13)

For further analysis, the last term on the right-hand side of (13) needs to be estimated. Firstly, based
on Assumption 3(i) and (3), it follows that

∣

∣

∣

∣

fk,i(t, t− τ(t))

ri

∣

∣

∣

∣

6 θk

N
∑

p=1





min{np,i}
∑

q=1

(

|ηp,q(t)|+ |ep,q(t)|+ |ηp,q(t− τ(t))| + |ep,q(t− τ(t))|
)





6 2θk

N
∑

p=1

√
np (‖ξp(t)‖+ ‖ξp(t− τ(t))‖) .

(14)

Then, by (14) and Young’s inequality, there exist known positive constants c1,k and c2,k such that

N
∑

k=1

2ξTk (t)PkF̄k(t, t− τ(t)) 6
N
∑

k=1

(

c1,k‖ξk(t)‖2 + c2,k‖ξk(t− τ(t))‖2
)

. (15)

Substituting (15) into (13), and noting (10), for t 6= tm, m ∈ Z+, one can obtain

D+V (t) 6

N
∑

k=1

(

−
(

r − c1,k
)

‖ξk(t)‖2 + c2,k‖ξk(t− τ(t))‖2
)

6 −
N
∑

k=1

max
k=1,...,N

{λmax(Pk)}
(

σ2µ
2N0 + 2∆1 lnµ

)

‖ξk(t)‖2

+

N
∑

k=1

c2,k‖ξk(t− τ(t))‖2

6 −σ1V (t) + σ2V (t− τ(t)), (16)

where σ1 = σ2µ
2N0 + 2∆1 lnµ and σ2 =

maxk=1,...,N{c2,k}
mink=1,...,N{λmin(Pk)}

.

For t = tm, m ∈ Z
+, by Assumption 2, (3), and (9), we deduce

V (tm) =

N
∑

k=1

ξTk (tm)Pkξk(tm) =

N
∑

k=1

(Gk(t
−
m))TPk(Gk(t

−
m))

6

N
∑

k=1

λmax(Pk)‖Gk(t
−
m)‖2 6

N
∑

k=1

λmax(Pk)µ
2
k‖ξk(t−m)‖2

6 max
k=1,2,...,N

{

µ2
kλmax(Pk)

λmin(Pk)

} N
∑

k=1

ξTk (t
−
m)Pkξk(t

−
m)
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6 µ2V (t−m), (17)

where µ = maxk=1,2,...,N{µk

√

λmax(Pk)
λmin(Pk)

}.
From (16) and (17), we construct the following comparison system:















ε̇(t) = −σ1ε(t) + σ2ε(t− τ(t)) + ω, t 6= tm,

ε(t) = µ2ε(t−), t = tm, m ∈ Z
+,

ε(t) =
∑N

k=1 λmax(Pk)‖ζk(t)‖2, t ∈ [t0 − τ̄ , t0],

(18)

where ε̇(t) is the upper right-hand derivative of ε(t). Suppose that εω(t) is the corresponding maximal
solution of system (18) for any given ω > 0. It follows from Lemma 1 that V (t) 6 εω(t) for t > t0.

Then, from Lemma 2, it can be inferred that, for t > t0,

εω(t) 6 εω(t0)µ
2N(t,t0)e−σ1(t−t0) +

∫ t

t0

µ2N(t,s)e−σ1(t−s)(σ2εω(s− τ(s)) + ω)ds. (19)

According to Definition 1, one gets

µ2N(t,s)e−σ1(t−s)
6 µ2N0+2 t−s

ϑ e−σ1(t−s)

6 µ2N0e2
t−s
ϑ

lnµe−σ1(t−s)

6 δe−σ3(t−s), (20)

where δ = µ2N0 and σ3 = σ1 − 2 lnµ
ϑ

> 0.
Then, substituting (20) into (19) can straightforwardly yield that

εω(t) 6 δεω(t0)e
−σ3(t−t0) +

∫ t

t0

δe−σ3(t−s)(σ2εω(s− τ(s)) + ω)ds

6 αe−σ3(t−t0) +

∫ t

t0

δe−σ3(t−s)(σ2εω(s− τ(s)) + ω)ds, (21)

where α = δ
∑N

k=1 λmax(Pk)‖ζk(t)‖2τ̄ .
Let

ρ(s) = σ2δe
τ̄s + s− σ3. (22)

By (11) and (22), one deduces that ρ(0) = σ2δ − σ3 = σ2µ
2N0 − σ1 +

2 lnµ
ϑ

< 0. Moreover, it is easy
to get that ρ(+∞) = +∞ and ρ̇(s) = σ2δτ̄e

τ̄ s + 1 > 0. Hence, there exists a unique positive constant σ,
such that σ2δe

τ̄σ + σ − σ3 = 0.
Next, we present an important proposition as the basis for the proof of Theorem 1, which states the

intrinsic property of the solution of comparison system (18).

Proposition 1. For the solution of comparison system (18), the following inequality holds:

εω(t) < αe−σ(t−t0) +
ωδ

σ3 − σ2δ
, t > t0 − τ̄ . (23)

Proof. Firstly, we define Φ(t) = αe−σ(t−t0) + ωδ
σ3−σ2δ

, t > t0 − τ̄ . For t ∈ [t0 − τ̄ , t0], noting δ > 1, it
follows that

εω(t) =
N
∑

k=1

λmax(Pk)‖ζk(t)‖2

< δ

N
∑

k=1

λmax(Pk)‖ζk(t)‖2τ̄

= α

< Φ(t). (24)
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For t > t0, suppose that Proposition 1 does not hold. Then, we define t∗ = inf{t > t0 : εω(t) > Φ(t)}.
If t∗ is not an impulse moment, it holds that εω(t

∗) = Φ(t∗). Otherwise, it then holds that εω(t
∗) > Φ(t∗).

Hence, we have
{

εω(t) < Φ(t), t ∈ [t0 − τ̄ , t∗),

εω(t
∗) > Φ(t∗).

(25)

By (21), (23), and (25), we can derive that

εω(t
∗) 6 αe−σ3(t

∗−t0) +

∫ t∗

t0

δe−σ3(t
∗−s)

(

σ2εω(s− τ(s)) + ω
)

ds

6 αe−σ3(t
∗−t0) +

∫ t∗

t0

δe−σ3(t
∗−s)

(

σ2αe
−σ(s−τ(s)−t0) +

σ2ωδ

σ3 − σ2δ
+ ω

)

ds. (26)

From (26), and noting σ2δe
τ̄σ + σ − σ3 = 0, it can be inferred that

∫ t∗

t0

δe−σ3(t
∗−s)

(

σ2αe
−σ(s−τ(s)−t0) +

σ2ωδ

σ3 − σ2δ
+ ω

)

ds

6 ασ2δe
σ(τ̄+t0)−σ3t

∗

∫ t∗

t0

e(σ3−σ)sds+ δ

(

σ2ωδ

σ3 − σ2δ
+ ω

)

e−σ3t
∗

∫ t∗

t0

eσ3sds

=
ασ2δe

τ̄σ

σ3 − σ

(

e−σ(t∗−t0) − e−σ3(t
∗−t0)

)

+
ωδ

σ3 − σ2δ

(

1− e−σ3(t
∗−t0)

)

< αe−σ(t∗−t0) − αe−σ3(t
∗−t0) +

ωδ

σ3 − σ2δ
. (27)

Substituting (27) into (26), we have

εω(t
∗) < αe−σ(t∗−t0) +

ωδ

σ3 − σ2δ
= Φ(t∗). (28)

From this, the inequality (28) means that the hypothesis does not hold. The contradiction argument
appears. Thus, we can conclude that the inequality (23) holds for t > t0 − τ̄ . This completes the proof
of Proposition 1.

With Proposition 1 established, one can straightforwardly obtain that

mink=1,2,...,N{λmin(Pk)}
N
∑

k=1

‖ξk(t)‖2 6 V (t) 6 εω(t) 6 Φ(t), t > t0. (29)

By (29), and letting ω → 0+, we have

N
∑

k=1

‖ξk(t)‖2 6 c̄e−σ(t−t0), (30)

where c̄ = α
mink=1,2,...,N{λmin(Pk)}

.

Then, it follows from (3) and (30) that

|x̂k,i(t)| 6
√
c̄rnke−

σ
2 (t−t0), |xk,i(t)− x̂k,i(t)| 6

√
c̄rnke−

σ
2 (t−t0). (31)

By (31), we obtain

|xk,i(t)| 6 2
√
c̄rnke−

σ
2 (t−t0). (32)

Therefore, we can conclude that all the signals of the resulting closed-loop impulsive system are globally
bounded and system states xk,i (t), i = 1, 2, . . . , nk, k = 1, 2, . . . , N converge exponentially to the origin.
This completes the proof of Theorem 1.
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3.3 Disturbance evaluation of lower TLSNISs

In the above results of Section 3, the gain scaling approach is used to design the decentralized output-
feedback controllers, and the superiority of this scheme in resisting time-varying delays and impulsive
disturbances is well confirmed. However, since practical systems are often subject to external distur-
bances, it is a valuable discussion to investigate whether the controllers (or improved ones) can tolerate
such disturbances. In this subsection, we consider the system (1) subject to unknown external distur-
bances, i.e.,
















































ẋk,i(t) = xk,i+1(t) + fk,i(t, x(t), u(t), x(t − τ(t)), u(t − τ(t))) + dk,i(t), i = 1, 2, . . . , nk − 1,

ẋk,nk
(t) = uk(t) + fk,nk

(t, x(t), u(t), x(t − τ(t)), u(t − τ(t))) + dk,nk
(t),

yk(t) = xk,1(t), t 6= tm, t > t0,

xk,j(t) = gk,j(t
−, x(t−)), j = 1, 2, . . . , nk, t = tm, m ∈ Z+,

xk(t) = ςk(t) ∈ PC
nk

τ̄ , t ∈ [t0 − τ̄ , t0], k = 1, 2, . . . , N,

(33)

where dk,i(t), i = 1, 2, . . . , nk, k = 1, 2, . . . , N are unknown external disturbances, and other system
variables are the same as those shown in system (1) while satisfying Assumptions 1, 2, and 3(i). Similar
to the work in [36], we make the following assumption for the external additive disturbances.

Assumption 4. For i = 1, 2, . . . , nk, there exist unknown nonnegative constants d̄k, k = 1, 2, . . . , N ,
such that

|dk,i(t)| 6 d̄k.

Similar to Subsection 3.1, with the help of observers (2), state transformations (3), and controllers (4),
the closed-loop impulsive system can be written as follows:















ξ̇k(t) = rΞkξk(t) + F̄k(t, t− τ(t)) + Ψk(t), t 6= tm, t > t0,

ξk(t) = Gk(t
−), t = tm, m ∈ Z+,

ξk(t) = ζk(t) ∈ PC
2nk

τ̄ , t ∈ [t0 − τ̄ , t0], k = 1, 2, . . . , N,

(34)

where Ψk(t) = [0T
nk
, dTk (t)]

T, dk(t) =
[

1
r
dk,1(t),

1
r2
dk,2(t), . . . ,

1
rnk

dk,nk
(t)

]T
, k = 1, 2, . . . , N , and other

system variables are the same as those in system (9).
The main results of lower TLSNISs in the disturbance case are summarized in the following corollary.

Corollary 1. Consider system (33) under Assumptions 1, 2, 3(i), and 4. If the static gain r and
constants ϑ, N0 satisfy condition (11) and the following condition:

r > max

{

max
k=1,...,N

{c1,k}+ max
k=1,...,N

{λmax(Pk)}
(

σ2µ
2N0 + 2∆1 lnµ

)

+∆2, 1

}

, (35)

where ∆2 is an adjustable positive constant and other parameters are the same as those in (15), (16),
and (17), then by decentralized output-feedback controllers (4), all the signals of the resulting closed-
loop impulsive system are globally bounded, and system states xk,i(t), i = 1, 2, . . . , nk, k = 1, 2, . . . , N ,
converge to an adjustable neighborhood of the origin.
Proof. Similar to Subsection 3.2, for t 6= tm, m ∈ Z+, taking the time derivative of (12) along the
trajectory of system (34), and using (35) as well as Young’s inequality, one has

D+V (t) 6

N
∑

k=1

(

−(r − c1,k −∆2)‖ξk(t)‖2 + c2,k‖ξk(t− τ(t))‖2 + nkd̄
2
k

∆2
‖Pk‖2

)

6 −
N
∑

k=1

max
k=1,...,N

{λmax(Pk)}
(

σ2µ
2N0 + 2∆1 lnµ

)

‖ξk(t)‖2

+

N
∑

k=1

c2,k‖ξk(t− τ(t))‖2 +
N
∑

k=1

nkd̄
2
k

∆2
‖Pk‖2

6 −σ1V (t) + σ2V (t− τ(t)) + Ψ̄, (36)
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where Ψ̄ =
∑N

k=1
nkd̄

2
k

∆2
‖Pk‖2, and c1,k, c2,k, σ1, σ2, µ are the same as those in (15)–(17).

The remaining proof of Corollary 1 is similar to the proof of Theorem 1, where ω in the comparison
system (18) needs to be replaced by Ψ̄ + ω, and thus is omitted here.

Remark 3. As pointed out in [35], the impulse as a controlling factor can promote system dynamics,
and conversely, as a disturbance factor can destroy system dynamics. From the viewpoint of impulsive
dynamics, when the intensity constants µk satisfy µk > 1, k = 1, 2, . . . , N , the considered impulses belong
to a class of hybrid impulses, which can cover both positive and negative effects. Moreover, it can be
seen from (10) and (17) that the values of the intensity constants µk, k = 1, 2, . . . , N can directly affect
the value of the positive constant µ, which further affects the selection of the static gain r. Hence, the
decentralized output-feedback controllers uk, k = 1, 2, . . . , N can adapt to different intensity constants
µk by adjusting the static gain r.

Remark 4. Unlike the LKF-based method, we use the comparison principle method to remove the strict
restriction on τ̇(t) and thereby deal with a more general class of time-varying delays. Moreover, applying
the LKF-based method requires constructing a proper LKF as a prerequisite. In contrast, the comparison
principle method only requires constructing a simple comparison system, which is more convenient in
dealing with time delays.

4 Decentralized output-feedback control of upper TLSNISs

In this section, we extend the results of Section 3 to the upper TLSNISs. That is, we design the
decentralized output-feedback controllers for system (1) under Assumptions 1, 2, and 3(ii).

4.1 Decentralized output-feedback controllers design of upper TLSNISs

For the kth subsystem, a novel delay-independent low-gain impulsive observer is constructed as follows:























{

˙̂xk,i(t) = x̂k,i+1(t) + ak,ir
−i(yk(t)− x̂k,1(t)), i = 1, 2, . . . , nk − 1,

˙̂xk,nk
(t) = uk(t) + ak,nk

r−nk(yk(t)− x̂k,1(t)), t 6= tm, t > t0,

x̂k,j(t) = gk,j(t
−, x̂(t−)), j = 1, 2, . . . , nk, t = tm, m ∈ Z+,

x̂k(t) = ς̂k ∈ R
nk , t ∈ [t0 − τ̄ , t0] , k = 1, 2, . . . , N,

(37)

where ak,i, i = 1, 2, . . . , nk, k = 1, 2, . . . , N are constants determined in Lemma 3, and r is a static gain
to be determined later.

Consider the following state transformations, for t > t0 − τ̄ ,

ηk,i(t) =
x̂k,i(t)

rnk−i+1
, ek,i(t) =

xk,i(t)− x̂k,i(t)

rnk−i+1
, i = 1, 2, . . . , nk, k = 1, 2, . . . , N. (38)

The decentralized output-feedback controllers are designed as follows, for t > t0,

uk(t) = −
nk
∑

i=1

bk,iηk,i(t), k = 1, 2, . . . , N, (39)

where bk,i, i = 1, 2, . . . , nk, k = 1, 2, . . . , N are constants determined in Lemma 3.
By (1) and (37)–(39), the closed-loop impulsive system can be represented as follows:















ξ̇k(t) =
1
r
Ξkξk(t) + F̄k(t, t− τ(t)), t 6= tm, t > t0,

ξk(t) = Gk(t
−), t = tm, m ∈ Z+,

ξk(t) = ζk(t) ∈ PC
2nk

τ̄ , t ∈ [t0 − τ̄ , t0], k = 1, 2, . . . , N,

(40)

where ξk(t) and Ξk are the same as those in system (9), F̄k(t, t− τ(t)) = [0T
nk
, f̄T

k (t, t− τ(t))]T, f̄k(t, t−
τ(t)) = [ 1

rnk
fk,1(t, t−τ(t)), . . . , 1

r2
fk,nk−1(t, t−τ(t)), 0]T, and Gk(t

−) = [ 1
rnk

gk,1(t
−, x̂(t−)), 1

rnk−1 gk,2(t
−,

x̂(t−)), . . . , 1
r
gk,nk

(t−, x̂(t−)), 1
rnk

(gk,1(t
−, x(t−))−gk,1(t

−, x̂(t−))), 1
rnk−1 (gk,2(t

−, x(t−))−gk,2(t
−, x̂(t−))),

. . . , 1
r
(gk,nk

(t−, x(t−))− gk,nk
(t−, x̂(t−)))]T, k = 1, 2, . . . , N .
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4.2 Main results of upper TLSNISs

Under the framework of upper TLSNISs, we formally state the main results in the following theorem.

Theorem 2. Consider system (1) under Assumptions 1, 2, and 3(ii). If the static gain r and constants
ϑ, N0 satisfy the following conditions:

r > max

{

max
k=1,...,N

{c∗1,k}+ max
k=1,...,N

{λmax(Pk)}
(

σ̄∗
2µ

2N0 + 2∆∗
1 lnµ

)

, 1

}

, (41)

ϑ >
2 lnµ

σ∗
1 − σ∗

2µ
2N0

> 0, (42)

where c∗1,k, σ∗
1 , σ∗

2 , σ̄∗
2 , µ are positive constants to be determined later, ∆∗

1 is an adjustable positive
constant, and Pk, k = 1, 2, . . . , N are positive definite matrices satisfying Lemma 3, then by decentralized
output-feedback controllers (39), all the signals of the resulting closed-loop impulsive system are globally
bounded and system states xk,i(t), i = 1, 2, . . . , nk, k = 1, 2, . . . , N converge exponentially to the origin.

Proof. Choose a Lyapunov function candidate V (t) =
∑N

k=1 ξ
T
k (t)Pkξk(t), where the positive definite

matrices Pk, k = 1, 2, . . . , N are determined in Lemma 3. For t 6= tm, m ∈ Z+, taking the time derivative
of V (t) along the trajectory of system (40), it follows that

D+V (t) 6

N
∑

k=1

(

−1

r
‖ξk(t)‖2 + 2ξTk (t)PkF̄k(t, t− τ(t))

)

. (43)

By Assumption 3(ii), (38), and (39), one gets

∣

∣

∣

∣

fk,i(t, t− τ(t))

rnk−i+1

∣

∣

∣

∣

6
θ̄k

rnk−i+1

N
∑

p=1





np+1
∑

q=max{i+2+np−nk,1}

rnp−q+1|ηp,q(t) + ep,q(t)|





+
θ̄k

rnk−i+1

N
∑

p=1





np+1
∑

q=max{i+2+np−nk,1}

rnp−q+1|ηp,q(t− τ(t)) + ep,q(t− τ(t))|





+
θ̄k

rnk−i+1

N
∑

p=1





∣

∣

∣

∣

∣

∣

np
∑

j=1

bp,jηp,j(t)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

np
∑

j=1

bp,jηp,j(t− τ(t))

∣

∣

∣

∣

∣

∣





6
θ̄k

r2

N
∑

p=1





np+1
∑

q=max{i+2+np−nk,1}

(

|ηp,q(t)| + |ep,q(t)|+ |ηp,q(t− τ(t))|

+ |ep,q(t− τ(t))|
)

+

∣

∣

∣

∣

∣

∣

np
∑

j=1

bp,jηp,j(t)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

np
∑

j=1

bp,jηp,j(t− τ(t))

∣

∣

∣

∣

∣

∣





6
2θ̄k
r2

N
∑

p=1

(

1 + max
j=1,2,...,np

{|bp,j |}
)

√
np (‖ξp(t)‖+ ‖ξp(t− τ(t))‖) . (44)

Then, by (44) and Young’s inequality, there exist known positive constants c∗1,k and c∗2,k such that

N
∑

k=1

2ξTk (t)PkF̄k(t, t− τ(t)) 6
1

r2

N
∑

k=1

(

c∗1,k‖ξk(t)‖2 + c∗2,k‖ξk(t− τ(t))‖2
)

. (45)

Substituting (45) into (43), and noting (41), for t 6= tm, m ∈ Z+, one can obtain

D+V (t) 6
N
∑

k=1

(

−
r − c∗1,k

r2
‖ξk(t)‖2 +

c∗2,k

r2
‖ξk(t− τ(t))‖2

)

6 −
N
∑

k=1

1

r2
max

k=1,...,N
{λmax(Pk)}

(

σ̄∗
2µ

2N0 + 2∆∗
1 lnµ

)

‖ξk(t)‖2
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+

N
∑

k=1

c∗2,k

r2
‖ξk(t− τ(t))‖2

6 −σ∗
1V (t) + σ∗

2V (t− τ(t)), (46)

where σ∗
1 = σ∗

2µ
2N0 + 2

r2
∆∗

1 lnµ, σ
∗
2 = 1

r2
σ̄∗
2 , and σ̄∗

2 =
maxk=1,...,N{c∗2,k}

mink=1,...,N{λmin(Pk)}
.

For t = tm, m ∈ Z+, by Assumption 2, (38), and (40), we deduce

V (tm) 6

N
∑

k=1

λmax(Pk)µ
2
k‖ξk(t−m)‖2

6 max
k=1,2,...,N

{

µ2
kλmax(Pk)

λmin(Pk)

} N
∑

k=1

ξTk (t
−
m)Pkξk(t

−
m)

6 µ2V (t−m), (47)

where µ is the same as defined in (17).
Obviously, the remaining proof of Theorem 2 is similar to the proof of Theorem 1, and thus is omitted

here.

4.3 Disturbance evaluation of upper TLSNISs

In this subsection, we consider the upper TLSNIS subject to unknown external disturbances; i.e., system
(33) satisfies Assumptions 1, 2, 3(ii), and 4.

Similar to Subsection 4.1, by means of observers (37), state transformations (38), and controllers (39),
the closed-loop impulsive system can be written as follows:















ξ̇k(t) =
1
r
Ξkξk(t) + F̄k(t, t− τ(t)) + 1

r
Ψk(t), t 6= tm, t > t0,

ξk(t) = Gk(t
−), t = tm, m ∈ Z+,

ξk(t) = ζk(t) ∈ PC
2nk

τ̄ , t ∈ [t0 − τ̄ , t0], k = 1, 2, . . . , N,

(48)

where Ψk(t) = [0T
nk
, dTk (t)]

T, dk(t) =
[

1
rnk−1 dk,1(t), . . . ,

1
r
dk,nk−1(t), dk,nk

(t)
]T

, k = 1, 2, . . . , N , and other
system variables are the same as those in system (40).

The main results of upper TLSNISs in the disturbance case are summarized in the following corollary.

Corollary 2. Consider system (33) under Assumptions 1, 2, 3(ii), and 4. If the static gain r and
constants ϑ, N0 satisfy condition (42) and the following condition:

r > max

{

max
k=1,...,N

{c∗1,k}+ max
k=1,...,N

{λmax(Pk)}
(

σ̄∗
2µ

2N0 + 2∆∗
1 lnµ

)

+∆∗
2, 1

}

, (49)

where ∆∗
2 is an adjustable positive constant and other parameters are the same as those in (45)–(47), then

by decentralized output-feedback controllers (39), all the signals of the resulting closed-loop impulsive
system are globally bounded and system states xk,i(t), i = 1, 2, . . . , nk, k = 1, 2, . . . , N converge to an
adjustable neighborhood of the origin.
Proof. Similar to Subsection 4.1, for t 6= tm, m ∈ Z

+, taking the time derivative of V (t) along the
trajectory of system (48), and using (49) as well as Young’s inequality, one has

D+V (t) 6

N
∑

k=1

(

−
r − c∗1,k −∆∗

2

r2
‖ξk(t)‖2 +

c∗2,k

r2
‖ξk(t− τ(t))‖2 + nkd̄

2
k

∆∗
2

‖Pk‖2
)

6 −
N
∑

k=1

1

r2
max

k=1,...,N
{λmax(Pk)}

(

σ̄∗
2µ

2N0 + 2∆∗
1 lnµ

)

‖ξk(t)‖2

+

N
∑

k=1

c∗2,k

r2
‖ξk(t− τ(t))‖2 +

N
∑

k=1

nkd̄
2
k

∆∗
2

‖Pk‖2

6 −σ∗
1V (t) + σ∗

2V (t− τ(t)) + Ψ̄∗, (50)
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Figure 1 (Color online) The framework of decentralized output-feedback closed-loop control.

where Ψ̄∗ =
∑N

k=1
nkd̄

2
k

∆∗

2
‖Pk‖2, and c∗1,k, c

∗
2,k, σ

∗
1 , σ

∗
2 , σ̄

∗
2 , µ are the same as those in (45)–(47).

The remaining proof of Corollary 2 is similar to the proof of Theorem 1, where ω in the comparison
system (18) needs to be replaced by Ψ̄∗ + ω, and thus is omitted here.

Remark 5. Compared with the LMI-based design approach and iterative design approach, the gain
scaling approach has more superiority in the compensation of structural uncertainties and the simplifi-
cation of design processes. Different from the impulsive observers in [29, 37], the gain-based impulsive
observers (2) and (37) are delay-independent and remove the limitation that the structure of system non-
linearities must be known. In Section 3 or 4, we delicately reveal the relationship between the static gain r

and the growth rate θk or θ̄k, which plays a crucial role in suppressing the structural uncertainties. From
(4) and (39), it can be seen that the designed controllers are delay-independent, disturbance-independent,
and observer-based, and thus can be applied to situations involving unmeasured time delays, unknown
external disturbances, and unavailable system states.

Remark 6. Notably, existing results of nonlinear systems with triangular structures, such as [11,
12, 24–26, 30], are obtained based on continuous-time dynamics, which is relatively easy to carry out
stability analysis of closed-loop systems. However, when impulsive disturbances are involved in the system
dynamics, the discontinuity of system states leads to the failure of existing continuous-time-dynamics-
based stability analysis methods. In the proof of theorems and corollaries, we divide the analysis process
into two parts, i.e., the continuous-time dynamics part and the discrete-time dynamics part. Specifically,
in the proof of Theorem 1, we establish the relations (16) and (17) to characterize the continuous-
time dynamic property between impulse moments and the discrete-time dynamic property at impulse
moments, respectively. Through the above two parts, we effectively analyze the overall dynamic property
of the closed-loop impulsive system (9), which is different from the analysis manner of continuous-time
systems. More precisely, the analysis process in this paper is more challenging than that in continuous-
time systems. Moreover, it also means that the work in this paper is a pioneering attempt to consider
impulsive disturbances within the framework of triangular large-scale nonlinear systems.

Remark 7. To achieve a good understanding, we provide a decentralized output-feedback closed-loop
control framework, as shown in Figure 1. To the best of our knowledge, the interconnected effects between
the impulsive subsystems (i.e., ①) are not considered in existing studies. The information transmission
of the available system states (i.e., ②) and the selection of the static gain (i.e., ③) are crucial for the
observer to estimate the unavailable system states. Based on the information of the observer states and
the static gain, the decentralized output-feedback controller is designed; see ④. In ⑤, the information of
the controller is feedback to the plant.

5 Simulation examples

In this section, two simulation examples are given to illustrate the effectiveness of the decentralized
output-feedback controllers for lower TLSNISs and upper TLSNISs, respectively.

Example 1. As is well known, chemical reactor systems are very popular in the chemical industry [38].
During the production process, many chemical reactions are subject to discontinuous disturbances (im-
pulsive effects) at certain moments, which may lead to abrupt changes in the system states; see [29].
In this example, we consider the lower TLSNIS consisting of two chemical reactors (i.e., reactor A and
reactor B) with delayed recycle streams; see Figure 2 for illustration. Referring to [11,12], the dynamics
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Figure 2 (Color online) Chemical reactor system.

Table 2 Physical meanings of parameters

Parameter Physical meaning

xk,1(·), xk,2(·) Compositions

Tk,1, Tk,2 Reactor residence times

Ck,1, Ck,2 Reaction constants

Vk,1, Vk,2 Reactor volumes

fk,1(·), fk,2(·) Interconnected functions

Rk Recycle flow rate

̺k Feed rate

τ(·) Time-varying delay

yk(·) Output of the kth subsystem

of the whole plant can be modeled as follows:





































ẋk,1(t) =
1−Rk

Vk,1
xk,2(t)− 1

Tk,1
xk,1(t)− Ck,1xk,1(t) + fk,1(t, t− τ(t)),

ẋk,2(t) =
̺k

Vk,2
uk(t)− 1

Tk,2
xk,2(t)− Ck,2xk,2(t) + fk,2(t, t− τ(t)),

yk(t) = xk,1(t), t 6= tm, t > 0,

xk,i(t) = 1.2xk,i(t
−), t = tm, i = 1, 2, k = 1, 2, 3,

(51)

where the physical meanings of parameters are shown in Table 2.
For the chemical reactor system (51), the system parameters are set as Rk = Vk,1 = Vk,2 = ̺k =

0.5, Tk,1 = Tk,2 = 10, Ck,1 = Ck,2 = 0.1, k = 1, 2, 3. The interconnected functions are given by
fk,1(t, t − τ(t)) = 0.22xk,1(t) + 2k · 0.01 cos(x4−k,2(t)) ln(1 + |x4−k,1(t − τ(t))|) and fk,2(t, t − τ(t)) =
0.26xk,2(t) + 2k · 0.01(sin(x4−k,1(t − τ(t))) + x4−k,2(t) + x1,2(t − τ(t))), k = 1, 2, 3. The unknown time-
varying delay is set as τ(t) = 2 + 2 sin(t).

In this example, the control parameters are selected as ∆1 = 1, N0 = 1, ak,1 = 1, ak,2 = 2, bk,1 = 3,
and bk,2 = 8, k = 1, 2, 3. Then, we can obtain λmax(Pk) = 1.1001, λmax(Pk) = 2.8993, r > 4.1304,
and ϑ ∈ (1,+∞). Thus, we take r = 4.2 and ϑ = 1.2. The impulse time sequence is chosen as
{tm}m∈Z+ = {t5m−4 = 6m− 5.7, t5m−3 = 6m− 4.6, t5m−2 = 6m− 3, t5m−1 = 6m− 2.1, t5m = 6m}m∈Z+.
Moreover, the initial values are selected as [x1,1(t), x1,2(t)]

T = [−2,−4]T, [x2,1(t), x2,2(t)]
T = [−1, 2]T,

[x3,1(t), x3,2(t)]
T = [−2, 2]T, [x̂1,1(t), x̂1,2(t)]

T = [0, 0]T, [x̂2,1(t), x̂2,2(t)]
T = [0, 0]T, and [x̂3,1(t), x̂3,2(t)]

T

= [0, 0]T, for t ∈ [−4, 0].
When there is no control input, i.e., u(t) = 0, it is shown in Figure 3 that system (51) is unstable.

In contrast, under the controllers designed in Theorem 1, the resulting simulation results are shown
in Figures 4 and 5. It can be seen that all the signals of the resulting closed-loop impulsive system
are globally bounded and system states converge to the origin. Obviously, the simulation results can
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Figure 3 (Color online) The trajectories of xk,i, i = 1, 2, k = 1, 2, 3 without control inputs in Example 1.
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Figure 4 (Color online) The trajectories of xk,i and x̂k,i, i = 1, 2, k = 1, 2, 3 with control inputs in Example 1.
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Figure 5 (Color online) The trajectories of uk, k = 1, 2, 3 in Example 1.

demonstrate the effectiveness of the designed controllers.

Example 2. Consider the following upper TLSNIS with time-varying delays:

Subsystem 1 Subsystem 2
































































ẋ1,1(t) = x1,2(t) + θ̄1e
−tu2(t)

+ θ̄1 arctan(x2,2(t))u1(t− τ(t)),

ẋ1,2(t) = u1(t),

y1(t) = x1,1(t), t 6= tm, t > 0,

x1,1(t) = 1.2 sin(t−)x1,1(t
−), t = tm,

x1,2(t) = 1.2 sin(t−)x1,2(t
−), t = tm,

































































ẋ2,1(t) = x2,2(t) + θ̄2 tanh(t)u1(t)

+ θ̄2 arctan(x1,2(t))u2(t− τ(t)),

ẋ2,2(t) = u2(t),

y2(t) = x2,1(t), t 6= tm, t > 0,

x2,1(t) = −1.2sign(cos(t−))x2,1(t
−), t = tm,

x2,2(t) = −1.2sign(cos(t−))x2,2(t
−), t = tm,

(52)

where θ̄1 = θ̄2 = 0.05, and the unknown time-varying delay is set as τ(t) = 3 + 3 cos(t).
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Figure 8 (Color online) The trajectories of uk, k = 1, 2 in Example 2.

In this example, the control parameters are selected as ∆∗
1 = 1, N0 = 1, ak,1 = 1.1, ak,2 = 1.9,

bk,1 = 3.5, and bk,2 = 5.5, k = 1, 2. Then, we deduce λmin(Pk) = 1.1007, λmax(Pk) = 2.7976, and
r > 5.5829. Hence, we take r = 5.6 and ϑ = 32. The impulse time sequence is chosen as {tm}m∈Z+ =
{t3m−2 = 96m− 88, t3m−1 = 96m− 86, t3m = 96m− 84}m∈Z+. Moreover, the initial values are selected
as [x1,1(t), x1,2(t)]

T = [−0.2,−0.2]T, [x2,1(t), x2,2(t)]
T = [0.2,−0.2]T, [x̂1,1(t), x̂1,2(t)]

T = [0, 0]T, and
[x̂2,1(t), x̂2,2(t)]

T = [0, 0]T, for t ∈ [−6, 0].
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As shown in Figure 6, system (52) is unstable without control inputs. By applying the controllers
designed in Theorem 2, the simulation results of the resulting closed-loop impulsive system are presented
in Figures 7 and 8. Obviously, it is shown that the simulation results can verify the effectiveness of the
designed controllers.

6 Conclusion

In this paper, we have proposed a gain scaling approach for TLSNISs with time-varying delays. Novel
delay-independent impulsive observers are constructed to estimate unavailable states. The undesirable
effects of time-varying delays and impulsive disturbances are eliminated by using the comparison principle
and average impulsive interval technique. It was shown that under the designed decentralized output-
feedback controllers, the system states converge exponentially to the origin in the disturbance-free case.
Moreover, by strengthening the gain scaling mechanism, the improved controllers can tolerate unknown
external disturbances and thus enhance their potential applications.

The following aspects can be explored in future work. (1) It should be noted that nonlinear intercon-
nected functions are still conservative in terms of growth rate, despite having structural uncertainties.
Consequently, extending the results of this study to scenarios involving unknown (or time-varying) growth
rates would certainly be an interesting topic for further study. (2) Event-triggered control schemes have
attracted extensive attention because of their efficient utilization of communication resources. Hence,
the design of event-triggered decentralized output-feedback controllers for TLSNISs is a promising topic.
(3) Extending the results of this study to impulsive networked systems with triangular structures would
also be of great significance.
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