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Abstract Fault classification plays a crucial role in the industrial process monitoring domain. In the

datasets collected from real-life industrial processes, the data distribution is usually imbalanced. The datasets

contain a large amount of normal data (majority) and only a small amount of faulty data (minority); this

phenomenon is also known as the imbalanced fault classification problem. To solve the imbalanced fault clas-

sification problem, a novel reinforcement learning (RL)-based cost-sensitive classifier (RLCC) based on policy

gradient is proposed in this paper. In RLCC, a novel cost-sensitive learning strategy based on policy gradient

and the actor-critic of RL is developed. The novel cost-sensitive learning strategy can adaptively learn the

cost matrix and dynamically yield the sample weights. In addition, RLCC uses a newly designed reward to

train the sample weight learner and classifier using an alternating iterative approach. The alternating itera-

tive approach makes RLCC highly flexible and effective in solving the imbalanced fault classification problem.

The effectiveness and practicability of the proposed RLCC method are verified through its application in a

real-world dataset and an industrial process benchmark.

Keywords imbalanced fault classification, fault diagnosis, industrial process monitoring, deep reinforce-

ment learning, cost-sensitive learning, policy gradient, sample weights

Citation Zhang X M, Fan S T, Song Z H. Reinforcement learning-based cost-sensitive classifier for imbalanced

fault classification. Sci China Inf Sci, 2023, 66(11): 212201, https://doi.org/10.1007/s11432-021-3775-4

1 Introduction

With the widespread use of the Internet of Things, cloud computing, and new measurement devices, large
amounts of data have been recorded and collected in the modern manufacturing industry [1]. Data are
key enablers for driving the development of smart manufacturing and are used for process monitoring [2],
industrial safety analysis [3], quality prediction [4], and optimization [5]. Data-driven fault classification is
a significant application of industrial process data analysis techniques and fault diagnosis domains [6]. The
goal of fault classification is to distinguish faults from all data using easy-to-measure process variables.
Compared with the traditional first-principle-based modeling methods, which use prior knowledge or
experiences, data-driven methods are characterized by flexibility, ease of use, and low cost [7]. However,
most real-life industrial process data usually exhibit a skewed distribution or an extremely imbalanced
class distribution. Hence, if the classes are assumed to be of equal importance, the same error classification
cost will be implicitly assigned to all classes of errors. The classifier tends to correctly classify the highly
frequent (majority) classes rather than the infrequent (minority) classes. Therefore, there is an urgent
need to improve the overall accuracy of the classifier without unduly sacrificing the accuracy of any
majority or minority class. As illustrated in [8], imbalanced fault classification is a key issue in the fault
diagnosis community and should be given more research attention. To solve the imbalanced classification
problem, building a model that can correctly classify infrequent but important fault samples in the
imbalanced dataset is the key [9]. Several methods have been proposed to solve this problem. We can
briefly divide these methods into three categories: (i) data-level methods, (ii) algorithm-level methods,
and (iii) hybrid methods [10]. Data-level methods tend to mitigate the degree of imbalance through
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various data sampling methods. Algorithm-level methods usually use weights or cost models, which
involve modifying basic learners or their output to reduce bias toward the majority group. Hybrid
methods strategically combine both data-level techniques and algorithm-level methods [10]. To solve
imbalanced fault classification problems, Wang et al. [11] proposed an active learning framework based
on alternative important sampling; the framework involved selecting important majority-class instances
and generating informative minority-class instances. Jiang et al. [12] proposed a novel data augmentation
classifier based on generative adversarial networks to solve the imbalanced classification problem. Fan
et al. [13] proposed a novel general imbalanced sample selection strategy (DiagSelect) based on deep
reinforcement learning (RL) to implement imbalanced sample selection. Yue et al. [14] proposed a new
computer-aided diagnosis method for automated endoscopic image classification by introducing a novel
class imbalance loss to the classical deep neural network. Santos et al. [15] argued that although some
insightful information can be gained from related studies, the joint effect of class overlap and imbalance
is still not fully understood and advocated for the need to move toward a unified view of the class overlap
problem in imbalanced domains. In this paper, we focus on the algorithm-level method.

Cost-sensitive learning is a type of algorithm-level method that deals with imbalanced classification
problems by incurring different costs for different classes. Cost-sensitive learning has a strong theoretical
appeal, which tackles the problem of the traditional error-based learning algorithm from the perspective
of an algorithm principle design. A common strategy of the cost-sensitive learning methods is to inten-
tionally increase the weights of samples with high misclassification costs during a boosting process [16].
For example, AdaCost [17] uses the cost of misclassifications to update the training distribution on suc-
cessive boosting rounds. Krempl et al. [18] proposed a cost-sensitive probabilistic active learning, which
determines the optimal misclassification loss with the prior domain knowledge. Castro et al. [19] proposed
a cost-sensitive multilayer perceptron (CSMLP), which uses a single cost parameter to distinguish the
importance of class errors. Zheng [20] proposed a cost-sensitive boosting neural network (CSBNN), which
incorporates the weight-updating rule of a boosting procedure to associate the samples with misclassifica-
tion costs. Zhang et al. [21] proposed a cost-sensitive deep belief network with differential evolution, which
directly adds the cost-sensitive functions to its classification paradigm and employs differential evolution
to optimize the cost matrix. Although these methods have some effectiveness in solving the imbalanced
fault classification problems, several problems that still plague imbalanced cost-sensitive learning are
listed as follows: (1) Misclassification costs are usually unknown. (2) Setting a proper cost matrix is
usually difficult [22] and requires high expertise and experience. (3) The assignment of costs to different
classes, even samples, is usually conducted before the training process and is independent of the training
process. (4) Even if the cost matrix can be determined via boosting, reselecting the best division point
of the current base classifier each time is difficult. These issues tend to hinder cost-sensitive learning
methods. To overcome these problems, we propose an unbiased classification model that can improve the
recognition ability of under-represented class samples. Furthermore, developing a cost matrix that can
accurately describe the costs of each sample by alternately iterating the sample weight learner and the
classifier in the training process is desirable.

Therefore, we propose a novel RL-based cost-sensitive classifier (RLCC) based on policy gradient and
an actor-critic to improve the performance of imbalanced fault classification methods. In RLCC, a novel
cost-sensitive learning strategy that can adaptively learn the cost matrix and dynamically yield the sample
weights is developed. First, the REINFORCE loss [23] of deep RL is utilized as the loss of the actor
network for learning sample weights according to the designed reward. Second, the reward is calculated
using the designed reward function. Third, multilayer perceptron (MLP) is used as the classifier to build
a critic network. The loss function of the critic network is the novel weighted cross-entropy function,
which combines the output of the MLP classifier with sample weights. By learning the sample weights
alternately based on the actor-critic mechanism, the MLP classifier performance can be improved.

The main contributions of this paper are summarized as follows: (1) a novel cost-sensitive strategy
based on policy gradient is designed to learn sample weights; (2) an alternating iterative approach of the
actor-critic mechanism is used in the novel cost-sensitive strategy; the approach can adaptively learn the
cost matrix and dynamically yield the sample weights; (3) a newly designed reward is used to guide the
sample weight learning process in the actor-critic mechanism; (4) the proposed method is evaluated on a
real-world dataset and an industrial process benchmark.

The rest of this paper is organized as follows. In Section 2, the cost-sensitive learning framework and
the basic formulation of the cost matrix are briefly introduced. In Section 3, details of the proposed
method for imbalanced fault classification are presented. In Section 4, the effectiveness of the proposed
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method is verified using a real-world dataset and an industrial process benchmark. In Section 5, the
conclusion is presented.

2 Preliminary

2.1 Cost-sensitive learning framework

Cost-sensitive learning considers the varying costs of different misclassifications. The principle of the
cost matrix is that it encodes the penalty of misclassifying samples from one class as those from another
class. Let ξi,j denote the cost of predicting a sample from classes i to j. For example, ξ+,− is the cost
of misclassifying a positive (minority class) sample as a negative (majority class) sample, and ξ−,+ is
the cost of misclassifying a negative sample as a positive sample. In solving the issue of imbalanced
classification, the discrimination of positive samples is more important than that of negative samples.
Therefore, the cost of misclassifying a positive sample is greater than that of misclassifying a negative
sample (i.e., ξ+,− > ξ−,+), that is, classifying a correct negative sample usually presents a low weight.
Hence, cost-sensitive learning minimizes high classification errors or total misclassification cost under this
assumption [24]. A cost-sensitive learning method considers the cost matrix during the training process
and enables the classifier to have the lowest total error. The cost-sensitive learning methods can be
divided into three groups:

(1) Making a specific classifier prune subtrees or choosing the best attribute [25];
(2) Using Bayes risk theory and assigning each sample to its lowest risk class [26];
(3) Weighting the data space [27].
The first and second groups of methods adapt to the existing learning methods at the algorithm level.

These groups of methods assume that the cost matrix is known for different types of errors or samples.
However, the cost matrix is often unavailable for a dataset. The third group of methods is also based
on the cost-sensitive learning of sample weights [27], in which sample-dependent costs are converted into
sample weights. The weighted training samples are used in the standard classifier. Our research focuses
on the cost-sensitive learning of the third group.

The weight of the data space is described as sample weights. The bias of the training process is
modified using the misclassification cost. Thus, the modified error is biased toward high weight, which
can be explained based on the translation theorem [27]. To distinguish fault samples from the normal
space, let us define a data space with domain x × y × ξ as the cost-space, where x is the input space,
y is the output space, and ξ is the cost associated with the mislabeling of samples. If we draw samples
from a distribution D in the cost space, we can have another distribution D̂ in the normal space:

D̂(x,y) ≡
ξ

Ex,y,ξ∼D[ξ]
D(x,y, ξ), (1)

where Ex,y,ξ∼D[ξ] is the expectation of cost values. According to the translation theorem, the optimal

error rate of the classifier for D̂ is an optimal cost minimizer for D. Therefore, when we update the
weight of each sample, choosing the hypothesis to minimize the rate of errors under D̂ is equivalent
to choosing the assumption to minimize the expected cost under D. Using this framework, the cost-
sensitive boosting methods, such as AdaCost [17], AdaC1, AdaC2, and AdaC3 [28], and CSB1 and
CSB2 [29], have been proposed previously. AdaUBoost (AdaBoost with an unequal loss function) [30]
optimizes an unequal loss on the imbalanced training dataset via preprocessing, and manipulates the
training distribution within successive boosting rounds. AsymBoost (Asymmetric AdaBoost) [31] uses
the asymmetric misclassification cost to update the training distribution on successive boosting rounds.
In addition, Zhou et al. [32] used the manually designed cost matrix based on expert judgment, which is
a tedious task for several classes.

2.2 Basic formulation of cost matrix

In cost-sensitive learning, given an input sample x and the cost matrix ξ, the goal of the classifier is to
minimize the expected risk R(ŷ|x), where ŷ is the predicted labels made by the classifier. The expected
risk can be expressed as

R(ŷ|x) =
C
∑

i

ξy,ŷi
p(ŷi|x), (2)
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where ξy,ŷi
represents the cost associated with predicting y as ŷi, and p(ŷi|x) is the posterior probability

over predicted labels i given sample x. According to the Bayes decision theory, an ideal classifier will
give a decision in favor of the ŷ∗ with the minimum expected risk,

ŷ∗ = argmin
ŷ

R(ŷ|x) = argmin
ŷ

Ex,D[ξ], (3)

where D is the cost-space domain x×y×ξ. Because p(ŷ|x) cannot be easily found, we use the empirical

distribution derived from the training dataset. Given a training dataset Dtrn = {xi,yi}
N

i=1, N is the
total number of samples, and the empirical risk is defined as follows:

R(ŷ|x) = Ex,D[ω] =
1

N

N
∑

i=1

ℓ(ξ,yi,oi), (4)

where oi is the output of the neural network for sample i, and ℓ(·) is the misclassification error (0-1 loss)
or a surrogate loss function. The sample weights ω are calculated using the cost matrix ξ according to
specified rules. The cost matrix is converted into a cost parameter for each class as follows:

ξi =

C
∑

j

ξi,j , (5)

where C is the number of classes. The sample weights corresponding to the i-th class are shown as follows:

ωi = ξi
Ni

∑C

j ξjNj

, (6)

where Ni is the sample size of class i.

3 RL-based cost-sensitive classifier

3.1 The definition of RLCC

We consider the RL framework [33] to learn the cost matrix. For RL, the framework contains the state
space st ∈ S, action space at ∈ A, and immediate rewards rt ∈ R. The detailed definitions of RLCC
are described as follows:

• State S. The state is determined based on the training sample. At the beginning of the training
process, the agent receives the first batch samples x1 as its initial state s1. The state st corresponds to
the batch samples xt. When a new episode begins, the environment shuffles the order of samples in the
training dataset.

• Action A. The action of the agent is associated with the cost matrix ξ. A is the action space of the
sample weights based on the cost matrix ξ. The action at taken by the agent is the sample weight.

• Reward R. The reward rt is the feedback of actions. To guide the agent to learn better actions in
the imbalanced dataset, the absolute reward value of the minority-class samples is higher than that of
the majority-class samples. When the agent correctly or incorrectly recognizes minority-class samples,
the environment feeds back a larger reward or punishment to the agent.

• Episode. An episode in RL is a transition trajectory from the initial tuple to the terminal tuple
{(s1,a1, r1), (s2,a2, r2), . . . , (sN ,aN , rM )}. M is the length of the episode. An episode ends when all
samples in the training dataset are classified.

• Policy πθ. The policy πθ is a probability distribution, where πθ(a|s) denotes the probability of
choosing action a in state s by an agent. The policy πθ can be considered a learner with the parameter
θ.

With the abovementioned definitions, the imbalanced fault classification problem is formally defined
to find the policy π∗, which maximizes the cumulative rewards in the actor critic mechanism [34].
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Figure 1 (Color online) Structure and loss function of the actor network.

3.2 Actor network of RLCC

In this paper, the action is the sample weight ω, which corresponds to the cost matrix ξ. The elements
of the sample weights are continuous values. The policy-based RL method [33] is selected to find the
optimal action. The ultimate goal of RL is to maximize the rewards received. We assume that the
objective function of RL is J(πθ), and the ultimate goal is to maximize this objective function. J(πθ)
denotes the long-run average reward under policy πθ. In the Markov decision process [35], the long-run
average reward is defined as follows:

J(πθ) =
∑

s∈S

d(s)
∑

ω∈D

πθ(ω|s)R(s,ω). (7)

To learn the optimal policy θ∗ = argmaxθ J(πθ), the gradient of J(πθ) is derived as follows:

∇θJ(πθ)=∇θ

∑

s∈S

d(s)
∑

ω∈D

πθ(ω|s)R(s,ω)

=
∑

s∈S

d(s)
∑

ω∈D

∇θπθ(ω|s)R(s,ω)

=
∑

s∈S

d(s)
∑

ω∈D

πθ(ω|s)
∇θπθ(ξ|s)

πθ(ω|s)
R(s,ω)

=E [∇θ logπθ(ω|s)R(s,ω)] ,

(8)

where R(s,ω) denotes the single-stage expected rewards. πθ is a parameterized randomized stationary
policy with parameter θ, which maps each state s to a probability distribution. d = {d(s), s ∈ S}
denotes the unique stationary probability distribution of each time step. To obtain the optimal solution
of (8) using gradient descent, we can learn the optimal policy θ∗ = argminθ[−J(πθ)] by the actor loss

∇θ[−J(πθ)] = E [−∇θ logπθ(ω|s)R(s,ω)] . (9)

The structure of the actor network is shown in Figure 1.

3.3 Critic network of RLCC

The update of the critic network is discussed in this subsection. The weighted cross-entropy loss can be
utilized for the critic network [36]. The output of the critic network fφ can be expressed as

ot = fφ(st). (10)
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Figure 3 (Color online) Structure of the reward.

The novel weighted cross-entropy loss is used to minimize the deviation of the predicted label from the
true label, and it can be expressed as
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, (11)

ℓt(yt, zt) =
1

B

B
∑

i

ℓit = −
1

B

B
∑

i

C
∑

j=1

yjt,ilogz
j
t,i, (12)

where C is the number of classes, B is the batch size, zt contains the sample weights ωt and is related
to the output ot, and z1

t = [z1t,1, . . . , z
1
t,B]. The structure of the critic network is shown in Figure 2.

3.4 Reward function for RLCC

The minority-class samples are difficult to be identified correctly in the imbalanced dataset. To better
recognize the minority-class samples, RLCC should be highly sensitive to the minority-class. A large
reward or punishment is returned to the agent when it meets a minority sample. The reward function is
defined as follows:

R (st,ωt)=

{

ρt, Correct classify,

ρtytzt, Misclassify,
(13)

where ρt = [ρt,1, . . . , ρt,B] is the vector, which is composed of the imbalance ratio for each sample. The
imbalance ratio (IR) ρi = Nmax/Nk, which is the sample size of the majority class divided by the sample
size of the class k, to which sample i belongs. st is the state t. The sample set in batch t is the state st.
The batch samples xt form the training process batch, which is obtained by dividing the whole training
samples. ωt is the sample weight of batch t. The value of the reward function is the reward of the agent
for learning the sample weights. For an imbalanced dataset, the reward of the minority class is higher
than that of the majority class. ρ is a trade-off parameter to adjust the importance of different classes.
The structure of the reward is shown in Figure 3. The designed reward function is straightforward but
has some limitations. (1) Owing to the sensitivity to the outlier, the performance may be unstable. (2) If
there is a class imbalance, then the reward function designed is extremely suitable. Moreover, if there is
an imbalance between the samples within the class, the effectiveness of the designed function is slightly
reduced. (3) Under the condition of a small number of samples, the designed reward may be restricted
by the number of samples. The pseudo-code of the proposed method is summarized as Algorithm 1. The
structure diagram of RLCC is drawn under the above designed framework in Figure 4.
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Algorithm 1 RLCC

Require: The critic network fφ, actor network πθ , training dataset Dtrn, the length of the episode M ;

1: Initialize the critic network fφ and actor network πθ with random parameters φ and θ;

2: Standardize training dataset Dtrn;

3: for (epi = 0; stopping condition; epi = epi + 1) do

4: Shuffle training dataset Dtrn to obtain sepi = {s1, s2, . . . , sM}epi;

5: if epi == 0 then

6: Set the initial sample weights ωepi = {ω1, ω2, . . . , ωM}0 to 1;

7: else

8: Obtain the ωepi = {ω1, ω2, . . . , ωM}epi by actor network πθ(ω
epi|sepi);

9: end if

10: Obtain the episode {(s1, ω1), (s2, ω2), . . . , (sM , ωM )}epi

11: for each (st, ωt) ∈ episode do

12: Update the parameters φ of critic network fφ following (12);

13: end for

14: Calculate the reward using (13);

15: Obtain the episode {(s1, ω1, r1), (s2, ω2, r2), . . . , (sM , ωM , rM )}epi;

16: for each (st, ωt, rt) ∈ episode do

17: Update the parameters θ of actor network πθ following (9);

18: end for

19: Obtain the actor network πθ ;

20: end for

Ensure: fφ,πθ ;
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Episode 1

Episode K
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1 2
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1 1 1 2 2 2
{( , , ), ( , , ),..., ( , , )}
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s r s r s rω ω ω

̟
θ
1

Figure 4 (Color online) Structure and learning process of RLCC.

Table 1 Multiclass confusion matrix
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Predicted

total(ni+)
1 2 · · · k

1 n11 n12 · · · n1k n1+

2 n21 n22 · · · n2k n2+

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

k nk1 nk2 · · · nkk nk+

total(n+j) n+1 n+2 · · · n+k N

4 Case studies

In this section, the effectiveness and practicability of the proposed method are verified through its appli-
cation to two case studies: the wind turbine freezing failure (WTFF) forecast dataset and the Tennessee
Eastman (TE) process dataset.

4.1 Evaluation metrics

In the case studies, evaluation metrics are introduced to evaluate the performance of the proposed method.
The confusion matrix contains real classes displayed in columns and predicted classes in rows. In Table 1,
the diagonal elements are the right ones, and the elements out of the diagonal are the wrong ones [37].
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Table 2 Information of WTFF dataset

Original dataset (feature dimension: 26) After preprocessing (feature dimension: 2650)

State Freeze Normal State Freeze Normal

#15 23888 344463 Train 1382 17711

#21 10692 168853 Test 143 2503

Label 0 1 Label 0 1

In Table 1, N is the total number of samples. Pj = njj/n+j and Ri = nii/ni+ are the precision
and recall by each class. For multiclass imbalanced classification, only precision and recall are no longer
proper measures because the minority classes have very little impact on the accuracy compared with the
majority classes [38]. In this manner, balanced accuracy (bAcc) [39], Macro-F1 [40], and G-mean [41] are
used as evaluation metrics.

4.2 Comparisons method

For reasonable comparison, the classification performance of the proposed RLCC is compared with those
of different types of cost-sensitive methods: MLP, CoSen-MLP, AdaCost-MLP, CSMLP, and CSBNN.
These methods are described as follows.

• MLP: a deep learning classifier that trains the fully connected (FC) neural network using the normal
cross-entropy loss function without any optimization technique for multiclass imbalanced fault classifica-
tion.

• CoSen-MLP: an algorithm-level method that assigns greater misclassification cost to minority classes
and smaller cost to majority classes in the loss function of the MLP classifier [32].

• AdaCost-MLP: a misclassification cost-sensitive boosting method that uses the misclassification costs
to update the training distribution in successive boosting rounds [17].

• CSMLP: a cost-sensitive deep learning method that uses a single cost parameter to differentiate
misclassification errors in the MLP classifier [19].

• CSBNN: a cost-sensitive boosting neural network that incorporates the weight-updating rule of the
boosting procedure to associate the samples with misclassification costs [20].

4.3 Case 1: WTFF forecast dataset

The wind turbine manufacturer provided the WTFF dataset1) for the prognostic and health management
(PHM) competition held by the Chinese government (Ministry of Industry and Information Technology,
MIIT). The dataset is generated by the SCADA of the wind power system. The dataset contains 28-
dimensional continuous time series, including working conditions, environmental parameters, and state
parameters. The two wind turbines (#15 and #21) are marked with the normal and frozen durations
(start and end times). The unlabeled data in the training dataset are invalid and are not used for training
in the case study. In this case study, the 9000th–149999th timestamp samples of #21 wind turbine are
selected as a test set, while the rest are combined with the data of #15 wind turbine as the training
dataset. The timestamp interval in the original data is 5–10 s. For wind turbine freezing, the observed
value does not change much in a few seconds, and the difference between the samples is small. The time
series are segmented into time windows by the sliding window mechanism [42]. The length of the time
window is determined as 106, and the sliding step size is 20. The specific information of the WTFF
dataset is shown in Table 2. The experimental results were obtained through 10-times 5-fold stratified
cross-validation [43]. Table 3 shows all parameters of the RLCC method in the WTFF dataset. Table 4
shows the classification results of different methods in the WTFF dataset in terms of the bAcc, Macro-
F1, and G-mean. The mean of the evaluation metrics represents the effectiveness of the methods. The
standard variance of the evaluation metrics shows the stability of the methods. The bold numbers in
each row represent the best results.

As shown in Table 4, MLP achieves poor classification performance with low evaluation metric values.
Compared with MLP, different cost-sensitive methods for the imbalanced classification problem alleviate
the impact of imbalance problems to a certain extent and exhibit higher classification performance than
MLP. In this case study, the proposed RLCC exhibits better classification performance than the other
methods. RLCC, as a method of updating sample weights in cost-sensitive learning, effectively learns

1) 2017 Industrial Big Data Innovation Competition. http://www. industrial-bigdata.com/. Accessed on June 18 2021.
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Table 3 Architecture of the RLCC in WTFF dataset

RLCC architecture

Actor-network Critic-network

FC(2650, 56) ReLU FC(2650, 56) ReLU

FC(56, 2) ReLU FC(56, 56) ReLU

FC(2, 1) Sigmoid FC(56, 2) Softmax

Hyperparameter of RLCC

Learning rate: 0.001, batch size: 128

iteration: 200, epochs: 100, optimizer: Adam

Table 4 Classification results of different methods in the WTFF dataset (mean±standard variance)

Metric MLP CoSen-MLP AdaCost-MLP CSMLP CSBNN RLCC

bAcc 0.712±0.056 0.735±0.194 0.845±0.189 0.859±0.113 0.855±0.198 0.872±0.091

Macro-F1 0.6186±0.056 0.624±0.0967 0.740±0.099 0.704±0.173 0.738±0.109 0.816±0.092

G-mean 0.668±0.076 0.724±0.201 0.741±0.188 0.740±0.105 0.745±0.191 0.763±0.031
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Figure 5 (Color online) 2-D projection scatters of the last layer by t-SNE in the WTFF dataset. 0: Freeze samples; 1: Normal

samples. (a) MLP; (b) CoSen-MLP; (c) AdaCost-MLP; (d) CSMLP; (e) CSBNN; (f) RLCC.

the weights of samples in an imbalanced distribution. The sample weights learned by the actor network
enable the critic network to classify the minority samples with high sample weights.

The 2-D projection scatters of the last layer output of all methods in the test dataset (Normal and
Freeze) are depicted in Figure 5 according to t-SNE [44], where the blue color corresponds to Freeze
samples and the green color corresponds to Normal samples. As shown in Figure 5(a), MLP exhibits
a poor ability to classify samples and has the overlapping problem. The Freeze samples are basically
covered by the Normal samples. Moreover, the distribution of Normal samples is relatively scattered,
which is typically the dispersion problem. Thus, almost all of the fault samples are difficult to identify.
As shown in Figure 5(b), compared with naive MLP, the overlapping problem of CoSen-MLP is solved to
a certain extent, and the number of overlapping samples is reduced. The dispersion problem of CoSen-
MLP is also resolved because, different from MLP, CoSen-MLP simply assigns the inverse frequency of
the sample size of classes as the weight of different samples. As shown in Figures 5(c)–(e), compared with
CoSen-MLP, AdaCost-MLP, CSMLP, and CSBNN are effective for the imbalanced classification. The
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Figure 6 Flowchart of the TE process.

Table 5 Architecture of the RLCC in TE process dataset

RLCC architecture

Actor-network Critic-network

FC(32, 64) ReLU FC(32, 62) ReLU

FC(64, 2) ReLU FC(62, 16) ReLU

FC(2, 1) Sigmoid FC(16, number of classes) Softmax

Hyperparameter of RLCC

Learning rate: 0.0001, batch size: 16

iteration: 100, epochs: 50, optimizer: Simple Adam

reason is that those methods use an iterative weight update mechanism to learn more accurate sample
weights and obtain great classification performance. However, the figures show that the overlapping
problem is still pronounced, and it is difficult to classify some samples. As for RLCC, Figure 5(f) shows
that the decision boundaries between classes are more pronounced and that the overlapping samples are
significantly reduced. Moreover, the Normal samples are also more evenly distributed. The alternating
iterative actor-critic for learning sample weights is an effective cost-sensitive strategy. The proposed
RLCC can solve the overlapping problem and the dispersion problem in the WTFF dataset.

4.4 Case 2: TE process dataset

An industrial benchmark of the TE process is used to evaluate the proposed RLCC. This industrial process
was first introduced by Downs and Vogel [45], and has been widely used for testing and evaluating various
process monitoring algorithms and control strategies. As shown in Figure 6, five operation units exist in
the TE process benchmark. Twenty-eight faults are available for simulation in this process [46]. In this
case study, binary-class and multiclass experiments are conducted to verify the feasibility and effectiveness
of the proposed method. For the binary-class experiment, the number of Normal samples for training is
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Table 6 Binary-class results in the TE process dataset in terms of G-mean

Dataset IR MLP CoSen-MLP AdaCost-MLP CSMLP CSBNN RLCC

Fault5-Normal

1 0.7581 0.7600 0.7591 0.7571 0.7532 0.7588

2 0.5731 0.5823 0.5971 0.6291 0.6847 0.7551

10 0.3575 0.3365 0.3495 0.4105 0.6438 0.7042

20 0.3550 0.3513 0.3548 0.3304 0.3803 0.7057

100 0.2227 0.2586 0.2430 0.2643 0.3995 0.6995

Fault12-Normal

1 0.6549 0.6499 0.6420 0.6410 0.6421 0.6407

2 0.4976 0.5217 0.5437 0.5300 0.5099 0.5407

10 0.3739 0.4646 0.4612 0.4300 0.4146 0.5106

20 0.3564 0.4305 0.4413 0.4090 0.3881 0.4933

100 0.0844 0.0719 0.0671 0.0924 0.0316 0.1632

Fault15-Normal

1 0.4611 0.4635 0.4609 0.4608 0.4623 0.4607

2 0.3755 0.3675 0.3904 0.3563 0.3856 0.4201

10 0.2375 0.2305 0.2303 0.2356 0.2562 0.2990

20 0.2020 0.2054 0.1988 0.1994 0.2001 0.2447

100 0.0941 0.1023 0.0960 0.1078 0.0850 0.1784

Table 7 Multiclass results of different methods in the TE process dataset (mean±standard variance)

Metric MLP CoSen-MLP AdaCost-MLP CSMLP CSBNN RLCC

bAcc 0.7312±0.123 0.7625±0.102 0.775±0.085 0.7938±0.043 0.8063±0.098 0.8188±0.013

Macro-F1 0.7071±0.154 0.7380±0.104 0.7610±0.073 0.7752±0.053 0.8036±0.112 0.8184±0.021

G-mean 0.6348±0.201 0.6708±0.124 0.7154±0.142 0.7306±0.103 0.7772±0.103 0.7978±0.018

400. The number of samples used for training in Fault 5, Fault 12, and Fault 15 varies with the imbalance
ratio. For the multiclass experiment, Normal, Fault 2, Fault 6, and Fault 12 are selected to construct
an imbalanced dataset. The number of samples used for training in Normal, Fault 2, Fault 6, and Fault
12 are 720, 356, 222, and 173, respectively. The number of samples used for testing in Normal, Fault 2,
Fault 6, and Fault 12 is 80. Table 5 shows all parameters of the RLCC method in the TE process dataset.
Tables 6 and 7 show the results of different methods for the binary-class and multiclass experiments,
respectively. The bold numbers in each row represent the best results.

For the binary-class experiment, five imbalance ratios of three fault datasets are investigated to evaluate
the effectiveness of each method. As shown in Table 6, when the imbalance ratio is 1, that is, when the
data are balanced, the performance of each method is not much different. With a gradual decrease in
the imbalance rate, the G-mean of all methods sharply decreases, owing to the impact of the imbalance
problem. Figure 7 shows the detailed experimental results of each method through the line chart. In the
line chart, which is plotted by the imbalance ratio on the horizontal axis and the G-mean on the vertical,
each point represents the G-mean value of one method in one dataset. From the table and the line chart,
we can see that the effect decline is generally serious on MLP. Different cost-sensitive methods alleviate
the impact of the imbalance problems to a certain extent. As shown in Figure 7, the RLCC line is higher
than other lines in most datasets, which reflects that for most datasets, the proposed RLCC is better
than other methods under different imbalance ratios. Furthermore, the decline effect of RLCC is not as
significant as those of other methods when the imbalance ratio increases. RLCC basically outperforms
the other five methods under extreme imbalance situations. Therefore, the higher the imbalance ratio is,
the more significant the advantages of RLCC are.

For the multiclass experiment, Figure 8 represents the reward over training episodes. RLCC shows
faster optimization in the training episodes. RLCC reaches the saturation region at about 200 episodes.
This shows that RLCC can automatically optimize the performance of the imbalanced classifier. As
shown in Table 7, the proposed RLCC outperforms the other methods. MLP achieves poor classification
performance with low evaluation metric values. Different cost-sensitive methods are applied to solve the
imbalanced classification problems, and they yield higher classification performance. The updating sam-
ple weight mechanism in cost-sensitive learning is effective for the imbalanced classification problem. The
actor network can more accurately learn sample weights according to the specific sample classification
results. The 2-D projection scatters of the last layer output of all methods for the test dataset (Normal,
Fault 2, Fault 6, and Fault 12) are depicted in Figure 9 according to t-SNE [44]. As shown in Figure 9(a),
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Figure 8 (Color online) Reward of RLCC for the multiclass experiment in the TE process dataset.

MLP has a poor ability to classify samples. The overlapping problem still exists in Figure 9(a), particu-
larly among Normal, Fault 2, and Fault 12. Thus, Normal, Fault 2, and Fault 12 are difficult to identify.
As shown in Figures 9(b)–(e), the comparison methods outperform naive MLP to a certain extent. The
iterative weight update mechanism endows the classifier with great classification performance. As shown
in Figure 9(f), the decision boundaries among Normal, Fault 2, and Fault 12 are more significant, and
the overlapping samples are significantly reduced. Thus, the proposed RLCC can solve the overlapping
problem and the dispersion problem in the TE process dataset.

In summary, RLCC is a good technique for dealing with imbalanced classification problems without
changing the data distribution. As expected, RLCC can alleviate the impact of imbalance distribution
for fault classification. RLCC gives a higher reward for minority samples, which increases the probability
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Figure 9 (Color online) 2-D projection scatters of the last layer by t-SNE in the TE process dataset. 0: Normal; 2: Fault 2; 6:

Fault 6; 12: Fault 12. (a) MLP; (b) CoSen-MLP; (c) AdaCost-MLP; (d) CSMLP; (e) CSBNN; (f) RLCC.

that minority samples are correctly classified. In addition, RLCC can dynamically yield the cost matrix
to assign a higher weight for important samples. The result reflects that the proposed RLCC can more
effectively handle the imbalanced fault classification problem.

5 Conclusion

In this paper, a novel RLCC is proposed to handle the imbalanced fault classification. Compared with
the basic actor-critic mechanism of RL, we modified the loss of the actor network via policy gradient
and introduced a novel cost matrix into the critic network. Moreover, we designed appropriate rewards
to guide the novel actor-critic mechanism to learn the optimal cost matrix for the imbalanced fault
classification problem. The usefulness and advantages of the proposed RLCC were validated through
two case studies. The experimental results showed that RLCC has the following remarkable advantages:
(1) A novel weighted cross-entropy function that combines the output of the MLP classifier with the cost
matrix is effective for solving the imbalanced fault classification problem. (2) The REINFORCE loss
of RL can be used to learn the sample weights in combination with the classification results. (3) The
alternating iterative approach of the actor-critic mechanism can be used to learn sample weights and
optimize the classification performance. Finally, the application results demonstrate the superior abilities
of the proposed method compared with the other cost-sensitive methods.
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