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Abstract This article studies the problem of structure-free distributed containment control for uncertain

underactuated multiple Euler-Lagrange systems (MELSs) considering disturbances by using a layered ap-

proach. First, the second layer is the virtual layer constructed artificially for hierarchical control. We move

all virtual nodes to the convex hull formed by leaders in the first layer by implementing containment control

algorithms on all virtual nodes. Then, the third layer is the following layer, and we propose an adaptive

robust tracking controller to ensure that each follower in the third layer tracks the corresponding virtual

node in the second layer. So far, the underactuated MELSs can achieve containment control. Furthermore,

through the theoretical derivation, sufficient conditions are obtained to achieve the objective of structure-free

containment control. Finally, the effectiveness of the proposed stratified structure-free containment control

method is verified by a simulation example.
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1 Introduction

Distributed cooperative control refers to a control mode in which a group of agents cooperates to accom-
plish a common task on the basis of mutual communication and group intelligence. Multiagent systems
have considerable advantages in efficiency, flexibility, and reliability, and can be used in various applica-
tions (e.g., space interferometers, engagement, and reconnaissance monitoring systems, dangerous goods
handling devices, and distributed reconfigurable sensor networks). Distributed cooperative control algo-
rithms can be divided into many types according to control modes and objectives (e.g., consensus [1],
flocking [2], and formation control [3]).

The Euler-Lagrange (EL) system has attracted extensive attention since it was developed to model
automatic driving, mobile robots, manipulators, and other mechanical systems. Compared with linear
systems, the EL system has unique nonlinear characteristics, which make traditional control methods of
linear systems no longer applicable but provide an opportunity to design new controllers. In the last
decade, the distributed cooperative control of EL systems has become an academic research craze [4–6].
Moreover, in practice, there are many cases where the dimension of control input is less than the degree
of freedom of the system, which corresponds to a special type of system called an underactuated sys-
tem. Underactuated systems have the advantages of lightweight, low energy consumption, and excellent
performance, and they are widely used in our work and life (e.g., artificial satellites [7], helicopters [8],
and carrier rockets in the oceanographic field; submarines in the ocean field; robot arms in the robotics
field; and locomotives and cranes in the transportation field [9], as well as some benchmarking, such as
inverted pendulums [10], bat systems, and inertia wheel pendulums). The underactuated characteristics
of a system mainly have four causes: the inherent dynamics requirements (e.g., spacecraft, helicopters,
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and underwater vessels), cost reduction or other purposes (e.g., satellites with two thrusters and flexible
linkage robots), driving failure (e.g., surface vessels), and an urge to create complex low-order nonlinear
systems artificially (e.g., two-order inverted pendulums and ball-bat systems) to further control high-
order underactuated systems. The underactuated system has become a popular control object for the
following reasons: underactuated systems widely exist in our lives; in practical engineering, trying to
control a system with fewer than the standard number of actuators is meaningful; and the underactuated
system is a special type of nonlinear system whose research helps control general nonlinear systems.

Combining the characteristics of EL and underactuated systems, the underactuated EL system is
a special system with higher theoretical value and practical engineering value. However, the current
mainstream research methods of underactuated EL systems depend on specific physical scenarios [11–
15] or require a structurally symmetric inertia matrix [8, 11, 12, 14, 15]. Some researchers solve the
uncertainty in the sense of robustness, but they need knowledge of related system terms [11–13] or the
disturbance bounds [7], which are often limited. Inspired by the above limitations, structure-free control
(i.e., control that is not limited to specific physical scenarios and does not have to meet inertia matrix
structural symmetry) for underactuated multiple Euler-Lagrange systems (MELSs) with uncertainties
and disturbances becomes a much preferable but challenging choice.

The purpose of containment control is to ultimately drive a group of followers guided by multiple leaders
into a convex hull composed of leaders. Many potential applications in the real world have stimulated
the study of containment control. For example, when a group of vehicles moves between targets, only
some of these vehicles are equipped with the necessary sensors to detect dangerous obstacles. Vehicles
equipped with sensors are usually designated as leaders, and other vehicles act as followers. By detecting
the locations of dangerous obstacles, leaders can form a dynamic safety zone. If followers stay within
the security zone, the team can arrive at the destination safely. In [16], a layered sliding mode control
strategy was used to achieve the formation-containment control of multiple underactuated surface vessels
(USVs) under-sampling communication conditions. In [17], a predefined performance design approach
combined with proper auxiliary variables was used to achieve containment control for uncertain USVs.
This control method was simple and did not require any approximators or adaptive components to solve
uncertainties. Unfortunately, Refs. [16, 17] were not based on underactuated MELSs.

Motivated by the above literature review, this paper uses a layered approach to study the problem
of structure-free distributed containment control for uncertain underactuated MELSs with disturbances.
The main contributions are summarized as follows:

(1) Unlike the foregoing three mainstream research methods [11–15], the distributed containment
control algorithm adopted in this article is structure-free. In a sense, this attribute extends the processing
scope of underactuated EL.

(2) Refs. [18–21] ignored external disturbances and system uncertainties during control, which are well
known to exist in practical applications everywhere. Considering external disturbances and system un-
certainties helps improve the robustness of a control system. From this viewpoint, the control background
of this paper is based on full-dimensional external disturbances and system uncertainties.

(3) Compared with general linear systems [22] or full-actuated EL systems [4–6,23], the underactuated
MELSs discussed in this paper considering external disturbances and system uncertainties perform better
in practical applications, which merits further discussion.

Notations. Ip and 1p denote the p×p identity matrix and p-dimensional column vector with all ones, re-
spectively. ‖·‖ denotes the Euclidean norm, and λmin(·) denotes the minimum eigenvalue. diag(x1, . . . , xp)

represents the diagonal matrix. col(ξ1, . . . , ξm) denotes the stack column vector. vec(A) = [AT
1 , . . . , A

T
m]T

represents the heap matrix with Ai ∈ Rpi×q.

2 Preliminaries

2.1 Graph theory

The communication network of a multiagent system can be modeled by a directed graph, which is usually
expressed as G = (V , E ,A,L) with the node set V = {v1, v2, . . . , vn}, the edge set E ⊆ V×V , the adjacency
matrix A = [aij ]i,j∈V ∈ R

n×n, and the Laplacian matrix L = [ℓij ]i,j∈V ∈ R
n×n. An edge from vi to vj is

denoted by (vi, vj) ∈ E , which means that vj receives the information from vi, but not necessarily vice
versa. aji > 0 if (vi, vj) ∈ E , and vi is called a neighbor of vj at this time, otherwise aji = 0. Note that
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aii = 0, i = 1, . . . , n. A directed path from vi to vj is a sequence of edges expressed as (vi, vk), . . . , (vp, vj).
Let Nj denote the set of neighbors of vj . The Laplacian matrix is defined to satisfy ℓij = −aij , i 6= j,
and ℓii =

∑n
j=1,j 6=i aij [24].

In this article, we consider a directed topology ḠA with Nr leaders and Nf followers numbered as
1, . . . , Nr, Nr + 1, . . . , Nr +Nf successively. Let GA denote the subgraph consisting of Nf followers. Let
Ā, A, L̄, L denote the adjacency matrix and Laplacian matrix of ḠA and GA, respectively. Besides, as
for ḠA, we use ωk

i to indicate the direct connectivity of the i-th follower to the k-th leader and let Ωk be
diag{ωk

Nr+1, . . . , ω
k
Nr+Nf

}.

2.2 Problem formulation

The leaders have dynamics as follows:

η̇i = Sηi, (1a)

qi = Cηi, i ∈ R, (1b)

where R = {1, . . . , Nr} denotes the leader set, and qi ∈ R
n, i ∈ R is the generalized position of the i-th

leader, ηi ∈ R
p is the internal state, and S ∈ R

p×p and C ∈ R
n×p are constant matrices. The leaders

satisfy the following assumptions.

Assumption 1. qi(t), q̇i(t), q̈i(t), i ∈ R exist and are bounded.

Assumption 2. All the eigenvalues of S are semi-simple with zero real parts.

Remark 1. Under Assumption 2, the leader system (1a) can generate a large class of time-varying
signals such as the step signal of arbitrary magnitude, the sinusoidal signal of arbitrary amplitude,
frequency, and phase angle, and any signal which is a combination of a finite number of step signals and
sinusoidal signals. In particular, let ηi(t) = [ηi1(t), . . . , ηip(t)]

T, i ∈ R. Then, ηij(t), j = 1, . . . , p can take
the following form:

ηij(t) = ai(t) +

ni∑

i=1

(aij sinωijt+ φij),

where ni is an arbitrary positive integer, ai(t) is an unknown step magnitude, aij , ωij , and φij are
unknown amplitudes, frequencies, and phase angles, respectively. Then qi(t), q̇i(t), q̈i(t), i ∈ R exist and
are bounded.

Remark 2. In this paper, we focus on the more realistic case in which ηi, S, C can only be obtained by
those followers who can communicate with the leaders. In other words, only part of the followers need
to know the dynamic information of the leaders.

Definition 1. The convex hull for QR = {q1, . . . , qNr
} can be represented as Co(QR) = {

∑Nr

i=1 aiqi|ai >

0,
∑Nr

i=1 ai = 1}.
The followers conform to the underactuated Euler-Lagrange model:

Mi(qi)q̈i + Vmi
(qi, q̇i)q̇i +Gi(qi) + Fi(q̇i) +̟i(t) = [τTi 0T]T, i ∈ F , (2)

where F = {Nr + 1, . . . , Nr + Nf} denotes the follower set, and qi(t), q̇i(t), q̈i(t) ∈ R
n, i ∈ F are the

position, velocity, and acceleration of the i-th follower respectively. τi ∈ R
m denotes the control force

where n − m < m < n. Mi(qi) ∈ R
n×n represents the inertia matrix, Vmi

(qi, q̇i) ∈ R
n×n denotes the

centripetal-Coriolis matrix, Gi(qi) ∈ R
n denotes the gravity vector, Fi(q̇i) ∈ R

n is the friction vector,
and ̟i(t) ∈ R

n refers to the external disturbance.
Some propositions and assumptions about the underactuated EL system (2) are listed as follows [25].

Proposition 1. ‖Vmi
(qi, q̇i)‖ 6 v̄mi

‖q̇i‖, ‖Gi(qi)‖ 6 ḡi, ‖Fi(q̇i)‖ 6 f̄i ‖q̇i‖, ‖̟i(qi)‖ 6 ¯̟ i, where
v̄mi

, ḡi, f̄i, ¯̟ i ∈ R
+. Moreover, Vmi

, Gi, Fi, ̟i, v̄mi
, ḡi, f̄i, ¯̟ i are unknown.

Proposition 2. Mi(qi) is a symmetric uniformly positive definite matrix, and has the following char-
acteristic:

0 < µ1
i In 6 Mi(qi) 6 µ2

i In,

where µ1
i , µ

2
i ∈ R

+.

Assumption 3. Decompose Mi as Mi = M̂i + M̆i, where M̂i is the nominal value of Mi and M̆i is the
perturbation value of Mi. Only M̂i and the upper bound of M̆i are assumed to be available.



Su H S, et al. Sci China Inf Sci November 2023 Vol. 66 212203:4

Assumption 4. qi, q̇i, i ∈ F are measurable.
The entire discussion is based on the following topology assumption.

Assumption 5. For each of the followers, there exists at least one leader that has a directed path to
the follower.

Definition 2. The multiagent system (1a)–(2) is judged to have achieved containment if

lim
t→∞

QF → Co(QR),

in which QF = {qNr+1, . . . , qNr+Nf
}.

3 Observer design

The first step of hierarchical control is to construct the virtual layer artificially, and design the following
distributed containment observer to make all virtual nodes converge to the convex hull composed of
leaders in the leader layer.

Ṡi = k1




Nr+Nf∑

j=Nr+1

aij(Sj − Si) +

Nr∑

k=1

ωk
i (Sk − Si)


 , (3a)

Ċi = k2




Nr+Nf∑

j=Nr+1

aij(Cj − Ci) +

Nr∑

k=1

ωk
i (Ck − Ci)


 , (3b)

ξ̇i = Siξi + k3




Nr+Nf∑

j=Nr+1

aij(ξj − ξi) +

Nr∑

k=1

ωk
i (ξk − ξi)


 , (3c)

where Si, Ci, i ∈ F are the estimated values of S,C, respectively, and Sk = S,Ck = C, k = 1, . . . , Nr.
ξi, i ∈ F can be viewed as the estimated value of the convex hull Co(ηk), k ∈ R, and ξk = ηk, k = 1, . . . , Nr.

Remark 3. Notice that Eqs. (3a) and (3b) can be rewritten in a uniform form as Ṫi = k̄
∑Nr+Nf

j=1 āij(Tj−

Ti), k̄ > 0, where Ti ∈ R
a×b, i ∈ R ∪ F represents Si, Ci, i ∈ R ∪ F . āij is the element of the adjacency

matrix Ā ∈ R
(Nr+Nf )×(Nr+Nf ). In the following proof, we will uniformly adopt this form for (3a) and

(3b).
Before we begin the proof of (3a)–(3c), we need to introduce the following lemma [26, 27].

Lemma 1. Let Zk = L
Nr

+ Ωk, k ∈ R. Under Assumption 5, Zk is a positive definite nonsingular

M-matrix. Let Z = ΣNr

k=1Zk. Then, there exists a diagonal matrix Θ = diag{θ1, θ2, . . . , θNf
} with θi > 0

and
∑Nf

i=1 θi = 1 for any i = 1, 2, . . . , Nf , such that the symmetric matrix

Ẑ = ΘZ + ZTΘ

is positive definite.

Theorem 1. Using (3a)–(3c), if k1, k2, k3 are large enough, then the virtual layer can achieve contain-
ment for arbitrary initial conditions under Assumption 5.
Proof. Since Sk = S,Ck = C, k ∈ R, when we focus on the variable Tk (i.e., Sk, Ck), all leaders can be
naturally considered the same agent, which we will call agent 0 next, thus T0(t) ≡ T (i.e., S,C). Next,
considering the new network topology ḠB which contains Nf followers and agent 0, we have

Ṫi = k̄
∑

j=0∪F

b̄ij(Tj − Ti), i ∈ F , (4)

where b̄ij is the element of the new adjacency matrix B̄ which corresponds to the new network topology
ḠB. According to Assumption 5, the new subgraph GB̄ is a spanning tree and the agent 0 is the root.

Let error variables T̃i = Ti − T0, and T̃ = col(T̃Nr+1, . . . , T̃Nr+Nf
); then we have

vec( ˙̃T ) = −k̄(Ib ⊗ H̄B ⊗ Ia)vec(T̃ ), (5)
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where H̄B = LB + diag{b̄(Nr+1)0, . . . , b̄(Nr+Nf )0}, and LB is the Laplacian matrix of GB.

By Corollary 1 of [28], when k̄ is sufficiently large, Eq. (5) can be concluded to be exponentially stable,
which implies that Ti → T0 as t → ∞. That is, Si → S, Ci → C as t → ∞.

Next we need to prove that ξ = col(ξNr+1, . . . , ξNr+Nf
) converges to the overall convex hull Co(η) =∑Nr

k=1

{(
(
∑Nr

l=1 Zl)
−1Zk1Nf

)
⊗ ηk

}
by (3c).

Step 1. To prove that Co(η) =
∑Nr

k=1

{[
(
∑Nr

l=1 Zl)
−1Zk1Nf

]
⊗ηk

}
is the overall convex hull of ηk, k ∈ R.

According to Definition 1, we need to achieve this by verifying the following two conditions.
(i) The sum of the combined coefficients of the convex hull is equal to 1. In fact,

Nr∑

k=1



(

Nr∑

l=1

Zl

)−1

Zk1Nf


 =

(
Nr∑

l=1

Zl

)−1(
Nr∑

k=1

Zk1Nf

)
= 1Nf

. (6)

(ii) Every combined coefficient of the convex hull is nonnegative. Let (
∑Nr

l=1 Zl)
−1 = [cij ] and

(
∑Nr

l=1 Zl)
−1Zk1Nf

= col(dki). Thus, we have

dki =

Nr+Nf∑

j=Nr+1

cijw
k
j +

1

Nr

Nr+Nf∑

j=Nr+1

cij




Nr+Nf∑

l=Nr+1

ljl


 , k ∈ R. (7)

Because the sum of the elements in each row of the Laplacian matrix is 0, Eq. (7) can be simplified as

dki =

Nr+Nf∑

j=Nr+1

cijw
k
j , k ∈ R. (8)

Based on Lemma 1, we can infer that (
∑Nr

l=1 Zl)
−1 exists and is nonnegative, which implies that cij , i, j ∈

F is nonnegative. Meanwhile, note that wk
j , j ∈ F , k ∈ R is nonnegative. From (8), we can conclude that

every combined coefficient dki, i ∈ F , k ∈ R is nonnegative.
Step 2. To prove that the observer (3c) guarantees to converge to the overall convex hull Co(η).

For the sake of subsequent proof, rewrite Co(η) as Co(η) = (
∑Nr

l=1 Z̄l)
−1
∑Nr

k=1 Z̄kη̄k, in which Z̄k =

Zk ⊗ Ip, η̄k = 1Nf
⊗ ηk. Let ξ̃ = ξ − (

∑Nr

l=1 Z̄l)
−1
∑Nr

k=1 Z̄kη̄k. From (1a), we have

˙̃ξ = ξ̇ −
Nr∑

k=1



(

Nr∑

l=1

Z̄l

)−1

Z̄kS̄η̄k


 , (9)

where S̄ = INf
⊗ S.

And from (3c), Eq. (9) can derive that

˙̃ξ =

(
S̄ − k3

Nr∑

k=1

Z̄k

)
ξ + k3

Nr∑

k=1

Z̄kη̄k − S̄

(
Nr∑

l=1

Z̄l

)−1
Nr∑

k=1

Z̄kη̄k

=

(
S̄ − k3

Nr∑

k=1

Z̄k

)
ξ −

(
Nr∑

l=1

Z̄l

)−1
Nr∑

k=1

Z̄kη̄k




=

(
S̄ − k3

Nr∑

k=1

Z̄k

)
ξ̃. (10)

Define a Lyapunov function V (ξ̃(t)) = ξ̃T(Θ⊗ Ip)ξ̃. Then, we have V̇ (ξ̃(t)) = ξ̃T[2(Θ⊗ Ip)S̄ − k3((ΘZ +

ZTΘ) ⊗ Ip)]ξ̃ 6 −[k3λmin(Ẑ) − 2‖S̄‖]ξ̃Tξ̃. According to Lemma 1, λmin(Ẑ) is positive. Hence, we

can ensure that −[k3λmin(Ẑ) − 2‖S̄‖] is negative, provided we select k3 large enough. In this way,

V̇ (ξ̃(t)) = −[k3λmin(Ẑ) − 2‖S̄‖]V (ξ̃(t)), resulting in limt→∞ ξ̃ = 0. By Steps 1 and 2, we can give a
conclusion that Eq. (3c) can perform a function to observe the convex hull Co(η).
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Since limt→∞ Ci = C, i ∈ F , let ζ = diag(CNr+1, . . . , CNr+Nf
)ξ. Based on the equivalent substitution

theorem, we have

lim
t→∞

(
ζ − col(q1, . . . , qNr

)
)
= lim

t→∞
diag(C, . . . , C)ξ̃ = 0, (11)

and
lim
t→∞

(
ζ̇ − col(q̇1, . . . , q̇Nr

)
)
= lim

t→∞
diag(Ċ, . . . , Ċ)

˙̃
ξ = 0, (12)

which implies Eqs. (3a)–(3c) can perform a function to observe the convex hull Co(QR).

4 Control design

4.1 Control objective

The control objective is to achieve structure-free containment control for underactuated MELSs under
the condition of uncertainties and disturbances.

The second step of hierarchical control is to design an adaptive robust tracking controller to make each
follower in the following layer track the corresponding virtual node in the virtual layer.

For the convenience of subsequent control, rewrite (2) by separating actuated states and non-actuated
states as

Mi(qi)q̈i + Yi(qi, q̇i) +̟i(t) = [τTi 0T]T, i ∈ F , (13)

where qi = [qTia qTiu ]
T. qia ∈ R

m and qiu ∈ R
n−m are actuated states and non-actuated states, respectively.

In (13), the system matrices and disturbance can be partitioned as follows:

Mi ,

[
Miaa

Miau

MT
iau

Miuu

]
, (14a)

Yi , Vmi
(qi, q̇i)q̇i +Gi(qi) + Fi(q̇i) = [Y T

ia
Y T
iu
]T, (14b)

̟i , [̟T
ia

̟T
iu
]T, (14c)

where Miaa
∈ R

m×m, Miau
∈ R

m×(n−m), Miuu
∈ R

(n−m)×(n−m), Yia ∈ R
m, Yiu ∈ R

(n−m), ̟ia ∈ R
m,

and ̟iu ∈ R
(n−m).

According to (13)–(14c), the original underactuated EL dynamics (2) can be disassembled into two
coupled subsystems as

q̈ia = M−1
ia

τi + yia , (15a)

q̈iu = −M−1
iuu

MT
iau

q̈ia + yiu , (15b)

where Mia , Miaa
−Miau

M−1
iuu

MT
iau

, yia , −M−1
ia

(Yia +̟ia +Miau
yiu), yiu , −M−1

iuu
(Yiu +̟iu).

Assumption 6. The block Miau
is full rank.

Remark 4. Assumption 6 avoids morbid conditions such as Miau
being zero, which would lead to the

uncontrollability of the non-actuated subsystem (15b).

4.2 Open-loop error system

Redefine ζi = [ζTia ζTiu ]
T, i ∈ F . Construct tracking error variables of actuated and non-actuated states as

well as the compound error variable for each follower, respectively, as follows:

eia = qia − ζia , (16a)

eiu = qiu − ζiu , (16b)

ri = Kaėia +Θaeia +Kuėiu +Θueiu , (16c)

where Ka,Θa ∈ R
m×m > 0 satisfying K−1

a Θa > 0. Ku,Θu ∈ R
m×(n−m) are of full rank.

By (15a) and (15b), the open-loop error dynamic of ri yields

ṙi =Kaëia +Θaėia +Kuëiu +Θuėiu
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=(Ka −KuM
−1
iuu

MT
iau

)M−1
ia︸ ︷︷ ︸

di

τi

+ (Ka −KuM
−1
iuu

MT
iau

)yia +Kayiu −Kaζ̈ia −Kuζ̈iu︸ ︷︷ ︸
Φi

+Θaėia +Θuėiu︸ ︷︷ ︸
Ξi

=diτi +Φi + Ξi. (17)

4.3 Closed-loop error system

Based on (17), the adaptive robust controller can be designed as follows:

τi = d̂i(−Λri − Ξi − τ̆i), i ∈ F , (18a)

τ̆i =

{
ui

ri
‖ri‖

, ‖ri‖ > r(0),

ui
ri
r(0)

, ‖ri‖ < r(0),
(18b)

where Λ ∈ R
m×m > 0. The adaptive gain coefficient ui will be designed later, and r(0) is a small positive

scalar. d̂i can be regarded as the nominal value of di, which has the following proposition.

Proposition 3. ‖did̂
−1
i − Im‖ 6 Hi < 1, where Hi is a known positive number.

Remark 5. Proposition 3 is derived from Assumption A3 in [29].
Using (18a) and (18b), the closed-loop error dynamics of ri can be attained,

ṙi = −Λri − τ̆i +Φi − (did̂
−1
i − Im)(Λri + Ξi)︸ ︷︷ ︸

Φ̄i

−(did̂
−1
i − Im)τ̆i. (19)

By Propositions 1 and 2, we can infer

‖Yi‖ 6 ‖Vmi
‖ ‖q̇i‖+ ‖Gi‖+ ‖Fi‖ 6 v̄mi

‖q̇i‖
2
+ f̄i ‖q̇i‖+ ḡi. (20)

Define ēi , [eTi ėTi ]
T = [eTia eTiu ėTia ėTiu ]

T. Note that ‖ei‖ 6 ‖ēi‖ and ‖ėi‖ 6 ‖ēi‖. Since ei , qi − ζi,
that is, qi = ei + ζi, we get

‖qi‖ 6 ‖ei‖+ ‖ζi‖ 6 ‖ēi‖+ ‖ζi‖ , (21a)

‖q̇i‖ 6 ‖ėi‖+
∥∥∥ζ̇i
∥∥∥ 6 ‖ēi‖+

∥∥∥ζ̇i
∥∥∥ . (21b)

Squaring both sides of (21b), we can obtain

‖q̇i‖
2
6 ‖ēi‖

2
+
∥∥∥ζ̇i
∥∥∥
2

+ 2 ‖ēi‖
∥∥∥ζ̇i
∥∥∥ . (22)

By (21b) and (22), Eq. (20) can be further scaled up to

‖Yi‖ 6 v̄mi

(
‖ēi‖

2
+
∥∥∥ζ̇i
∥∥∥
2

+ 2 ‖ēi‖
∥∥∥ζ̇i
∥∥∥
)
+ f̄i

(
‖ēi‖+

∥∥∥ζ̇i
∥∥∥
)
+ ḡi. (23)

Then,

∥∥Φ̄i

∥∥ =
∥∥∥Φi −

(
did̂

−1
i − Im

)
(Λri + Ξi)

∥∥∥
6 ‖Φi‖+Hi(‖Λ‖ ‖ri‖+ ‖Ξi‖)

6 ϑ∗
2,i ‖ēi‖

2 + ϑ∗
1,i ‖ēi‖+ ϑ∗

0,i, (24)

with

ϑ∗
2,i ,a1,iv̄mi

, (25a)
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ϑ∗
1,i ,Hi

(
‖Λ‖ (‖Ka‖+ ‖Θa‖+ ‖Ku‖+ ‖Θu‖)

+ ‖Θa‖+ ‖Θu‖
)
+ a1,i

(
2v̄mi

∥∥∥ζ̇i
∥∥∥+ f̄i

)
, (25b)

ϑ∗
0,i ,a1,i

(
v̄mi

∥∥∥ζ̇i
∥∥∥
2

+ f̄i ‖ζi‖+ ḡi + ¯̟ i

)
+ ‖Ka‖

∥∥∥ζ̈ia
∥∥∥

+ ‖Ku‖
∥∥∥ζ̈iu

∥∥∥ , (25c)

a1,i ,
∥∥Ka −KuM

−1
iuu

MT
iau

∥∥ ∥∥M−1
ia

∥∥ (1 +
∥∥Miau

M−1
iuu

∥∥)
+ ‖Ku‖

∥∥M−1
iuu

∥∥ . (25d)

Meanwhile, from (15a) and (15b), the open-loop dynamics of eiu yields

ëiu = q̈iu − ζ̈iu

= −M−1
iuu

MT
iau

q̈ia + yiu − ζ̈iu

= −M−1
iuu

MT
iau

(M−1
ia

τi + yia) + yiu − ζ̈iu . (26)

By (18a) and (18b), letting e
(0)
iu

, eiu and e
(1)
iu

, ėiu , the closed-loop dynamics of eiu can be represented
as

ė
(0)
iu

=e
(1)
iu

, (27a)

ė1iu =−M−1
iuu

MT
iau

M−1
ia

d̂−1
i︸ ︷︷ ︸

gi

(−Λri − Ξi − τ̆i)︸ ︷︷ ︸
xi

− (M−1
iuu

MT
iau

yia − yiu)︸ ︷︷ ︸
ϕ1i

−ζ̈iu

=− gixi − ϕ1i − ζ̈iu . (27b)

Since n−m 6 m < n, by designing a full-rank matrix K which satisfies:

Υ1 , KΛΘu > 0, Υ2 , KΛKu > 0, (28)

and adding and subtracting Kxi to (27b), we get

ė
(0)
iu

=e
(1)
iu

, (29a)

ė
(1)
iu

= giΞi + (K + gi)Λri − ϕ1i −KΛ(Kaėia +Θaeia)− ζ̈iu︸ ︷︷ ︸
ϕ2i

−Υ1e
(0)
iu

−Υ2e
(1)
iu

+ giτ̆i

=−Υ1e
(0)
iu

−Υ2e
(1)
iu

+ giτ̆i + ϕ2i . (29b)

Here, define Ei , [e
(0)T

iu
e
(1)T

iu
]T; then Eqs. (29a) and (29b) can be combined into the matrix form:

Ėi = AEi +B(giτ̆i + ϕ2i), (30)

where A , [
0 I(n−m)

−Υ1 − Υ2
] is Hurwitz and B , [0 I(n−m)]

T.

Based on Propositions 1 and 2, it can be concluded that

‖ϕ2i‖ ‖PB‖ 6 ϑ∗∗
2,i ‖ēi‖

2
+ ϑ∗∗

1,i ‖ēi‖+ ϑ∗∗
0,i, (31)

with

ϑ∗∗
2,i ,a3,iv̄mi

‖PB‖ , (32a)

ϑ∗∗
1,i ,

(
a2,i ‖Λ‖ (‖Ka‖+ ‖Θa‖+ ‖Ku‖+ ‖Θu‖)

+ ‖KΛ‖ (‖Ku‖+ ‖Θu‖) + f̄ia3,i

)
‖PB‖ , (32b)
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ϑ∗∗
0,i ,

(
a2,i(‖Θa‖+ ‖Θu‖) + (ḡi + ¯̟ i)a3,i +

∥∥∥ζ̈iu
∥∥∥
)
‖PB‖ , (32c)

a2,i ,
∥∥∥M−1

iuu
MT

iau
M−1

ia
M̂ia(Ka −KuM̂

−1
iuu

M̂T
iau

)−1
∥∥∥ , (32d)

a3,i ,
∥∥M−1

iuu
MT

iau
M−1

ia

∥∥ (1 +
∥∥Miau

M−1
iuu

∥∥) +
∥∥M−1

iuu

∥∥ , (32e)

where P is the solution to the Lyapunov equation ATP +PA = −Q in which Q is a user-defined positive
definite matrix. Φ̄i and ϕ2i can be regarded as the overall uncertainty of (19) and (30), respectively.

Now, design the adaptive gain coefficient ui as

ui =
ϑ̂0,i + ϑ̂1,i ‖ēi‖+ ϑ̂2,i ‖ēi‖

2 + πi

1−Hi

, (33a)

˙̂
ϑk,i = b̄k,i(‖ri‖+ ‖Ei‖) ‖ēi‖

k − c̄k,iϑ̂k,ik4,i ‖Ei‖ ‖ēi‖
k , (33b)

π̇i = −πi{k5,i + k6,i(‖ēi‖
5 − ‖ēi‖

4
) + k7,i(‖Ei‖+ ‖ēi‖)}

+ k5,i(‖ri‖+ ‖Ei‖+ k8,i), i ∈ F , (33c)

with

ϑ̂k,i(0) > 0, (34a)

πi(0) > k8,i, (34b)

b̄k,i, c̄k,i, k4,i, k5,i, k6,i, k7,i, k8,i > 0, (34c)

k7,i > k6,i, (34d)

k4,i > 1 +
P̄i

1−Hi

, (34e)

where the subscript and superscript k = 0, 1, 2, P̄i is the upper bound of ‖PBgi‖, and ϑ̂k,i acts as the

estimate of ϑ̄k,i , sup
∥∥max{ϑ∗

k,i, ϑ
∗∗
k,i}
∥∥.

4.4 Stability analysis

Theorem 2. Supposing Assumptions 1–6 and Propositions 1–3 hold, the adaptive robust tracking
controller (18a)–(18b), (33a)–(33c) with the containment observer (3a)–(3c) can make the multiagent
system (1a)–(2) achieve structure-free containment control, if conditions in Theorem 1 (i.e., k1, k2, k3 are
large enough), (28), and (34a)–(34e) are satisfied.
Proof. The following Lyapunov function is constructed:

Vi =
1

2

(
rTi ri︸︷︷︸
V1,i

+ET
i PEi︸ ︷︷ ︸
V2,i

+

2∑

k=0

(ϑ̂k,i − ϑ̄k,i)
2

b̄k,i
︸ ︷︷ ︸

V3,i

+
π2
i

k5,i︸︷︷︸
V4,i

)

=
1

2
(V1,i + V2,i + V3,i + V4,i), (35)

and the next two cases will be discussed.
Case 1. ‖ri‖ > r(0). From (17), (18a)–(18b), (19), (24), and (33a), we have

1

2
V̇1,i =rTi ṙi = ri

(
−Λri − τ̆i + Φ̄i − (did̂

−1
i − Im)τ̆i

)

6 −rTi Λri − rTi ui

ri
‖ri‖

+
∥∥rTi

∥∥ ∥∥Φ̄i

∥∥− rTi (did̂
−1
i − Im)ui

ri
‖ri‖

6 −rTi Λri − ui ‖ri‖+
2∑

k=0

(ϑ∗
k,i ‖ēi‖

k ‖ri‖) +
∥∥∥did̂−1

i − Im

∥∥∥ui ‖ri‖

6 −rTi Λri +
2∑

k=0

(ϑ∗
k,i ‖ēi‖

k ‖ri‖)− ui ‖ri‖+Hiui ‖ri‖
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=− rTi Λri +

2∑

k=0

(ϑ∗
k,i ‖ēi‖

k ‖ri‖)− (1−Hi)
1

1−Hi

2∑

k=0

(ϑ̂k,i ‖ēi‖
k
+ πi) ‖ri‖

6 −rTi Λri +

2∑

k=0

(ϑ̄k,i ‖ēi‖
k ‖ri‖)−

2∑

k=0

(ϑ̂k,i ‖ēi‖
k
+ πi) ‖ri‖ . (36)

From (18b), (30)–(31), and (33a), we have

V̇2,i =ĖT
i PEi + ET

i PĖi

=(AEi +B(giτ̆i + ϕ2i))
TPEi + ET

i P (AEi +B(giτ̆i + ϕ2i))

=ET
i A

TPEi + (B(giτ̆i + ϕ2i))
TPEi + ET

i PAEi + ET
i PB(giτ̆i + ϕ2i)

=ET
i (A

TP + PA)Ei + (B(giτ̆i + ϕ2i))
TPEi + ET

i PB(giτ̆i + ϕ2i)

=− ET
i QEi + 2ET

i PB(giτ̆i + ϕ2i)

=− ET
i QEi + 2ET

i PB

(
giui

ri
‖ri‖

+ ϕ2i

)

6− ET
i QEi + 2

∥∥ET
i

∥∥ ‖ϕ2i‖ ‖PB‖+ 2
∥∥ET

i

∥∥ ‖PBgi‖ui

‖ri‖

‖ri‖

6− ET
i QEi + 2

2∑

k=0

ϑ̄k,i ‖ēi‖
k ‖Ei‖+

2P̄i

1−Hi

2∑

k=0

(ϑ̂k,i ‖ēi‖
k
+ πi) ‖Ei‖ . (37)

From (33b), we have

V̇3,i =

2∑

k=0

{
2

b̄k,i
(ϑ̂k,i − ϑ̄k,i)(

˙̂
ϑk,i −

˙̄ϑk,i)

}

=
2∑

k=0

{
2

b̄k,i
(ϑ̂k,i − ϑ̄k,i)

˙̂
ϑk,i

}

=
2∑

k=0

{
2

b̄k,i
(ϑ̂k,i − ϑ̄k,i)

(
b̄k,i(‖ri‖+ ‖Ei‖) ‖ēi‖

k

− c̄k,iϑ̂k,ik4,i ‖Ei‖ ‖ēi‖
k
)}

=2

2∑

k=0

{
ϑ̂k,i(‖ri‖+ ‖Ei‖) ‖ēi‖

k − ϑ̄k,i(‖ri‖+ ‖Ei‖) ‖ēi‖
k

+
c̄k,i

b̄k,i
k4,i

︸ ︷︷ ︸
d̄k,i

ϑ̂k,iϑ̄k,i ‖Ei‖ ‖ēi‖
k −

c̄k,i

b̄k,i
k4,i

︸ ︷︷ ︸
d̄k,i

ϑ̂2
k,i ‖Ei‖ ‖ēi‖

k

}
. (38)

From (33c), we have

V̇4,i =
2πiπ̇i

k5,i

=
2πi

k5,i

{
− πi

[
k5,i + k6,i(‖ēi‖

5 − ‖ēi‖
4
) + k7,i(‖Ei‖+ ‖ēi‖)

]
+ k5,i(‖ri‖+ ‖Ei‖+ k8,i)

}

=2πi(‖ri‖+ ‖Ei‖+ k8,i)− 2π2
i



k6,i
k5,i︸︷︷︸
k65,i

(‖ēi‖
5 − ‖ēi‖

4
) +

k7,i
k5,i︸︷︷︸
k75,i

(‖Ei‖+ ‖ēi‖) + 1


 . (39)
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From (38) and (39), we have

1

2
(V̇3,i + V̇4,i) =

2∑

k=0

{
ϑ̂k,i(‖ri‖+ ‖Ei‖) ‖ēi‖

k − ϑ̄k,i(‖ri‖+ ‖Ei‖) ‖ēi‖
k

+ d̄k,iϑ̂k,iϑ̄k,i ‖Ei‖ ‖ēi‖
k − d̄k,iϑ̂

2
k,i ‖Ei‖ ‖ēi‖

k
}

+ πi(‖ri‖+ ‖Ei‖+ k8,i)− π2
i [1 + k65,i(‖ēi‖

5 − ‖ēi‖
4
)

+ k75,i(‖Ei‖+ ‖ēi‖)]. (40)

By (36), (37), and (40), we can obtain

V̇i 6−min

{
λmin(Λ),

1

2
λmin(Q)

}

︸ ︷︷ ︸
χmin

(‖ri‖
2
+ ‖Ei‖

2
) + k8,iπi

+

(
1 +

P̄i

1−Hi

)

︸ ︷︷ ︸
χi

πi ‖Ei‖ − π2
i [1 + k65,i(‖ēi‖

5 − ‖ēi‖
4)

+ k75,i(‖Ei‖+ ‖ēi‖)] +
2∑

k=0

{[(
1 +

P̄i

1−Hi

)
ϑ̂k,i

− d̄k,iϑ̂
2
k,i + d̄k,iϑ̂k,iϑ̄k,i

]
‖ēi‖

k ‖Ei‖

}
. (41)

For (33c), if Eqs. (34c)–(34d) hold, then {k5,i+k6,i(‖ēi‖
5−‖ēi‖

4
)+k7,i(‖Ei‖+‖ēi‖)} > 0, which implies

that Eq. (33c) is a first-order time-varying linear system with a negative system matrix and a positive

input and so does (33b) obviously, indicating that ϑ̂k,i(t) > 0 and πi(t) > πi > 0 when t > 0. Note that
‖ēi‖ > ‖Ei‖, so Eq. (35) can be scaled as follows:

Vi 6 max{1, ‖P‖}︸ ︷︷ ︸
χmax

(‖ri‖
2
+ ‖Ei‖

2
) +

2∑

k=0

(ϑ̂2
k,i + ϑ̄2

k,i)

b̄k,i
+

π2
i

k5,i
. (42)

From (41) and (42), there exists the following relationship:

V̇i 6−
χmin

χmax︸ ︷︷ ︸
χ̃

Vi +

2∑

k=0

χ̃(ϑ̂2
k,i + ϑ̄2

k,i)

b̄k,i
+

χ̃π2
i

k5,i
+ χiπi ‖Ei‖

+

2∑

k=0

{
(χiϑ̂k,i − d̄k,iϑ̂

2
k,i + d̄k,iϑ̂k,iϑ̄k,i) ‖ēi‖

k ‖Ei‖
}

+ k8,iπi − π2
i [1 + k65,i(‖ēi‖

5 − ‖ēi‖
4
) + k75,i ‖Ei‖]. (43)

Note that d̄k,i, k75,i are positive constants, and thus they can be split as

d̄k,i =

3∑

j=1

d̄
(j)
k,i , k75,i =

2∑

j=1

k
(j)
75,i, (44)

where d̄
(j)
k,i , k

(j)
75,i are positive constants. With the above decomposition, we can make the following sim-

plification:

− d̄k,iϑ̂
2
k,i + χiϑ̂k,i + d̄k,iϑ̂k,iϑ̄k,i

= −d̄
(1)
k,i ϑ̂

2
k,i − d̄

(2)
k,i



(
ϑ̂k,i −

χi

2d̄
(2)
k,i

)2

−

(
χi

2d̄
(2)
k,i

)2

− d̄

(3)
k,i



(
ϑ̂k,i −

d̄k,iϑ̄k,i

2d̄
(3)
k,i

)2

−

(
d̄k,iϑ̄i

2d̄
(3)
k,i

)2
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6 −d̄
(1)
k,i ϑ̂

2
k,i +

χ2
i

4d̄
(2)
k,i

+
(d̄k,iϑ̄k,i)

2

4d̄
(3)
k,i

, (45)

and

− π2
i (1 + k75,i ‖Ei‖) + k8,iπi + χiπi ‖Ei‖

= −k
(1)
75,iπ

2
i ‖Ei‖ −

[(
πi −

k8,i
2

)2

−

(
k8,i
2

)2
]
− k

(2)
75,i ‖Ei‖



(
πi −

χi

2k
(2)
75,i

)2

−

(
χi

2k
(2)
75,i

)2



6 −k
(1)
75,iπ

2
i ‖Ei‖+

k28,i
4

+
χ2
i

4k
(2)
75,i

‖Ei‖ .

(46)

Since ϑ̂k,i(t) > 0 and πi(t) > πi > 0 when t > 0, noting that ‖ēi‖ > ‖Ei‖, from (43), (45) and (46), we
obtain

V̇i 6− χ̃Vi +

2∑

k=0

χ̃(ϑ̂2
k,i + ϑ̄2

k,i)

b̄k,i
+

χ̃π2
i

k5,i
− π2

i [k65,i(‖ēi‖
5 − ‖ēi‖

4
)] +

χ2
i

4k
(2)
75,i

‖Ei‖

+

2∑

k=0

{[
−d̄

(1)
k,i ϑ̂

2
k,i +

χ2
i

4d̄
(2)
k,i

+
(d̄k,iϑ̄k,i)

2

4d̄
(3)
k,i

]
‖ēi‖

k ‖Ei‖

}
− k

(1)
75,iπ

2
i ‖Ei‖+

k28,i
4

6− χ̃Vi +

2∑

k=0

χ̃(ϑ̂2
k,i + ϑ̄2

k,i)

b̄k,i
+

χ̃π2
i

k5,i
− π2

i [k65,i(‖ēi‖
5 − ‖ēi‖

4
)]− k

(1)
75,iπ

2
i ‖Ei‖+

k28,i
4

+

2∑

k=0

{[
χ2
i

4d̄
(2)
k,i

+
(d̄k,iϑ̄k,i)

2

4d̄
(3)
k,i

]
‖ēi‖

k+1

}
+

2∑

k=0

(
−d̄

(1)
k,i ϑ̂

2
k,i ‖Ei‖

k+1
)
+

χ2
i

4k
(2)
75,i

‖Ei‖

=− ϑ̂2
0,i

(
d̄
(1)
0,i ‖Ei‖ −

χ̃

b̄0,i

)
− ϑ̂2

1,i

(
d̄
(1)
1,i ‖Ei‖

2 −
χ̃

b̄1,i

)

− ϑ̂2
2,i

(
d̄
(1)
2,i ‖Ei‖

3 −
χ̃

b̄2,i

)
− π2

i

(
k
(1)
75,i ‖Ei‖ −

χ̃

k5,i

)
− χ̃Vi

+ ǫ5 ‖ēi‖
5
+ ǫ4 ‖ēi‖

4
+ ǫ3 ‖ēi‖

3
+ ǫ2 ‖ēi‖

2
+ ǫ1 ‖ēi‖+ ǫ0︸ ︷︷ ︸

fi(‖ēi‖)

, (47)

with

ǫ5 , −πi
2k65,i, (48a)

ǫ4 , πi
2k65,i, (48b)

ǫ3 ,
χ2
i

4d̄
(2)
2,i

+
(d̄2,iϑ̄2,i)

2

4d̄
(3)
2,i

, (48c)

ǫ2 ,
χ2
i

4d̄
(2)
1,i

+
(d̄1,iϑ̄1,i)

2

4d̄
(3)
1,i

, (48d)

ǫ1 ,
χ2
i

4k
(2)
75,i

+
(d̄0,iϑ̄0,i)

2

4d̄
(3)
0,i

+
χ2
i

4d̄
(2)
3,i

, (48e)

ǫ0 ,
k28,i
4

+

2∑

k=0

χ̃ϑ̄2
k,i

b̄k,i
. (48f)

According to Descartes’ rule of sign change and Bolzano’s Theorem, we can infer that fi(‖ēi‖) has only
one positive real root, here, defined as ρi ∈ R

+. Notice that ǫ5 < 0, resulting in fi(‖ēi‖) 6 0 when
‖ēi‖ > ρi. Thus, from (47), V̇i 6 −χ̃Vi can be guaranteed if

‖ēi‖ > ρi, ‖Ei‖ > max{ρ0i, ρ1i , ρ2i , ρ3i}, (49)
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where ρ0i ,
χ̃

b̄0,id̄
(1)
0,i

, ρ1i ,
√

χ̃

b̄1,id̄
(1)
1,i

, ρ2i , 3

√
χ̃

b̄2,id̄
(1)
2,i

, ρ3i ,
χ̃

k5,ik
(1)
75,i

.

Notice that ‖Ei‖ 6 ‖ēi‖; thus Eq. (49) is equivalent to

‖Ei‖ > max{ρi, ρ0i , ρ1i , ρ2i , ρ3i}. (50)

Case 2. ‖ri‖ < r(0). The proof steps are the same as those in Case 1, but the corresponding differences
are reflected in the following formulas.

(i) Eq. (36) in Case 1 corresponds to

1

2
V̇1,i =ri

(
−Λri − ui

ri
r(0)

+ Φ̄i − (did̂
−1
i − Im)ui

ri
r(0)

)

6− rTi Λri − ui

‖ri‖
2

r(0)
+ rTi Φ̄i − (did̂

−1
i − Im)ui

‖ri‖
2

r(0)

6− rTi Λri +

2∑

k=0

(ϑ̄k,i ‖ēi‖
k ‖ri‖)−

2∑

k=0

[
(ϑ̂k,i ‖ēi‖

k
+ πi)

‖ri‖
2

r(0)

]
. (51)

(ii) From (37)–(40) and (51), Eq. (41) in Case 1 corresponds to

V̇i 6−min

{
λmin(Λ),

1

2
λmin(Q)

}

︸ ︷︷ ︸
χmin

(‖ri‖
2 + ‖Ei‖

2) + k8,iπi

− π2
i

[
1 + k65,i(‖ēi‖

5 − ‖ēi‖
4
) + k75,i ‖Ei‖

]

+

2∑

k=0

[
(χiϑ̂k,i − d̄k,iϑ̂

2
k,i + d̄k,iϑ̂k,iϑ̄k,i) ‖ēi‖

k ‖Ei‖
]

+

2∑

k=0

(ϑ̂k,i ‖ēi‖
k ‖ri‖)− π2

i k75,i ‖ēi‖+ πi ‖ri‖

−
2∑

k=0

[
ϑ̂k,i ‖ēi‖

k ‖ri‖
2

r(0)

]
− πi

‖ri‖
2

r(0)
+ χiπi ‖Ei‖ . (52)

(iii) From (42) and (52), Eq. (43) in Case 1 corresponds to

V̇i 6−
χmin

χmax︸ ︷︷ ︸
χ̃

Vi +
2∑

k=0

χ̃(ϑ̂2
k,i + ϑ̄2

k,i)

b̄k,i
+

χ̃π2
i

k5,i
+ χiπi ‖Ei‖

+

2∑

k=0

[
(χiϑ̂k,i − d̄k,iϑ̂

2
k,i + d̄k,iϑ̂k,iϑ̄k,i) ‖ēi‖

k ‖Ei‖
]

+ k8,iπi − π2
i

[
1 + k65,i(‖ēi‖

5 − ‖ēi‖
4) + k75,i ‖Ei‖

]

+

2∑

k=0

(
ϑ̂k,i ‖ēi‖

k
r(0)
)
+ πir

(0). (53)

(iv) Note that Eq. (46) in Case 1 corresponds to

− π2
i (1 + k75,i ‖Ei‖) + πi(k8,i + r(0)) + χiπi ‖Ei‖

= −k
(1)
75,iπ

2
i ‖Ei‖ −

[(
πi −

k8,i + r(0)

2

)2

−

(
k8,i + r(0)

2

)2
]

− k
(2)
75,i ‖Ei‖



(
πi −

χi

2k275,i

)2

−

(
χi

2k275,i

)2
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6 −k
(1)
75,iπ

2
i ‖Ei‖+

χ2
i

4k275,i
‖Ei‖+

(k8,i + r(0))2

4
, (54)

and the basic inequality
2∑

k=0

(
ϑ̂2
k,i + ‖ēi‖

2k r(0)
2

4

)
>

2∑

k=0

r(0)ϑ̂k,i ‖ēi‖
k . (55)

(v) By (45), (53)–(55), Eqs. (47), (48a)–(48f), and (50) in Case 1 correspond to

V̇i 6− χ̃Vi +

2∑

k=0

χ̃(ϑ̂2
k,i + ϑ̄2

k,i)

b̄k,i
+

χ̃π2
i

k5,i
+

(k8,i + r(0))2

4

+

2∑

k=0

{[
χ2
i

4d̄
(2)
k,i

+
(d̄k,iϑ̄k,i)

2

4d̄
(3)
k,i

]
‖ēi‖

k+1

}
+ π2

i

− πi
2k65,i(‖ēi‖

5 − ‖ēi‖
4
)− k

(1)
75,iπ

2
i ‖Ei‖+

χ2
i

4k
(2)
75,i

‖Ei‖

+

2∑

k=0

(
ϑ̂2
k,i + ‖ēi‖

2k r(0)
2

4

)
−

2∑

k=0

(
d̄
(1)
k,i ϑ̂

2
k,i ‖Ei‖

k+1
)

=− χ̃Vi − ϑ̂2
0,i

[
d̄
(1)
0,i ‖Ei‖ −

(
χ̃

b̄0,i
+ 1

)]
− ϑ̂2

1,i

[
d̄
(1)
1,i ‖Ei‖

2 −

(
χ̃

b̄1,i
+ 1

)]

− ϑ̂2
2,i

[
d̄
(1)
2,i ‖Ei‖

3 −

(
χ̃

b̄2,i
+ 1

)]
− π2

i

[
k
(1)
75,i ‖Ei‖ −

(
χ̃

k5,i
+ 1

)]

+ ǫ́5 ‖ēi‖
5
+ ǫ́4 ‖ēi‖

4
+ ǫ́3 ‖ēi‖

3
+ ǫ́2 ‖ēi‖

2
+ ǫ́1 ‖ēi‖+ ǫ́0︸ ︷︷ ︸

f́i(‖ēi‖)

, (56)

with

ǫ́5 , −πi
2k65,i, (57a)

ǫ́4 , πi
2k65,i +

(r(0))2

4
, (57b)

ǫ́3 ,
χ2
i

4d̄
(2)
2,i

+
(d̄2,iϑ̄2,i)

2

4d̄
(3)
2,i

, (57c)

ǫ́2 ,
χ2
i

4d̄
(2)
1,i

+
(d̄1,iϑ̄1,i)

2

4d̄
(3)
1,i

+
(r(0))2

4
, (57d)

ǫ́1 ,
χ2
i

4d̄
(2)
0,i

+
(d̄0,iϑ̄0,i)

2

4d̄
(3)
0,i

+
χ2
i

4k
(2)
75,i

, (57e)

ǫ́0 ,
2∑

k=0

χ̃ϑ̄2
k,i

b̄k,i
+

(r(0))2

4
+

(k8,i + r(0))2

4
. (57f)

Similar to the analysis in Case 1, V̇i 6 −χ̃Vi can be guaranteed if

‖Ei‖ > max{ρ́i, ρ́0i , ρ́1i , ρ́2i , ρ́3i}, (58)

where ρ́0i , ( χ̃

b̄0,i
+ 1)/d̄

(1)
0,i , ρ́1i ,

√
( χ̃

b̄1,i
+ 1)/d̄

(1)
1,i , ρ́2i , 3

√
( χ̃

b̄2,i
+ 1)/d̄

(1)
2,i , and ρ́3i , ( χ̃

k5,i
+ 1)/k

(1)
75,i.

ρ́i ∈ R
+ is the only positive real root of f́i(‖ēi‖).

Combining the above two cases can yield uniformly ultimately bounded (UUB) stability, which means

eiu , ėiu , ri, ϑ̂k,i, πi ∈ L∞. Note that Eq. (16c) can be rewritten as

ėia = K−1
a ri −K−1

a Θaeia −K−1
a Kuėiu −K−1

a Θueiu . (59)
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Figure 1 (Color online) Communication topology for the graph ḠA and the subgraph GA. (a) The leaders and followers (nodes

1–3 are leaders and 4 and 5 are followers); (b) The followers.

By selecting Ka,Θa ∈ R
m×m > 0 satisfying K−1

a Θa > 0, with the conclusion that eiu , ėiu , ri, ϑ̂k,i, πi ∈
L∞, we can draw a conclusion that eia , ėia ∈ L∞, which is proven that each follower in the following layer
converges to a small neighborhood around the corresponding virtual node in the virtual layer. Note that
the virtual layer can converge to the convex hull Co(QR) according to Theorem 1, the final conclusion is
that each follower in the following layer converges to the convex hull Co(QR) formed by Nr leaders.

Remark 6. The problem discussed in this paper is the structure-free containment control for uncertain
underactuated MELSs considering disturbances. To achieve this, a layered approach is applied. Compared
with the earlier research studies [6,11–15,18,19,22,23], the methods in this paper have some advantages
and breakthroughs. In [11–15], specific physical constraints or the structural symmetry condition of the
mass matrix were necessary in the process of control, which severely limited the range of underactuated
EL systems that could be controlled. Besides, Refs. [18, 19, 22, 23] ignored external disturbances and
system uncertainties during control, which are well known to exist in practical applications everywhere.
This resulted in poor robustness. In contrast, it is more practical to consider full-dimensional external
disturbances and system uncertainties in this paper. Furthermore, notice that Refs. [6,22,23] were based
on general linear systems or full-actuated EL systems, but in practice, underactuated EL systems are
more widely used with the advantages of lightweight, low energy consumption, and excellent performance,
making it meaningful to do more discussion and research on this type of more complex nonlinear system.

5 Simulation examples

Through the following simulation, we are going to verify our theoretical results. The network ḠA shown
in Figure 1(a) consists of three leaders (i.e., nodes 1–3) and two followers (i.e., nodes 4 and 5). The
Laplacian matrix is given as follows:

L =




0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

−1 − 1 0 3 − 1

−1 0 − 1 − 1 3




.

It is obvious that the subgraph GA shown in Figure 1(b) is strongly connected, which is consistent with
Assumption 5. And the following underactuated MELSs are simulated:




Mi11 ,Mi12 ,Mi13

Mi21 ,Mi22 ,Mi23

Mi31 ,Mi32 ,Mi33







q̈i1

q̈i2

q̈i3


+




Vmi11
, Vmi12

, Vmi13

Vmi21
, Vmi22

, Vmi23

Vmi31
, Vmi32

, Vmi33







q̇i1

q̇i2

q̇i3


+




Gi1

Gi2

Gi3


+




̟i1

̟i2

̟i3


 =




τi1

τi2

0


 , i = 4, 5,

where qi = [qi1 qi2 qi3 ]
T. Mi11 = Jz+m0P

2
z , Mi12 = −m0Pzcos(qi1 − qi3), Mi13 = −m0Pzqi2sin(qi1 − qi3),

Mi21 = −m0Pzcos(qi1 − qi3), Mi22 = m0, Mi23 = 0, Mi31 = −m0Pzqi2sin(qi1 − qi3 ), Mi32 = 0, Mi33 =
m0q

2
i2
. Vmi11

= 0, Vmi12
= −m0Pzsin(qi1 − qi3)q̇i3 , Vmi13

= −m0Pz[sin(qi1 − qi3)q̇i2 − cos(qi1 − qi3)qi2 q̇i3 ],
Vmi21

= m0Pzsin(qi1 −qi3)q̇i1 , Vmi22
= 0, Vmi23

= −m0qi2 q̇i3 , Vmi31
= −m0Pzqi2cos(qi1 −qi3)q̇i1 , Vmi32

=
m0qi2 q̇i3 , Vmi33

= m0qi2 q̇i2 . Gi1 = (m0Pz +mzdz)gcos(qi1), Gi2 = −m0gcos(qi3 ), Gi3 = m0gqi2sin(qi3).

̟i1 = ̟i2 = ̟i3 = 0.01sin(0.01t). Jz = 6.5 kg · m2, m0 = 0.5 kg, Ĵz = 6 kg · m2, m̂0 = 0.45 kg,
Pz = 0.8 m, mz = 20 kg, dz = 0.4 m, g = 9.8 m/s2.
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Figure 2 (Color online) (a) Containment observer (3a)–(3c) of the positions qi = [qi1 qi2 qi3 ]
T, i = 1, 2, 3, 4, 5, for three leaders

and two virtual nodes. (b) Adaptive robust tracking controller (18a) and (18b) of the positions qi = [qi1 qi2 qi3 ]
T, i = 1, 2, 3, 4, 5,

for three leaders and two followers.
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Figure 3 (Color online) Simulation results for positions of followers and leaders.

Based on Assumptions 1 and 2, three desired trajectories are chosen as

q1 = [1.17 + 0.03cos(10t); 0.68 + 0.02cos(10t); 0],

q2 = [1.05 + 0.03cos(10t); 0.42 + 0.02cos(10t); 0],

q3 = [0.93 + 0.03cos(10t); 0.55 + 0.02cos(10t); 0].

First, Si, Ci, ξi, q̇i, i = 4, 5 are initialized to zero and q4(0) = [0.2 0.1 0.1]T, q5(0) = [0.4 0.2 0.1]T.
Second, the control parameters k1, k2, k3 from (3a)–(3c) are chosen as k1 = k2 = 10, k3 = 100 to satisfy

Theorem 1.
Third, set Ka = 50I2, Ku = 50[1 1]T, Θa = 400I2, Θu = 400[1 1]T, Λ = 15I2, r

(0) = 1. According

to Theorem 2, select K = [1 1]T satisfying (28), ϑ̂k,i(0) = 10, k = 0, 1, 2 satisfying (34a), πi(0) = 10
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Figure 4 (Color online) Position trajectory snapshots at different iteration steps. (a) k = 0; (b) k = 100000; (c) k = 200000;

(d) k = 290000.
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Figure 5 (Color online) Values of the control torque τi. (a) Link 1; (b) link 2.

satisfying (34b).

Fourth, calculate Hi = 0.5 according to Proposition 3. Set Q = I2, thus P̄i = 1.

Finally, according to Theorem 2, select b̄0,i = 3, b̄1,i = 4, b̄2,i = 1, c̄0,i = 1, c̄1,i = 4, c̄2,i = 1, k5,i = 2,
k6,i = k7,i = k8,i = 1 satisfying (34c)–(34d); select k4,i = 3.5, i = 4, 5 satisfying (34e).

The positions of three leaders, two virtual nodes, and two followers are depicted in Figure 2, from which
it can be observed that the convex hull can be well estimated by the designed containment observer (3a)–
(3c) and UUB stability can be achieved by the proposed adaptive robust tracking controller (18a) and
(18b). Figure 3 shows all the information throughout the simulation. For a clearer view, we have isolated
some of the information and presented it in Figure 4. The four red triangles are the convex hulls formed
by the leaders at, respectively, t = 0 s, t = 10 s, t = 20 s, t = 29 s. It is clearly shown that the two
followers can converge to the convex hull formed by three leaders. The curves of the control inputs τi
and various gains ϑ̂k,i, πi, ui are plotted in Figures 5–7. From the simulation results, we can conclude
that the proposed hierarchical adaptive robust containment control method can achieve structure-free
containment control for uncertain underactuated MELSs with disturbances.
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Figure 6 (Color online) Values of (a) ϑ̂0,i, (b) ϑ̂1,i, and

(c) ϑ̂2,i.

Figure 7 (Color online) Values of (a) πi and (b) ui.

6 Conclusion

This paper studies the problem of structure-free distributed containment control for uncertain underac-
tuated MELSs considering disturbances by using a layered approach. First, the second layer is the virtual
layer constructed artificially for hierarchical control. We move all virtual nodes to the convex hull formed
by leaders in the first layer by implementing containment control algorithms on all virtual nodes. Then,
the third layer is the following layer, and we propose an adaptive robust tracking controller to ensure
that each follower in the third layer tracks the corresponding virtual node in the second layer. So far, the
underactuated MELSs can achieve containment control. Furthermore, through the theoretical derivation,
sufficient conditions are obtained to achieve the objective of structure-free containment control. Finally,
the effectiveness of the proposed stratified structure-free containment control method is verified by a
simulation example.

In the future, we will extend our study to the actuator saturation constraint and collision avoidance
problem.
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