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Abstract This paper studies a novel rack scheduling problem with multiple types of multiple storage loca-

tions (RS-MTMS), which can decide the retrieval sequence of racks and assign each rack a storage location

after visiting a picking station. A major challenge in RS-MTMS is that the storage assignment problem and

the retrieval sequence decision are closely coupled. If the RS-MTMS is solved directly, the storage assign-

ment scheme and the retrieval sequence of racks are generally generated separately, thus resulting in poor

performance. To overcome this difficulty, we propose a bi-level optimization approach for jointly optimizing

the storage assignment and retrieval sequence (BiJSR). In BiJSR, the storage assignment problem is solved

by variable neighborhood search (VNS) in the upper-level optimization. Effective candidate modes are in-

corporated into VNS to improve solution quality and computational efficiency. The sequencing optimization

is obtained in the lower-level according to the given storage location set. A transformation strategy with

sufficient problem-specific knowledge is developed to identify the lower-level optimization as the traveling

salesman problem and its variants. Then these identified problems are solved using the loop-based strategy.

Experimental results show that the proposed BiJSR is more effective and efficient than the representative

algorithms in solving the RS-MTMS problem.

Keywords rack scheduling, sequence decision, storage assignment, bi-level optimization, robotic mobile

fulfillment system
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1 Introduction

The rapid development of the e-commerce economy introduces many challenges with respect to the order
picking system of the operating warehouses. In the traditional picker-to-parts order picking systems,
order picking is the most time-consuming and labor-intensive process. Recently, a novel parts-to-picker
order picking system, called the robotic mobile fulfillment system (RMFS), has been widely used in
e-commerce companies such as Amazon, Scallog, and Alibaba [1–5].

When operating RMFS to handle the daily order picking process, each picker in the picking station will
first receive a list of customer orders with the required products. Then, some racks will be assigned to the
different picking stations to process these orders [6–8]. These racks are presented to pickers sequentially
through robot handling. To improve the order picking efficiency, each robot has to complete the rack
set’s delivery task in the shortest time possible [9–11]. As shown in Figure 1, many racks, open storage
locations, and picking stations exist in RMFS. The delivery task of a rack mainly involves three parts.
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Figure 1 (Color online) The description of the RS-MTMS in the RMFS-based order picking process, where the robot starts from

the starting point and continuously performs the delivery tasks of retrieval racks.

(1) Drive to the rack’s retrieval location from the robot’s current location. For an order picking process,
a robot may start at the starting point or the storage location of the last retrieval rack (such as steps ①,
④, and ⑦) in each delivery task.

(2) Deliver the rack from its retrieval location to the picking station. We assume that the visits of the
racks at the picking stations are already fixed. This assumption is reasonable because the assignment of
racks to picking stations can be obtained by the rack assignment problem, which is the upper layer of
RS-MTMS in the operations planning hierarchy [10].

(3) Return the rack to a storage location. Once all products are retrieved from the current rack, this
rack can be stored at a location that is available in the set of storage locations.

Initially, the robot starts from the starting point and continuously performs the delivery tasks (steps
①–⑨). The robot moves to the ending point when all retrieval racks are picked and returned to storage
locations (step ⑩). The starting/ending points are located in the same charging zone because the robot
is usually charged when there is no delivery task.

In this paper, we focus primarily on the rack scheduling problem with multiple types of multiple storage
locations (RS-MTMS), which is a unique scenario not considered before. More specifically, RS-MTMS
is a sophisticated and interactive process where the storage assignment problem and retrieval sequence
decision are intertwined. The storage assignment decides which storage location is to be selected to store
the retrieval rack after it visits a picking station. In our RS-MTMS, the retrieval racks can be stored
in multiple storage locations, including open storage locations, their own retrieval location, and other
empty retrieval locations. The sequence decision problem decides the retrieval sequence of racks to be
adopted at picking stations. Instead of visiting continuously between the retrieval locations, the robot
moves from the storage location to the retrieval location of a new rack.

In the rack scheduling problem studied previously, the racks’ storage assignment scheme and retrieval
sequence are generally generated separately, and only a single type of storage location is assumed [12–14].
However, these studies limit the information for both decisions, and their assumption may result in the
higher-quality solutions being discarded. Therefore, it is essential to study the RS-MTMS and develop
a bi-level optimization approach for jointly optimizing the storage assignment and retrieval sequence
(BiJSR).

In BiJSR, the storage locations of racks are obtained in the upper-level. Then, the optimal retrieval
sequence is obtained in the lower-level according to the given storage locations. The upper-level optimiza-
tion problem is solved using a variable neighborhood search (VNS). Sufficient problem-specific knowledge
and effective candidate modes are incorporated into VNS to improve solution quality and computational
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efficiency. A transformation technique is developed to solve the lower-level optimization problem. It
transforms the retrieval sequence decision into the traveling salesman problem (TSP) and its variants.
The originality and contributions of this paper are summarized as follows.

(1) A mathematical programming model is built for the novel RS-MTMS problem. The model re-
flects the interdependence between the storage location and retrieval sequence in determining the rack
scheduling, and incorporates different kinds of practical constraints.

(2) We propose a bi-level optimization approach, BiJSR, to tackle the RS-MTMS problem effectively. In
BiJSR, the upper-level storage assignment problem is solved by the VNS with problem-specific knowledge
and effective candidate modes, and the lower-level retrieval sequence decision is solved by an effective
transformation heuristic technique.

(3) We compare the proposed algorithm using popular optimization software and state-of-the-art al-
gorithms to verify its effectiveness.

The remainder of this paper is structured as follows. The related studies are discussed in Section 2.
Section 3 introduces the mathematical formulation of the RS-MTMS problem and its linear version.
Section 4 illustrates the details of our proposed BiJSR. Sections 5 and 6 describe the details of devel-
oped algorithms for the lower-level and upper-level optimization problem, respectively. Computational
experiments are shown in Section 7, and we conclude our work and offer insights for future research in
Section 8. For clarity, the main notations employed in this paper are listed in Appendix A.

2 Related studies

Among the typical operations of a warehousing system, the order picking is the most time-consuming and
labor-intensive process [15–17]. Traditional order picking is executed by order pickers walking or driving
along the aisles to pick inventory products required by the orders. It will require a robust workforce and
personnel because unproductive travel times reduce order pickers’ productivity. Introducing unmanned
and intelligent technology is one of the most promising ways of improving picking efficiency [18, 19].
In recent years, a novel parts-to-picker order picking system RMFS has been gaining popularity, and
is used by more than 30 well-known e-commerce suppliers because of its superior picking performance.
The existing literature on RMFS can be classified into three categories: system analysis [20–23], design
optimization [24–27], and operations planning and control [28–31]. Our research belongs to the third
category as it focuses on the scheduling of delivery tasks on the operational level.

Task scheduling is an essential decision problem that aims to achieve appropriate deployment of task
resources under certain constraints and optimal performance indexes [32–35]. The storage assignment and
rack sequencing optimization are two most basic and important parts of task scheduling in the RMFS.
Merschformann [36] redefined the storage assignment as the rack repositioning problem and considered
the active and passive repositioning situation. Yuan et al. [37] presented a paper that focused on the
velocity-based storage assignment problem. A fluid model was developed to analyze the performance of
velocity-based storage strategies. Weidinger et al. [12] researched the rack storage assignment problem
and formalized the original problem as a special interval scheduling problem. Ji et al. [38] established
the optimization models, including two cases: single rack storage assignment and multiple-rack storage
assignments. They also designed the three-class-based strategy and Kuhn-Munkras algorithm to solve
these problems. However, the studies mentioned above deal with storage assignments alone. In their
studies, the retrieval sequence of racks is fixed, or only some simple sequencing decision strategies are
embedded to verify the performance of the proposed algorithms.

For the rack sequencing optimization problem, the minimum number of rack visits to all picking stations
is considered the objective in some studies. Boysen et al. [13] decided on the retrieval sequencing problem
for a single picking station. To solve this problem, they presented a mixed-integer programming model
and a decomposing frame based on the given order sequence. Yang et al. [14] and Zhuang et al. [28]
extended the work of Boysen to the multiple picking stations, and developed different hybrid heuristic
algorithms to find such a retrieval sequence. Valle and Beasley [7] investigated the rack sequencing
problem at each single picking station as an integer program. The other way to consider the sequencing
optimization is to minimize the total retrieval time. Ouzidan et al. [39] optimized the arriving sequence
of racks while minimizing the time needed to fulfill all orders. Wang et al. [40] studied the rack scheduling
problem using approximate dynamic programming with branch-and-price algorithms. Yuan et al. [41]
presented a mixed integer programming model with the objective of make-span minimization. They also
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proposed the two heuristic rules and an ant colony optimization algorithm to solve the problem. All of
the studies above assume that each retrieval rack has a fixed location in the storage area. These studies
do not consider the storage assignment and only deal with the sequencing optimization problem.

Because the storage assignment and sequencing optimization problem are both related to the order
picking efficiency, these two problems need to be studied simultaneously. Merschformann et al. [10]
structured the decisions at the operational level and developed the heuristic decision rules to solve these
two problems. However, in their work, a sequential method was applied to first formulate the retrieval
sequence and then assign the storage locations. Gharehgozli et al. [11] investigated a joint storage
assignment and sequencing optimization problem, and presented the mathematical formulation and meta-
heuristic solution algorithm. In their paper, instead of explicitly considering multiple different types of
storage locations, they assume that racks can only be stored in open storage locations after visiting the
picking stations.

This paper addresses the RS-MTMS, which is a case of a joint storage assignment and retrieval sequence
optimization problem with multiple different types of multiple storage locations.

3 Problem description

The RS-MTMS problem is formulated as follows. There are a set of retrieval racks R = {r1, r2, . . . , rm}
and a set of open storage locations Os = {os1, os2, . . . , osn} available for storing retrieval racks. Let
Γ= {ζ1, ζ2, . . . , ζm, ζm+1, . . . , ζm+n} be the set of position of all locations consisting of retrieval locations
and storage locations. Each rack ri is assigned to a fixed picking station pi, whose location is ζip. The
starting point and ending point are l0 and l′0, both of which are at ζ0. In our scenario, the distance of a
move depends on whether it is a carrying move. Specifically, for the non-carrying move of a delivery task
(the first part), we can directly use the Manhattan distance as t (i, j) = |ζxi − ζxj |+ |ζyi − ζyj |, where
(ζxi, ζyi) and (ζxj , ζyj) are the Cartesian coordinates of two endpoint locations i and j of a non-carrying
move. However, the robot is carrying a retrieval rack in the second and third parts for a delivery task.
Some additional travel distances need to be added to their distances. Lamballais et al. [20] reported in
detail how to calculate the distance of a carrying move in an RMFS. Taking as an example a simple
case of the second part, the picking station is located north of the scenario and the entrance of the
retrieval location is situated in an aisle with a northward travel direction. The distance is calculated as
u + dle,si + |ζxi − ζxj | + |ζyi − ζyj | + ∆le,p, where u is the distance between the retrieval location and
its location entrance, and dle,si is the distance between the location entrance and the start intersection.
A detour distance ∆le,p should be considered owing to the adjustment of travel directions in the hall in
front of the picking station. Once the travel distances are obtained, they should be divided by the robot
speed to calculate the travel time. In addition, the time related to lifting or storing rack is considered
for the carrying move.

For the RS-MTMS problem, the different scheduling schemes can directly impact the travel time
necessary to deliver all retrieval racks. Figure 2 depicts an example with two retrieval racks r1 and r2,
two open storage locations os1 and os2, and Γ = {(1, 0), (3, 0), (2, 0), (5, 0)}. The locations of the starting
point and ending point are both (0, 0). For the sake of brevity, the travel time of the carrying move
between the picking station p1 and Γ is given as Tp1 = [5, 5, 3, 7] and Tp2 = [8, 5, 6, 5] for p2 according
to [20]. The robot speed is assumed to be 1 and the acceleration and deceleration are not considered.
There are four different solutions. In Solution (a), the storage locations of r1 and r2 are selected as os1
and os2, and the moves of the mobile robot are as follows: l0 → r1 → p1 → os1 → r2 → p2 → os2 → l′0.
Hence, the total travel time of the mobile robot in Solution (a) is 25. Similarly, the total travel times
of Solutions (b)–(d) are 32, 26, and 24, respectively. Minimizing the total travel time is the objective of
RS-MTMS because it can guarantee a higher picking efficiency [10, 11, 20].

Applying the notations in Table 1, we provide the mathematical formulation of the RS-MTMS problem.

P : min Tem +Tsl (1)

s.t.
m
∑

i=1

xij = 1, ∀j ∈ {1, . . . ,m} , (2)

m
∑

j=1

xij = 1, ∀i ∈ {1, . . . ,m} , (3)
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Figure 2 (Color online) Four scheduling example schemes. (a) Solution with cost = 25; (b) solution with cost = 32; (c) solution

with cost = 26; (d) solution with cost = 24.

Table 1 Notation declaration of mathematical formulation

Parameter Description

m Number of retrieval racks

n Number of open storage locations

TP The travel time matrix between all picking stations and all locations Γ

xij

Binary decision variables: 1, if the rack j is delivered in the i task;

otherwise, 0, ∀i, j ∈ {1, . . . ,m}

yiw

Binary decision variables: 1, if the rack delivered in the i task is stored in the w location;

otherwise, 0, ∀i ∈ {1, . . . ,m} , w ∈ {1, . . . ,m + n}

Rli The index of the retrieval rack for the ith delivery task, ∀i = 1, 2, . . . ,m

Sli The index of the storage location for the ith delivery task, ∀i = 1, 2, . . . ,m

Tlr The travel time between the l0 and Rl1

Tsri The travel time between the Sli−1 and Rli, ∀i = 2, . . . ,m

Trpi The travel time between the Rli and pi, ∀i = 1, . . . ,m

Tpsi The travel time between the pi and Sli, ∀i = 1, . . . ,m

Tsl The travel time between the l′0 and Slm

Tsi The time to arrive at xi for the ith delivery task, ∀i = 1, . . . ,m

Tei The time to arrive at yi for the ith delivery task, ∀i = 1, . . . ,m

m
∑

i=1

yiw 6 1, ∀w ∈ {1, . . . ,m+ n} , (4)

m+n
∑

w=1

yiw = 1, ∀i ∈ {1, . . . ,m} , (5)

Ts1 = Tlr, (6)

Tei = Tsi +Trpi + Tpsi, ∀i ∈ {1, . . . ,m} , (7)

Tsi = Tei−1 +Tsri, ∀i ∈ {1, . . . ,m} , (8)

RLi = max {j × xij} , ∀i, j ∈ {1, . . . ,m} , (9)

SLi = max {w × yiw} , ∀i ∈ {1, . . . ,m} , w ∈ {1, . . . ,m+ n} , (10)

Tei − Tsj > τ, if RLi = SLj , ∀i, j ∈ {1, 2, . . . ,m} , (11)

xij , yiw ∈ {0, 1} , ∀i, j ∈ {1, . . . ,m} , w ∈ {1, . . . ,m+ n} . (12)

Objective (1) is to minimize the total travel time to complete all delivery tasks. Constraints (2) and (3)
guarantee that each retrieval rack can only be assigned to one delivery task for processing. Constraints (4)



Shi X, et al. Sci China Inf Sci November 2023 Vol. 66 212202:6

and (5) state that each retrieval rack must be stored, and that each storage location can store at most
one retrieval rack. Constraints (6)–(8) are constraints on the delivery task’s starting time and ending
time when carrying the retrieval rack. Constraint (6) is the constraint on the starting time upon arriving
at the location of the first retrieval rack. The Tlr can be calculated as (13) because it is a non-carrying
move.

Tlr =

∣

∣

∣

∣

∣

∣

m
∑

j=1

(ζxj × x1j)− ζx0

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

m
∑

j=1

(ζyj × x1j)− ζy0

∣

∣

∣

∣

∣

∣

. (13)

Constraints (7) and (8) state that the ending/starting time of the delivery task can be calculated after
its starting/ending time has been determined. The travel time Trpi between the retrieval rack ri and its
corresponding picking station pi is

Trpi =

m
∑

p=1

m
∑

j=1

Tppj × aux1i,p,j , ∀i ∈ {1, . . . ,m} , (14)

m
∑

p=1

aux1i,p,j = xi,j , ∀i, j ∈ {1, . . . ,m} , (15)

aux1i,p,j ∈ {0, 1} , ∀i, j, p ∈ {1, . . . ,m} , (16)

where aux1 is an auxiliary variable. For the storage move of ri, Tpsi can also be calculated as follows:

Tpsi =

m
∑

p=1

m+n
∑

w=1

Tppw × aux2i,p,w, ∀i ∈ {1, . . . ,m} , (17)

m
∑

p=1

aux2i,p,w = yi,w, ∀i ∈ {1, . . . ,m} , w ∈ {1, . . . ,m+ n} , (18)

aux2i,p,w ∈ {0, 1} , ∀i, p ∈ {1, . . . ,m} , w ∈ {1, . . . ,m+ n} . (19)

Similar to formula (13), Tsri represents a non-carrying move from the storage location of ri−1 to the
retrieval location of ri, and is given as follows:

Tsri =

∣

∣

∣

∣

∣

∣

m
∑

j=1

ζxj × xij −
m+n
∑

w=1

ζxw × yi−1,w

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

m
∑

j=1

ζyj × xij −

m+n
∑

w=1

ζyw × yi−1,w

∣

∣

∣

∣

∣

∣

, ∀i ∈ {2, . . . ,m} . (20)

Constraints (9)–(11) indicate that a retrieval rack ri can be stored in the retrieval location of rj only
after the retrieval rack rj has been delivered. τ is a small positive value used for this precedence constraint.
The robot returns to the ending point without carrying the rack after performing all the delivery tasks.
Hence, Tsl in objective (1) can be calculated as

Tsl =

∣

∣

∣

∣

∣

m+n
∑

w=1

(ζxw × ymw)− ζx0

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

m+n
∑

w=1

(ζyw × ymw)− ζy0

∣

∣

∣

∣

∣

. (21)

We can observe that P is a nonlinear optimization problem because there are absolute value terms
(14) and (21) and the logical constraint (11) in P . To make it easier to solve this problem with the
optimization solver, we transform the nonlinear constraints into linear constraints. To linearize the
absolute value terms, we use tx to represent |ζxi − ζxj |, and we introduce an auxiliary variables aux3
and a large positive value M1. The linearized computation of the x-coordinate is shown in (22)–(26).
Similarly, we can also linearize the computation of the y-coordinate.

ζxi − ζxj 6 tx, (22)

ζxj − ζxi 6 tx, (23)
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ζxi − ζxj > tx −M1 × (1− aux3) , (24)

ζxj − ζxi > tx −M1 × aux3, (25)

aux3 ∈ {0, 1} . (26)

For the logical constraint (11), we use an auxiliary variable aux4 and two different large positive values
M2 and M3 to obtain its linear formulation.

Tei − Tsj > M2 × (Sli − Rlj)−M3 × (1− aux4ij) + τ, (27)

Tei − Tsj > M2 × (Rlj − Sli)−M3 × aux4ij + τ, (28)

M2 ≪ M3, (29)

aux4ij ∈ {0, 1} , i, j ∈ {1, . . . ,m} . (30)

We further develop a relaxation model to obtain the lower bound. Specifically, we relax the original
problem by removing the precedence constraints (9)–(11). The objective is bounded below by the optimal
value of this relaxation model.

4 Proposed bi-level optimization model

In this section, we describe BiJSR, which is a bi-level optimization model for jointly optimizing the
storage assignment and retrieval sequence. Given the notations, the BiJSR model is stated as follows:

min
S∈Φ,Rs∈ΩRs(S)

F (S,Rs) = φ (Rs) (31)

s.t. :Rs ∈ arg min
Rs′∈ΩRs(S)

φ
(

Rs′
)

, (32)

where

φ (Rs) =

m
∑

i=1

f (Rsi) + t (ζ0, ζr1) + t (ζsm , ζ0) , (33)

f (Rsi) =

{

Tp (ri, ri) + Tp (ri, si +m) , i = 1,

t
(

ζsi−1
, ζri

)

+Tp (ri, ri) + Tp (ri, si +m) , i > 1.
(34)

The F (S,Rs) is the objective function representing the total travel time to complete all delivery tasks.
Eqs. (31) and (32) are respectively the upper-level and lower-level optimization. The upper-level opti-
mization aims to find the optimal storage assignment set S∗, while the lower-level optimization is to find
the optimal retrieval sequence Rs∗ (S∗) under the storage assignment S∗ in terms of the objective value
φ (·). The optimal solution of RS-MTMS is composed of the optimal storage assignment set S∗ and the
optimal retrieval sequence Rs∗ under this set. Therefore, optimality can be guaranteed in the BiJSR
model. That is, RS-MTMS and BiJSR have the same optimal solution.

In the proposed BiJSR, storage assignment set S can be represented as a list {s1, s2, . . . , sm}, where
each si is contained in Γ , and they are different from each other. Note that si only represents an element in
S, rather than the corresponding storage item of ri. For example, in Figure 2(b), os1 and os2 are selected
as the storage assignment set S = {os1, os2}, while the storage locations of the r1 and r2 are os2 and os1,
respectively. The rack can also be stored in its own retrieval location or other empty retrieval locations,
such as in Figures 2(c) and (d), S = {r1, r2} and S = {r1, os1}. A solution Rs is considered to be a feasible
solution if the storage location of each retrieval rack comes from a unique location in S. Suppose there are
two retrieval racks, two open storage locations, and two picking stations. Then, the retrieval sequences
are l0 → r2 → p2 → os1 → r1 → p1 → os2 → l′0 in Figure 2(b), l0 → r1 → p1 → r1 → r2 → p2 → r2 → l′0
in Figure 2(c), and l0 → r1 → p1 → os1 → r2 → p2 → os2 → l′0 in Figure 2(d).

5 Lower-level optimization

Based on (31) and (32), the fitness function of a storage assignment S can be set to the objective value
of the optimal solution Rs∗ (S) under S. That is

eval (S) = φ (Rs∗ (S)) = min
Rs∈ΩRs(S)

φ (Rs) . (35)
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Algorithm 1 The framework of lower-level optimization

Input: A storage assignment set S, the retrieval rack set R.

Output: The best retrieval sequence Rs∗ (S).

1: if S ∩ R 6= ∅ then

2: if S ⊆ R then

3: Execute Case I to obtain the Rs∗ (S);

4: else

5: Execute Case III to obtain the Rs∗ (S);

6: end if

7: else

8: Execute Case II to obtain the Rs∗ (S);

9: end if

10: return Rs∗ (S).
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Figure 3 (Color online) Schematic description of Case I. (a) An example in the lower-level optimization; (b) the identified TSP

transformed from (a).

To find Rs∗ (S), we develop the transformation heuristic to transform the lower-level optimization problem
to TSP, asymmetric TSP (ATSP), and ATSP with precedence constraints (ATSP-PC) according to the
variable S in the following three special cases. The framework of the lower-level optimization strategy is
given in Algorithm 1.

5.1 Case I: identifying the TSP

In this subsection, we discuss the first case where S = {r1, r2, . . . , rm}. As shown in Figure 3(a), once all
products are retrieved from the retrieval racks, these racks are all stored in their initial retrieval locations.

Theorem 1. If each retrieval rack is stored in its own retrieval location, the lower-level optimization
problem is formulated as a TSP problem.
Proof. In our problem, each retrieval rack is first moved to the picking station and then stored in storage.
When the storage location is selected as its initial location, this travel time from the sequence segment
ri → pi → ri is a value that is independent of the decision of the retrieval sequence. Hence, the sequence
segment corresponding to ri can be regarded as a retrieval node vti with a fixed cost 2Tpi,i. In addition,
an extra node vt0 can be used to represent the starting point l0 and ending point l′0 because their locations
are the same. The cost matrix can be defined as an (m+ 1)× (m+ 1) matrix:

Dt =















dt00 dt01 · · · dt0m

dt10 dt11 · · · dt1m
...

...
. . .

...

dtm0 dtm1 · · · dtmm















, (36)

where dij is the distance from node vti to vtj that can be calculated as

dtij =



















M4, i = j,

t
(

ζ0, ζrj
)

, i = 0, j ∈ {1, 2, . . . ,m} ,

t (ζri , ζ0) , i ∈ {1, 2, . . . ,m} , j = 0,

t
(

ζri , ζrj
)

, i, j ∈ {1, . . . ,m} , i 6= j,

(37)
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Figure 4 (Color online) The absorption strategy for an isolated node.

where M4 is a big value.
Obviously, Dt is a symmetric matrix. Hence, as shown in Figure 3(b), we can rephrase the lower-level

optimization problem as how to choose a tour in TSP, where every node is visited without repetition and
the starting and ending nodes are the same. Let Gt = (υt, εt) represent an instance of the identified TSP,
where υt = {v0

t, v1
t, . . . , vm

t}. The objective function φ (Rs) is defined as the all fixed cost and the sum
of the cost of Gt divided by robot speed:

φ (Rs) = φ (Gt) + 2

m
∑

i=1

Tpi,i. (38)

In this situation, we extend our previous study [42] and propose a loop-based heuristic (LBH) strategy
to address the identified TSP. The key steps are as follows.

(a) Initialize the solution to an empty set.
(b) Find the shortest edge among the εt and add the two endpoints of this edge to the initial solution.
(c) Add the nearest neighbor of these two nodes as the third node to the current solution. Now the

three selected nodes in the initial solution form a small loop.
(d) Absorb a “best” isolated node into the initial solution. In order to extend the solution, the current

loop needs to absorb an isolated node from all nodes that have not been added. For an isolated node vti
and a loop stl with α nodes, we first seek the node in stl that is closest to vti ,

vtls = argmin
{

dtvt
i
,stl

1

, dtvt
i
,stl

2

, . . . , dtvt
i
,stlα

}

, (39)

where dt
vt
i
,stl

j

is the distance between node vti and the jth node in the stl.

We then evaluate the absorption cost for each node-edge combination for the two edges connected to
node vtls . As shown in Figure 4, the loop can absorb the node successfully by breaking the edge to expose
the two endpoints and connecting the isolated node with the endpoints. The minimum absorption cost
of the two node-edge combinations is used as the evaluation value for absorbing vti . Here the absorption
cost refers to the change of the cost value in the loop after absorbing the isolated node. We consider all
the situations and greedily select the “best” isolated node with the smallest evaluation value.

(e) Repeat steps (d) until all isolated nodes are added to the initial solution.
(f) After the initial tour is constructed, a 2-opt operator [43] is applied to it to obtain a higher-quality

solution. Note that to obtain the lower-level solution Rs, each node in the obtained tour is restored to
the starting (or ending) point or the sequence segment of the retrieval rack.

Remark 1. In our problem, the robot starts from the starting point and returns to the ending point
after performing all of the delivery tasks. Therefore, the first and last positions in Rs should be adjusted
to l0 and l′0 if vt0 is not visited first in the tour. For example, if the obtained tour is {vt1, v

t
0, v

t
2}, the

transformed Rs should be l0 → r2 → p2 → r2 → r1 → p1 → r1 → l′0. This operation does not change the
objective value because the connection between nodes is not varied.

5.2 Case II: identifying the ATSP

This subsection discusses the second case where S = {si |si ∈ Os, si 6= sj , ∀i, j ∈ {1, . . . ,m}}. As shown
in Figure 5, four racks are stored in different open storage locations after leaving the picking stations.

Theorem 2. If each retrieval rack is stored in the open storage location, the lower-level optimization
problem is formulated as an ATSP problem.
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Figure 5 (Color online) Schematic description of Case II.

Proof. In the TSP-case, a sequence segment from the retrieval location to the storage location can be
regarded as a node because each rack’s storage area is its own retrieval location. Although the rack
returns to the open storage location in this case, the connection between the rack and the picking station
is still fixed. Therefore, the sequence segment ri → pi corresponding to ri can also be regarded as a
retrieval node vai with a fixed cost Tpi,i. Similarly, the starting and ending points are regarded as one
node va0 .

In an RMFS, a robot needs to move one storage location after leaving the picking station, and then
it moves to the retrieval location of the next delivery task. The connections vai → vaj and si → sj for
i, j ∈ {1, . . . ,m} are infeasible because these two steps are consecutive and they cannot be interrupted.
In addition, we can see that a robot can only move from the starting point to the retrieval location and
return to the ending point from the storage position. Hence, the connections va0 → si and vai → va0 for
i ∈ {1, . . . ,m} are also infeasible. We set the cost of those infeasible connections to the large values and
give the following (2m+ 1)× (2m+ 1) cost matrix Da:

daij =















































t(ζ0, ζrj ), i = 0, j ∈ {1, . . . ,m} ,

M4, i = 0, j ∈ {0,m+ 1, . . . , 2m} ,

M4, i ∈ {1, . . . ,m} , j ∈ {0, 1, . . . ,m} ,

Tpi,j , i ∈ {1, . . . ,m} , j ∈ {m+ 1, . . . , 2m} ,

t
(

ζsi−m
, ζ0

)

, i ∈ {m+ 1, . . . , 2m} , j = 0,

t
(

ζsi−m
, ζrj

)

, i ∈ {m+ 1, . . . , 2m} , j ∈ {1, . . . ,m} ,

M4, i, j ∈ {m+ 1, . . . , 2m} ,

(40)

where daij represents the distance from vai to vaj .
The proof of identified ATSP is intuitive according to Da. Hence, the lower-level optimization problem

is also reformulated as one that shows how to solve an ATSP problem. Let Ga = (υa, εa) represent
an instance of the identified ATSP, where υa = {v0

a, v1
a, . . . , va2m}. The

{

vam+1, . . . , v
a
2m

}

denotes the
storage set {s1, s2, . . . , sm}. According to the cost matrix Da, a solution is feasible ATSP-tour if the
following conditions are satisfied:

Condition 1. Every node must be carried out exactly once and must be involved in a tour.
Condition 2. In a tour, the node pointed from va0 must be a node from {vai |i = 1, 2, . . . ,m}, and the

va0 node can only be pointed to by a node from
{

vaj |j = m+ 1,m+ 2, . . . , 2m
}

.

Condition 3. The node from {vai |i = 1, 2, . . . ,m} and the node from
{

vaj |j = m+ 1,m+ 2, . . . , 2m
}

are visited alternately in a tour.
The objective function φ (Rs) is defined as all fixed cost and the sum of the cost of Ga divided by robot

speed.

φ (Rs) = φ (Ga) +
m
∑

i=1

Tpi,i. (41)
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In order to embed the above conditions in the LBH strategy to improve the solving efficiency, we need to
add a re-identification strategy before constructing the solution. This additional strategy can transform
the ATSP problem heuristically into a simplified ATSP problem. We propose two node-assignment modes
to build the re-identification strategy.

5.2.1 Retrieval to storage (RTS)

In a feasible tour, the node pointed from each retrieval node is one unique storage node. Hence, we can
allocate one storage node to each retrieval node without duplication. The assignment scheme with the
minimum cost will be selected, where the cost is defined as

∑m
i=1 d

a
va
i
,va

i+m
for an assignment combination

{(vai , v
a
i+m)|i = 1, 2, . . . ,m}. Because the number of retrieval nodes is the same as that of storage nodes,

this problem can be approximated as a classical quadratic assignment problem, and thus solved by the
Hungarian algorithm [44]. For the obtained assignment scheme, we connect each pair (vaγi

, vaχi
), ∀γi ∈

{1, . . . ,m} , χi ∈ {m+ 1, . . . , 2m} and regard this connection as a new node vari . The cost of each vari is
the distance from node vγi

to vχi
in Da. Letting var0 represent node va0 , the cost matrix is represented as

an (m+ 1)× (m+ 1) matrix Dar:

darij =



















M4, i = j,

t
(

ζ0, ζrj
)

, i = 0, j ∈ {1, . . . ,m} ,

t
(

ζsχi−m
, ζ0

)

, i ∈ {1, . . . ,m} , j = 0,

t
(

ζsχi−m
, ζrj

)

, i, j ∈ {1, . . . ,m} , i 6= j,

(42)

where darij is an item of Dar, and represents the distance from node vari to varj . Obviously the re-identified
problem using Dar is also an ATSP problem. Letting Gar = (υar, εar) represent an instance, φ (Ga) is
equivalent to the sum of the objective value of Gar and the all assignment cost

φ (Ga) = φ (Gar) +

m
∑

i=1

dava
γi

,va
χi

. (43)

5.2.2 Storage to retrieval (STR)

Analogous to the RTS mode, the other is a re-identification strategy from the storage perspective. Con-
sider another feasible case in Figure 5. If we disregard its concatenation at the starting and ending
nodes, its remaining part can be considered as a concatenation of m − 1 pairs from the storage node
to the retrieval node. In other words, except for the last storage node and the first retrieval node, the
node pointed from each storage node is one unique retrieval node. According to Condition 2, the starting
and ending points must be connected with a retrieval node and a storage node, respectively. Hence, we
can establish an allocation problem between {va0 , v

a
1 , v

a
2 , . . . , v

a
m} and

{

va0 , v
a
m+1, . . . , v

a
2m

}

. Obviously, it
can also be solved by the Hungarian algorithm. In order to unify the representation, we also use vari
to represent the connection vaχi

→ vaγi
for i = 1, 2, . . . ,m − 1, and var0 and varm represent the connection

va0 → vaγm
and vaχm

→ va0 . Each item of the cost matrix Dar can be represented as

darij =



























































M4, i = j,

t(TPγm,χj
), i = 0, j ∈ {1, . . . ,m− 1} ,

M4, i = 0, j = m,

M4, i ∈ {1, . . . ,m− 1} , j = 0,

t(TPγm,χj
), i, j ∈ {1, . . . ,m− 1} , i 6= j,

t(TPγm,χj
), i ∈ {1, . . . ,m− 1} , j = m,

0, i = m, j = 0,

M4, i = m, j ∈ {1, . . . ,m− 1} .

(44)

The transformation from the objective value φ (Gar) to φ (Ga) can be defined as

φ (Ga) = φ (Gar) +

m−1
∑

i=1

davχi
,vγi

+ da0,vγm + davχm ,0. (45)
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Algorithm 2 LBH-A for identified ATSP-case

Input: Identified ATSP graph Gar = (υar, εar), the cost matrix Dar.

Output: The lower-level optimization solution Rs.

1: Transform an identified ATSP instance Ga into a re-identified instance Gar according to (42) and (43) for RTS or (44) and

(45) for STR;

2: Set cL← ∅;

3: for each node var
i ∈ var, i = 1, 2, . . . ,m + 1 do

4: for each node var
j ∈ var, j = i+ 1, . . . ,m + 1 do

5: Calculate the cost of the loop containing nodes (var
i , var

j ) and add it to cL;

6: end for

7: end for

8: Select the smallest loop sal in cL as an initial loop;

9: Delete the nodes in sal from υar to obtain an isolated node set Isn;

10: repeat

11: Set cA← ∅;

12: for each node var
k ∈ Isn, k = 1, 2, . . . , |Isn| do

13: Calculate the absorption cost between sal and var
k according to (39) and (40) and add the cost to cA;

14: end for

15: Select the smallest item in cA as an absorbed node var
s∗ , delete var

s∗ from Isn, and add it to sal;

16: until All the isolated node is absorbed Isn = ∅;
17: Re-transform the sal of Gar into a tour of Ga, and execute the 2-opt operator with the feasibility check on the tour of Ga;

18: Convert the tour of Ga to the lower-level optimization solution Rs;

19: return Rs.

5.2.3 Extension of LBH

We solve this re-identified problem on Gar with the LBH but change the evaluation function and absorp-
tion strategy. Because of the asymmetric properties of the cost matrix, two connected nodes (vari , varj )
can be regarded as a loop whose cost value is the sum of the cost of edge vari → varj and the cost of
varj → vari . In this case, we first find the smallest loop instead of an edge in step (b). Then, steps (c)

and (d) will be combined to form a new absorption strategy. For a formed loop sal with β edges and an
isolated node vark , the absorption cost is defined as

cAl
k = min

{

dis
(

vark , salj
)

|j = 1, 2, . . . , β
}

, (46)

where dis(vark , salj ) represents the exchange cost between vark and the jth edge in sal. Here the exchange

cost refers to the change of the cost value of the loop after breaking the edge salj and connecting the
isolated node with the exposed two endpoints:

dis
(

vark , salj
)

= darvar
k
,vlal

j
+ darvar

k
,vral

j
− darvral

j
,vlal

j
. (47)

The vralj , vl
al
j are two endpoints of the edge salj with the connection vralj → vlalj . All of the node-loop

combinations are considered, and the item with the smallest absorption cost will be selected.
Repeat the absorption strategy until all isolated nodes are absorbed and an initial tour of Gar is

obtained. In step (f), we first restore each vari in the initial tour to the corresponding sequence pair, thus
obtaining the tour in Ga. Then, a 2-opt operator is applied to improve the quality of the solution. Note
that only solutions satisfying the above three feasibility conditions will be accepted during the local search
process. Finally, the improved solution on Ga is converted into the lower-level optimization solution Rs
as in the TSP case. Algorithm 2 describes an algorithmic description of the LBH applied to the identified
ATSP case (LBH-A).

5.3 Case III: identifying the ATSP-PC

This subsection discusses the third case where the retrieval racks are allowed to be stored in storage
locations, including open storage locations and retrieval locations, namely, S = Srl ∪ Sos where Srl =
{si |si ∈ R, si 6= sj , ∀i ∈ {1, . . . ,m1}}, Sos = {si |si ∈ Os, si 6= sj , ∀i ∈ {m1 + 1, . . . ,m}}, and m1 is the
number of items belonging to the retrieval locations in S. Specifically, as shown in Figure 6(a), when all
products are retrieved from a rack, this rack can be stored in one of the open storage locations, its own
retrieval location, and other empty retrieval locations.

In this case, as shown in Figure 6(b), let a retrieval node vci denote a sequence segment ri → pi
because the connection between the rack and the picking station is still fixed. However, some additional
precedence constraints exist in the connection between retrieval nodes and storage nodes owing to the
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Figure 6 (Color online) Schematic description of Case III. (a) An example in the lower-level optimization; (b) the identified

ATSP-PC transformed from (a).

possible selection of other empty retrieval locations. If rack ri can return to the retrieval location of rj ,
then rj , ∀j ∈ {1, 2, . . . , i− 1} must have been picked, and all racks picked prior to ri did not return to
the retrieval location of rj . Let Gc = (υc, εc) be a graph, where υc and εc are the same set of nodes and
edges in the graph Ga, and the cost matrix Dc is also established according to (40). The ATSP induced
by the graph Gc is unambiguous. Let us apply the following constraints to the ATSP induced by Gc.

Definition 1. A feasible ATSP tour vc0 → vc1 → vcm+1 → vc2 → vcm+2 → · · · → vcm → vc2m → vc0
satisfying the above Conditions 1–3 and additional Condition 4 is an eligible ATSP tour of the graph Gc.

Condition 4. If the storage node represented by vci , ∀i ∈ {m+ 1,m+ 2, . . . , 2m} is the retrieval location
of rj , then vcj corresponding to rj must be visited earlier than vci (we consider vc0 to be the first node
visited).

Because the ATSP-PC is a variant of ATSP, we still use the “first re-identification then LBH” strategy
to solve it. Analogous to the ATSP case, we first obtain an assignment scheme in the RTS or STR mode.
However, the mutual assignment may occur in the obtained assignment scheme, thus leading to the
subtours and an infeasible tour. As shown in Figure 7, there exist assignment pairs {(vcγi

, vcχi
)|i ∈ [1, 7]}

in the obtained scheme of the RTS mode, where vcγ1
–vcγ7

represent the storage nodes s1–s7, which are
selected as the retrieval locations of r1, r2, r5–r7, os1, and os2, respectively. When we apply the LBH to
the case with mutual assignment, the feasible solution cannot be constructed because of the violation of
Condition 4.

In order to enable the LBH, we present a repair strategy in Algorithm 3 to eliminate these mutual
assignments. We find the mutual assignment combinations ma in the infeasible assignment scheme Φ, and
the remaining feasible assignment pairs are considered an assignment combination fa. Then, as shown in
lines 4–8, we select a pair with the worst assignment cost in fa and each item of ma, respectively. After
that, the connection among these pairs will be broken, and each destroyed retrieval node will select a
destroyed storage node with the smallest assignment cost in turn (lines 9–17). Note that the pair that has
been broken will no longer be reconnected. Finally, these reconnected assignments will be merged with
the remaining pairs of ma and fa into a new repaired assignment scheme. The proposed repair strategy
can also be applied to the STR mode because the mutual assignments are generated only in pairs between
storage and retrieval nodes.

After obtaining the repaired assignment scheme, we extend the LBH-A to generate a tour on Gc. This
extension is called LBH-C. Unlike LBH-A, which finds the shortest loop among all edges, it first selects
the smallest loop containing vcr0 in εc. Specifically, the closest node to vcr0 will be selected to construct
the initial smallest loop together with vcr0 . In a tour, the vcr0 should be visited first because it represents
the sequence segment pointed from the starting point. Therefore, the operation that adds the vcr0 to the
initial loop will clarify the visiting order of the subsequently added nodes.

In addition, an extra checking strategy is introduced in the absorbing process to ensure that precedence
constraints are satisfied. For the jth edge sclj in a formed loop scl and an isolated node vcrk , the key steps
are as follows:

(1) Identify the storage node of the sequence segment represented by vcrk . If the storage node is the
retrieval location of rs, continue to the next step; otherwise, go to step (3).

(2) Check the priority order of visits. In LBH-C, the isolated node that is preferentially absorbed is
visited earlier because the vcr0 is firstly added to the initial loop, and each isolated node is sequentially
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Figure 7 (Color online) The repair strategy of the RTS mode for the ATSP-PC.

Algorithm 3 Repair method for identified ATSP-case

Input: The infeasible assignment scheme Φ, the cost matrix Dc.

Output: The repaired assignment scheme Φ′.

1: Set Φ′ ← ∅, nR← ∅;

2: Find the mutual assignment combinations ma in Φ, and obtain remaining assignment combination fa = Φ \ma;

3: Merge ma and fa into Ma;

4: for each combination Mai ∈ Ma do

5: Rank the pairs in Mai according to the increasing assignment cost, and select the pair (vc
γi

, vc
χi

) with the largest cost;

6: Break the assignment connection between this selected pair, and add the destroyed retrieval and storage nodes to nR;

7: Add the remaining unselected pairs to Φ′;

8: end for

9: for each retrieval node vc
γj

in nR do

10: Set cR← ∅;

11: for each storage node vc
χj

in nR do

12: if the assignment pair (vc
γj

, vc
χj

) /∈ Ma then

13: Calculate the assignment cost of this pair and add it to cR;

14: end if

15: end for

16: Select the storage node vc
χs

with the smallest cost in the cR and delete it from the nR;

17: Add the assignment pair (vc
γj

, vc
χs

) to Φ′;

18: end for

19: return Φ′.

absorbed into the loop. In other words, if the node representing the sequence segment of rs has not been
added to the loop, vcrk will not be considered for absorption into the current loop.

(3) Execute (46) to calculate the absorption cost.

This checking strategy is also applied to the 2-opt operator in LBH-C. Only the improved solutions
satisfy conditions 1–3 and this strategy will be accepted.
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Algorithm 4 VNS for the upper-level optimization

Input: The set of all locations Γ , the locations of m picking stations {ζ1
p, ζ

2
p, . . . , ζ

m
p }.

Output: The best storage location set Sbest.

1: Set Sini ← ∅, Ω ← ∅, Γ ← Γ ′;

2: Calculate the generalized distance matrix Dg according to (48);

3: for each retrieval rack ri ∈ R do

4: Select the location nearest to the ri from Γ ′;

5: Add the selected location to Sini and remove it from Γ ′;

6: end for

7: Set S ← Sini, Sbest ← Sini, k ← 1;

8: repeat

9: S′ ← Shake (S, δk, Γ );

10: S′′ ← Improve
(

S′, k, Γ
)

;

11: if eval
(

S′′
)

< eval (Sbest) then

12: S ← S′′, Sbest ← S′′, k← 1;

13: else

14: k ← k + 1;

15: end if

16: until k = kmax;

17: return Sbest.

6 Upper-level optimization

Upper-level optimization aims to optimize the storage assignment to minimize the total travel time to
complete all delivery tasks. Meta-heuristics are a class of algorithms that can find high-quality solutions,
as they can follow the rules to explore in detail the most promising regions of the solution space. Its
applications have increased in number and pertain to many fields [11,45,46] including scheduling, portfolio,
and artificial intelligence. In this situation, we design a meta-heuristic algorithm VNS with problem-
specific knowledge and effective candidate modes to solve this problem, where m storage locations are
selected from Γ .

The framework of our strategy is given in Algorithm 4. It starts from an initial feasible solution, which
can be obtained greedily, such as selecting a location ζj , j = 1, 2, . . . ,m+n with the shortest cost for each
ri. In the retrieval sequence, the selection of the storage position of ri is mainly closely relative to the
location of pi and that of the retrieval rack in the next delivery task. All retrieval racks except ri may
appear in the next delivery task because the sequencing optimization problem is solved in the lower-level
optimization. In order to evaluate the selection cost of the storage location more reasonably, we define
a generalized distance, which reflects not only the cost of storing the current rack but also the potential
cost of executing the next delivery task. The generalized distance matrix Dg is defined as follows:

Dg (i, j) = Tpi,j +
1

m− 1

∑

rk∈R,k 6=i

t (rk, ζj), (48)

where Dg (i, j) is an item of Dg and it represents the generalized distance between ri and ζj . On the right
side of the formula, the first item represents the distance between the picking station pi for ri picking
and the location ζj , and the second item measures the average cost of arriving at other retrieval racks
from ζj .

At each local search, a new perturbation solution S′ is generated based on existing solutions S by the
shaking stage (line 9), and then the solution S′ is further improved to S′′ by local search. Each solution
is evaluated by eval (·) in the lower-level optimization. In line 11, if there has been an improvement,
the search returns to the first neighborhood. Otherwise, the next shaking stage will be switched. The
procedure terminates if the stop condition is reached.

Specifically, in the kth shaking stage Shake (S, δk, Γ ), we first randomly select δk locations for pertur-
bation. For each perturbed location, we remove an item from the current solution and insert it. It can
be seen that there are m possible removal-insertion perturbation schemes. The scheme with the smallest
swap cost

∑m
i=1 Tpi,s∗i is used to the perturbation, where ζs∗

i
indicates the location nearest to pi. Note

that the location that has been added to the solution will not be removed in this shaking stage.
The detail of the kth improving stage is shown in Algorithm 5. Unlike the shaking stage that selects the

insert location from all locations, the local search only specifies the location from the promising locations
to perform the insert operation. These promising locations, called candidate location sets, consist of the
locations nearest to the retrieval racks. More specifically, we find the 2k nearest locations to each ri and
then merge these locations to form a candidate set. Our strategy explores a neighborhood in search of
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Algorithm 5 Local search strategy Improve
(

S′, k, Γ
)

Input: The set of all locations Γ , the generalized distance matrix Dg , the sequence number of the neighborhood k, and the

perturbation solution S′.

Output: The obtained solution S′′.

1: Set Cand← ∅;
2: for each retrieval rack ri ∈ R do

3: Rank the locations in Γ according to the increasing Dg (i, ·);

4: Obtain the Candi by selecting the top 2k locations from Γ and then Cand← Cand ∪ Candi;

5: end for

6: Set S′′ ← S′, Scur ← S′;

7: repeat

8: for each si in Scur do

9: for each Γj in Cand/Scur do

10: Set Snew ← Scur;

11: Remove si from Snew and add Γj to Snew;

12: Skip Snew if it has been evaluated in the previous steps;

13: if eval (Snew) < eval
(

S′′
)

then

14: S′′ ← Snew;

15: end if

16: end for

17: end for

18: Scur ← S′′;

19: until there is no improvement;

20: return S′′.

Table 2 Varying factor values for simulation instances

No. m n Instance size

1–25 10 10, 30, 50, 70, 90 Small-sized

51–75 20 20, 60, 100, 140, 180
Medium-sized

26–50 15 15, 45, 75, 105, 135

76–100 25 25, 75, 125, 175, 225
Large-sized

101–125 30 30, 90, 150, 210, 270

the best-improving move at each iteration, and it ends until no further improvement is found, and returns
the best solution.

7 Computational experiments and analysis

This section describes the extensive experiments on RS-MTMS instances to evaluate the performance of
the proposed algorithm. All experiments were implemented by using the MATLAB R2019a environment
on a PC with an Intel Xeon E5 2.60GHz CPU and 64 GB internal memory.

7.1 Instance data

To verify the efficacy of the proposed algorithm, the instance data for the RS-MTMS problem are ran-
domly generated according to [11, 20]. In our scenario, there are 36 zones divided by five aisles and five
cross aisles. On the northernmost row and the southernmost row, each zone has five racks. For the 24
zones on the middle part, each zone has 10 racks. The four picking stations are located in the middle
of the four directions of east, west, north, and south. The robot starts and ends its operations located
at the lower left part of the scenario, and delivers racks to picking stations according to the preset visit
assignments. The robot speed is set to 1.3. Given the number of retrieval racks m and open storage
locations n, 25 sets of varying sizes are generated in Table 2 for performance validation and comparison.
Each instance set contains five different instances, and a total of 125 random instances consist of 25
small-scale instances, 50 medium-scale instances, and 50 large-scale instances. For each instance, n is 1,
3, 5, 7, and 9 times m, and all locations are divided into multiple zones. The locations of retrieval racks
and open storage locations are randomly generated using a uniform distribution.

7.2 Comparison algorithms and parameter setting

(1) Adaptive large neighborhood search (ALNS) algorithm. The adaptive large neighborhood search
proposed by Gharehgozli et al. [11] represents the state-of-the-art for the simplified RS-MTMS problem,



Shi X, et al. Sci China Inf Sci November 2023 Vol. 66 212202:17

where the rack can only be stored in the open storage locations after it visits a picking station. If the
storage assignment set belongs only to Os, it can find a retrieval sequence which minimizes the total
travel time to complete all delivery tasks. As the optimality of the solution in the special case can
be guaranteed, this algorithm is employed in our computational experiments. We extend the types of
storage locations, and introduce Condition 4 into the construction of the initial solution and removal and
insertion operators to avoid generating infeasible solutions.

(2) Discrete water cycle algorithm (DWCA). The discrete water cycle algorithm is a promising approx-
imation algorithm [43] used for solving the family of TSP and ATSP. Our RS-MTMS problem can be
transformed as the sequence decision problem, which is a particular variant of TSP or ATSP, because the
storage assignment problem can be reflected in the encoding of the solution. The following adjustment
should be applied to the original algorithm to suit our situation.

Firstly, we encode the solution as x = {x1, x2, . . . , x2m+1}, where x1 is set to 0 (representing the
starting/ending point) and x2i ∈ [1,m] and x2i+1 ∈ [1,m+ n] for i = 1, 2, . . . ,m. This encoding mode
not only includes the selection information of the storage location but also satisfies Conditions 2 and 3.
To satisfy Conditions 1 and 4 when constructing the initial solutions, we generate a random permutation
of 1 to m as the retrieval sequence of the racks. Then, for each x2i+1 generation, we select an item from
[1,m+ n] (satisfies priority constraints if it belongs to [1,m]) without duplication. During the update
of the solution, we apply our identification strategy to each individual before using the movement and
insertion operators. If this individual is identified as TSP or ATSP, the original operators are used
directly to obtain the improved solution; otherwise, Condition 4 will be incorporated into these operators
to obtain the high-quality feasible solution.

(3) Practice heuristics algorithm (PHA). To solve the storage assignment and retrieval sequence decision
problems, several decision rules [10] are used in a realistic scenario such as nearest neighborhood, farthest
neighborhood, and greedy-random. In the nearest neighborhood heuristic, the robot travels to the nearest
retrieval rack, and each rack returns to the nearest storage location after it visits a picking station. The
farthest neighborhood heuristic is the same as the nearest neighborhood with the difference that the item
with the farthest distance is always selected. The greedy-random heuristic each time selects a retrieval
rack or storage location from the list. In each selection, the greedy strategy is applied with probability
ρ. This algorithm selects the best results among the three heuristics as the final solution.

To achieve a good trade-off between the solution quality and the runtime of the proposed BiJSR, we set
the maximum number of neighborhoods kmax to 3, and the list of the number of perturbation locations
δ to [0.1n, 0.2n, 0.5n]. Because the decision schemes of BiJSR and its three comparison algorithms may
be unstable owing to the randomness of the solution exploration mechanism, the four algorithms will run
20 times for each instance. To ensure that two meta-heuristic comparison algorithms can fully discover
a better solution, their iterations are set large enough, and they will terminate when they run out of
the allowable time. For a fair comparison, at least 10000× (m+ n) greedy-random heuristic in PHA is
executed for each instance to ensure that it can fully find a higher-quality solution. The value of ρ is
used iteratively over the range [0, 0.9] to increase by 0.1 in each run. The greedy strategy is randomly
selected as the nearest or farthest. For each instance, the allowable runtime for any algorithm is set to
1800 s, and that of the Gurobi is 3600 s.

7.3 Experimental results and analysis

In this subsection, we analyze the running results of the experiments from the perspectives of solution
quality and running time. Some data are highlighted in bold to highlight the best computational results
obtained by all algorithms. In addition, several practical extensions of RS-MTMS are discussed.

7.3.1 Preliminary experiment

In the preliminary experiment, we test the performance of the transformation heuristic in the lower-level
optimization of BiJSR. To analyze the solution quality and runtime on the identified ATSP or ATSP-
PC, m storage locations are preselected from Os or Os ∪ R and at least one storage location should be
selected from the retrieval location for the ATSP-PC. We randomly generate 20 cases in each instance
with different storage locations for the identified ATSP or ATSP-PC. For the identified TSP, there exists
one case in each instance because all storage locations are selected as retrieval locations.

Table 3 displays the comparison results between our lower-level algorithm and Gurobi solver for all
instances. The positive or zero percentage deviation indicates that our algorithm has an optimality gap or
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Table 3 Comparison results with respect to Gurobi for the lower-level optimization problem

Ave (%) Best (%) Worst (%) Count (%) T -opt (s) T -ours (s)

LBH 0.00 0.00 0.06 97.60 17.92 0.94

LBH-A
RTS 0.28 0.11 1.56 57.44

1.25
0.03

STR 0.01 0.00 0.33 97.52 0.03

LBH-C
RTS −4.12 −9.78 −1.84 96.40

3232.64
0.09

STR −5.96 −12.35 −3.15 100.00 0.10

reaches the optimal solution, and the negative deviation indicates that our algorithm can explore a better
result than the solver within the time limit imposed. T -opt and T -ours represent the runtime of the solver
and our algorithms. For the identified TSP problem, Ave (%), Best (%), and Worst (%) respectively
denote the average, best, and worst deviation from the optimal solution on {25× 1× 5} cases. Count
(%) is the ratio of the number of cases reaching the optimal solution divided by the total number of cases.
As shown in Table 3, we find that our LBH can discover the optimal result with an average of 19.01 times
less time cost on 122 instances. For the identified ATSP and ATSP-PC problems, the number of cases
is {25× 20× 5}. In terms of the solution quality, the performance of LBH-A using STR mode is better
than that of RTS mode, especially in medium- and large-sized cases. Both re-identification modes have
the same average running time, i.e., about 41.73 times less than Gurobi.

The Count (%) of LBH-C represents the ratio of cases whose deviation is zero or a negative value.
We can see that both modes have similar runtimes, while the solution quality of STR has a significant
advantage over RTS. The STR can find the same or better results in all cases, and the best solution
average obtained is 12.35% better than Gurobi. However, there is a deviation in some instances and
the best deviation is 9.78% for the RTS. More detail comparison results are shown in Appendix B. In
summary, our proposed lower-level algorithms have excellent performance, and the STR mode is more
effective than RTS in both LBH-A and LBH-C.

7.3.2 Comparison with Gurobi solver

Table 4 displays the comparison results between our proposed BiJSR and Gurobi solver on small-,
medium-, and large-sized instances, respectively. In Table 4, UB is the upper bound as reported by
the Gurobi solver for (1)–(12), and LB is a larger value between the lower bound reported by the Gurobi
solver and that solved by our proposed relaxation formulation. The LB values are shown as UB if the
optimal problem is found. If the relaxation model cannot directly obtain the optimal solution within the
time limit, its lower bound will be used as LB. Ave-U and Ave-L denote the average deviation from the
upper and lower bound, respectively, where the negative value indicates that the solution obtained by
our method is better than the solver within the time limit.

From this table, we find that BiJSR can discover the optimal solutions for all small-sized instances and
better results for all medium- and large-sized instances. Specifically, the objective values obtained by our
algorithm average 6.08% for medium-sized instances and 13.88% for large-sized instances, which is better
than that obtained by the Gurobi solver within its time limit. In terms of the runtime performance,
BiJSR can solve the RS-MTMS problem much more efficiently, especially in larger-sized instances. It can
be seen that the computation time of BiJSR averaged about 7.14, 20.16, and 6.29 times less than that
of Gurobi for small-, medium-, and large-sized instances. Moreover, the average Ave-L is about 16.68%
for large-sized instances. The result implies that the average gap of BiJSR to the optimal solution is
moderate, which is no more than 16.68%.

7.3.3 Comparison with other algorithms

From Table 4, the proposed BiJSR performs significantly better than comparison algorithms in most
instances, and the advantage is further expanded when the size of the instance is larger. Specifically, the
objective values obtained by BiJSR are on average 10.58%, 1.33%, and 9.31% for small-sized, 10.26%,
6.31%, and 12.58% for medium-sized, and 12.98%, 7.17%, and 11.56% for large-sized instances better
than that of PHA, ALNS, and DWCA, separately. To prove the stability of each algorithm’s solution
results, we used the Wilcoxon rank-sum test to evaluate the statistical performance. The score in Table 4
is calculated as the total result of each algorithm compared with other algorithms. It is the sum of the
rank-sum test results on all runs for every five instances with the same size. In terms of runtime, ALNS
and DWCA will terminate when they run out of the allowable 1800 s, and the computation time of PHA
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Table 4 Comparison results of the Gurobi solver, the proposed BiJSR, and three comparison algorithms (The time limitation is set to 3600 s for Gurobi solver and 1800 s for the rest algorithms)

No.
Gurobi solver BiJSR PHA ALNS DWCA

UB LB T (s) Ave-U (%) Ave-L (%) T (s) Ave-U (%) Ave-L (%) T (s) Ave-U (%) Ave-L (%) T (s) Ave-U (%) Ave-L (%) T (s)

1–5 333.38 UB 150.73 0.00 0.00 13.27 7.29 7.29 301.52 2.46 2.46 1800.01 4.71 4.71 1800.01

6–10 321.20 UB 100.91 0.00 0.00 26.87 7.88 7.88 601.71 1.78 1.78 1800.01 9.64 9.64 1800.01

11–15 332.03 UB 221.83 0.00 0.00 33.06 13.65 13.65 901.97 0.65 0.65 1800.00 12.18 12.18 1800.00

16–20 338.80 UB 246.22 0.00 0.00 28.78 11.54 11.54 1200.62 1.02 1.02 1800.01 11.59 11.59 1800.01

21–25 344.22 UB 141.72 0.00 0.00 26.77 12.52 12.52 1534.47 0.75 0.75 1800.01 8.42 8.42 1800.00

26–30 494.83 487.38 3600.00 −0.49 1.00 100.49 5.40 6.97 1800.14 2.04 3.56 1800.00 7.16 8.77 1800.01

31–35 490.09 480.62 3600.00 −0.30 1.68 163.95 9.85 12.03 1800.15 4.28 6.33 1800.01 10.92 13.11 1800.01

36–40 480.78 471.31 3600.00 −0.12 1.92 149.80 8.82 11.04 1800.14 2.35 4.44 1800.01 8.18 10.39 1800.01

41–45 502.62 493.66 3600.00 −0.54 1.22 149.98 4.54 6.39 1800.12 3.15 4.96 1800.00 9.91 11.81 1800.01

46–50 514.63 506.51 3600.00 −0.08 1.54 154.99 4.80 6.49 1800.12 3.00 4.67 1800.05 8.28 10.02 1800.01

51–55 648.15 524.62 3600.00 −14.66 5.99 208.80 1.27 27.06 1800.09 −4.62 19.30 1800.00 2.28 27.95 1800.03

56–60 666.43 539.68 3600.00 −14.23 5.48 266.77 −3.57 18.73 1800.06 −4.33 17.90 1800.00 −3.70 18.90 1800.02

61–65 683.35 556.09 3600.00 −13.96 4.81 236.75 −1.51 20.09 1800.44 −5.70 14.90 1800.21 2.56 24.95 1800.42

66–70 668.12 572.34 3600.00 −9.33 6.17 254.90 −0.89 16.43 1800.68 −4.68 11.80 1800.46 0.31 17.48 1800.46

71–75 663.05 587.74 3600.00 −7.05 4.72 287.33 3.07 16.36 1800.78 −0.24 12.60 1800.31 7.95 22.05 1800.25

76–80 864.77 707.72 3600.00 −11.88 7.60 407.37 −0.33 21.83 1800.14 −4.41 16.79 1800.01 −1.91 19.81 1800.04

81–85 865.11 693.00 3600.00 −12.11 10.17 442.58 −0.81 24.44 1800.08 -4.97 19.56 1800.62 2.10 27.79 1800.04

86–90 820.77 655.77 3600.00 −7.10 16.68 411.27 2.24 28.31 1800.07 −2.33 22.62 1800.42 6.42 33.86 1800.04

91–95 857.66 678.62 3600.00 −12.44 10.31 499.68 −2.22 23.19 1800.26 −4.44 20.46 1800.24 −8.15 15.79 1800.37

96–100 849.20 686.57 3600.00 −7.61 14.35 512.98 2.29 26.64 1800.90 −1.49 21.91 1800.55 2.65 27.13 1800.62

101–105 1195.78 826.86 3600.00 −19.73 15.79 606.47 −8.67 31.74 1800.09 −14.57 23.18 1800.27 −8.80 31.49 1800.05

106–110 1175.14 856.98 3600.00 −17.08 13.83 713.90 −4.87 30.57 1800.09 −11.40 21.65 1800.61 −6.72 28.05 1800.07

111–115 1159.23 810.45 3600.00 −19.75 14.16 876.25 −7.32 31.76 1800.08 −14.72 21.27 1800.32 −11.45 26.12 1800.10

116–120 1088.83 803.85 3600.00 −14.02 16.49 886.35 −2.47 32.13 1800.09 −6.98 26.03 1800.11 −4.77 29.06 1800.07

121–125 1131.14 819.75 3600.00 −17.06 14.32 935.52 −5.61 30.11 1800.09 −12.02 21.17 1800.59 −8.68 25.76 1800.08

Score – 370 66 224 71
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(a) (b)

(c) (d)

Figure 8 (Color online) Convergence curve of the BiJSR for four random large-sized instances. (a) m = 25, n = 25; (b) m = 25,

n = 225; (c) m = 30, n = 30; (d) m = 30, n = 270.

is much more than that of BiJSR for the same instance. Specifically, the average computation time of
BiJSR for all instances is about 12.15 times less than that of PHA and 20.77 times less than that of
ALNS and DWCA. More detailed comparison results are shown in Appendix C.

The competitiveness of the proposed BiJSR is due to the transformation and loop-based strategies
obtained by the lower-level optimization. Table 3 shows that they can efficiently construct an optimal
sequence in most cases. On the other hand, the proposed generalized distance and candidate mode
can more efficiently obtain the storage location of the retrieval racks, which are very helpful for the
neighborhood search during the search process of BiJSR to find high-quality solutions. This fact can be
observed from Figure 8, which shows the convergence curve of BiJSR on four random large-sized instances
(2 each for m = 25 and m = 30).

7.4 Practical extensions of the problem

7.4.1 Impact of multiple types of storage locations

Table 5 shows how the allowed types of storage locations affect the total travel time of the robot. We
consider the instances with m = 10 because the optimal solution can be obtained from them. Compared
with only considering open storage locations for the rack storage, the multiple types of storage locations
in our case experience shorter travel time because their own or empty retrieval locations are closer to the
visited picking stations and racks to be retrieved. Although some potentially empty retrieval locations
can be replaced by adjacent open storage locations, as the number of open storage locations increases,
the case of multiple types of storage locations still have better performance. The results in Table 5 show
that the total travel time of our RS-MTMS case is on average about 2.42% better than that of single
types of storage locations.

7.4.2 Impact of multiple robots

In this subsection, we show the impact of multiple robots completing delivery tasks. The experiment is
carried out on the five large-sized instances with 25 cases (101–125 in Table 2). The number of robots is
increased from 1 to 5. All tasks are randomly assigned to each robot, with 15 tasks per robot for 2 robots,
10 for 3 robots, 7 or 8 for 4 robots, and 6 for 5 robots. To improve the order picking efficiency, all robots
simultaneously and independently complete assigned delivery tasks. Figure 9 shows the average total
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Table 5 Comparison results between the single type and multiple types of storage locations

Ins.
Multitype Single type

Gurobi BiJSR Gurobi BiJSR

m = 10, n = 10 333.38 333.38 359.45 359.45

m = 10, n = 30 321.20 321.20 328.31 328.31

m = 10, n = 50 332.03 332.03 336.09 336.09

m = 10, n = 70 338.80 338.80 341.17 341.17

m = 10, n = 90 344.22 344.22 346.92 346.92

m

Two robots

Figure 9 (Color online) Impact of multiple robots on travel time.

travel time of each robot for different numbers of robots. It can be seen that the multi-robot scenario has
more time savings as the number of robots increases because each robot needs to complete fewer delivery
tasks. However, the time saving is lower in the real world. The conflicts and deadlocks in the travel path
of robots will increase the travel time to complete the delivery tasks. There is a need for developing a
joint optimization of multi-robot scheduling and multi-robot path planning to meet the real-world needs.

8 Conclusion

In this paper, we focus on the RS-MTMS problem, which jointly decides the retrieval sequence of racks
and assigns each rack a storage location after it visits a picking station. We present a bi-level optimiza-
tion model BiJSR. In the upper-level optimization, a VNS strategy with an effective candidate mode is
designed to address the storage assignment problem. The retrieval sequence optimization is solved by
the transformation strategy and LBH with sufficient problem-specific knowledge in the lower-level opti-
mization. The proposed BiJSR can obtain high-quality solutions using less computational time to solve
the RS-MTMS problem. The computational results show that our proposed algorithm performs 13.88%
better than the solver within the time limit and 7.17% than the most effective comparison algorithm on
the large-sized instances. Although the efficacy of the proposed BiJSR has been verified, there remain
some investigations that deserve further study in the future.

(1) As a key component of the upper-level optimization, the VNS combined with candidate mode has
been shown in this paper to improve the quality of the storage assignment scheme. It is also interesting
to design more efficient and effective neighborhood operators or consider other excellent meta-heuristic
solution algorithms to further improve the solution.

(2) Apply the different forms of BiJSR to other related scenarios, such as the multi-tier shuttle,
container terminals, and material transportation, which will be very helpful for solving more problems in
social systems.

(3) For practicality, the proposed algorithm will be extended to more challenging multi-robot systems
where it is necessary to consider further task assignment and path planning for each robot. In addition,
we will alleviate the assumptions of the proposed scenario to verify the performance of algorithms with
real-world problems.
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