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Abstract Chip design with machine learning (ML) has been widely explored to achieve better designs,

lower runtime costs, and no human-in-the-loop process. However, with tons of work, there is a lack of

clear links between the ML algorithms and the target problems, causing a huge gap in understanding the

potential and possibility of ML in future chip design. This paper comprehensively surveys existing studies

in chip design with ML from an algorithm perspective. To achieve this goal, we first propose a novel and

systematical taxonomy that divides target problems in chip design into three categories. Then, to solve the

target problems with ML algorithms, we formulate the three categories as three ML problems correspondingly.

Based on the taxonomy, we conduct a comprehensive survey in terms of target problems based on different

ML algorithms. Finally, we conclude three key challenges for existing studies and highlight several insights

for the future development of chip design with machine learning. By constructing a clear link between chip

design problems and ML solutions, we hope the survey can shed light on the road to chip design intelligence

from previous chip design automation.
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1 Introduction

Over the past several years, machine learning (ML) algorithms have been widely utilized in chip design
for their potential to enhance design quality, reduce runtime costs, and achieve no human-in-the-loop
process [1–7]. ML algorithms, especially recent deep learning (DL) algorithms [8–11] and reinforcement
learning (RL) algorithms [12,13], have been extensively explored to address various problems encountered
in chip design, such as high-level synthesis (HLS) [14–24], floorplanning [25–37], placement [38–61], and
routing [62–69]. Despite the abundance of research in this area, there remains a lack of clear links
between the ML algorithms and the target problems in chip design, causing a huge gap in understanding
the potential and possibility of ML in future chip design.

This paper comprehensively surveys existing studies of chip design with ML algorithms from an al-
gorithm perspective. To accomplish this goal, we propose a novel and systematical taxonomy for the
target problems at different stages in chip design. The taxonomy aims to guide selecting and design-
ing ML algorithms for the target problems, taking into account their existing challenges, as well as to
provide a comprehensive summary of chip design with ML algorithms for researchers. As illustrated in
Figure 1, we classify the target problems in chip design into three categories: design result estimation,
design optimization and correction, and design construction, which are commonly encountered in differ-
ent stages of logic design, circuit design, and physical design, as well as in verification and test of each
stage. Specifically, design result estimation encompasses problems that predict or estimate design quality,
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Figure 1 (Color online) Overall taxonomy.

such as performance estimation in logic design, IR drop estimation in physical design, and static timing
analysis (STA) in logic design and physical design. Design optimization and correction refer to problems
that optimize design quality and correct design errors, respectively, such as HLS design space exploration
(DSE) in logic design, logic optimization in circuit design, and detailed routing in physical design. Design
construction encompasses problems that generate design representations or add the design objects (i.e.,
components and routes), such as physical mapping in circuit design and global placement in physical
design.

To address these target problems with ML algorithms, we formulate the three categories of the target
problems as three corresponding problems in ML: regression, search, and generation, as shown in Fig-
ure 1. Each of these ML problems can be tackled by various ML algorithms. Specifically, the design
result estimation problem is formulated as a regression problem and can be addressed using several ML
algorithms, including Gaussian process (GP), multivariate adaptive regression splines (MARS), decision
tree (DT) & random forest (RF), neural networks (NNs), and ensemble learning (EL). The design opti-
mization and correction problem is formulated as a search problem and can be tackled using various ML
algorithms, including DT & RF, NNs, and RL. Finally, the design construction problem is formulated as
a generation problem and can be tackled using various ML algorithms, including Bayesian optimization
(BO), NNs, and RL.

Based on the taxonomy, we comprehensively survey the existing studies in terms of the target problems
by the following steps. Our approach is structured as follows: firstly, we present a definition for each
target problem and analyze the inherent reasons for applying ML algorithms in addressing these target
problems. Secondly, we conduct a comprehensive survey in terms of target problems according to the ML
algorithms. We introduce specific ML-based work for each target problem and explain how they improve
upon the origin chip design tools based on conventional algorithms. Finally, we conclude by highlighting
three key challenges that remain unresolved in the existing studies and provide several insights for future
research in chip design with ML algorithms, including single-stage end-to-end generation, cross-stage end-
to-end generation, whole-process end-to-end generation, practicability improvement, and others, which
we hope to boost the research in chip design with ML. By establishing a clear link between chip design
problems and corresponding ML solutions, our survey aims to shed light on the road to chip design
intelligence from previous chip design automation.

To the best of our knowledge, this paper is the first work to comprehensively survey chip design with
ML from an algorithm perspective. We summarize the main contributions of this survey as follows.

(1) Deep analysis of chip design. We dissect the commonly adopted process of chip design and
analyze the key steps in different design stages (i.e., logic design, circuit design, and physical design) as
well as in verification and test of each stage, where the key design, advantages, and disadvantages of the
steps are analyzed.

(2) Innovative taxonomy. We classify target problems into three categories (i.e., design result
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Figure 2 (Color online) Chip design process.

estimation, design optimization and correction, and design construction) and further formulate them into
three ML problems, respectively: regression, search, and generation.

(3) Comprehensive survey. Based on the taxonomy, we present the definition of each target problem
and analyze the inherent reasons why ML algorithms are used to address the target problems. We also
conduct a comprehensive survey in terms of target problems based on different ML algorithms.

(4) Future work. Finally, we conclude by highlighting three key challenges that remain unsolved
in existing studies and provide insights into the future development of chip design with ML algorithms,
which we hope to boost the research in chip design with ML.

The rest of this paper is organized as follows. In Section 2, we analyze the chip design process, provide
an overview of ML, and present the taxonomy from an algorithmic perspective. Sections 3–5 provide
a comprehensive survey of existing studies in chip design with ML algorithms, covering design result
estimation with regression ML algorithms (Section 3), design optimization and correction with search
ML algorithms (Section 4), and design construction with generation ML algorithms (Section 5). In
Section 6, we highlight three key challenges that remain unsolved in chip design with ML, and we suggest
several future work to tackle these challenges.

2 Chip design and machine learning

2.1 A primer on chip design

After four decades of development, chip design has witnessed the integration of various software tools
that incorporate advanced algorithms to facilitate design automation, commonly referred to as electronic
design automation (EDA) tools. As depicted in Figure 2, the chip design can be roughly divided into
three stages: logic design, circuit design, and physical design. Besides, verification and test are carried
out at every stage to guarantee correctness. It is worth noting that in this survey, we focus exclusively
on digital circuit design.

2.1.1 Logic design

The primary objective of the logic design stage is to generate the logic description for a chip starting from
scratch. Typically, this is achieved by either automatically generating or manually developing register-
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transfer-level (RTL) hardware codes such as Verilog or VHDL. Automatic generation is commonly referred
to as HLS, while manual development is known as hardware programming.

HLS automatically transforms hardware functions to RTL programs through HLS tools, adhering to
user-specified design constraints. Typically, hardware functions are described by high-level programming
languages such as C, C++, and SystemC, and RTL programs are characterized as hardware codes such
as Verilog or VHDL. Generally, traditional HLS algorithms utilize deterministic algorithms to perform
these transformations [1]. However, on a large-scale design, such transformations can be excessively
time-consuming due to the very large and highly complex space, where the design complexity grows
exponentially with the length of the RTL program.

Hardware programming manually writes the RTL programs, which are characterized as hardware de-
scription languages (HDL), such as Verilog and VHDL. HDLs describe the behavior and structure of
electronic circuits, particularly digital logic circuits. Verilog, for example, models electronic circuits,
particularly digital circuit design and verification, at the RTL of abstraction. Although hardware pro-
gramming typically requires more time than HLS, it remains popular among chip designers because it
leverages human experience and can achieve better design quality than HLS tools.

2.1.2 Circuit design

After the hardware description (i.e., an RTL program) is determined, the circuit design is conducted
to obtain the circuit-level, typically gate-level, description of the design, which is also known as logic
synthesis or front-end design in chip design.

Logic synthesis is a process in which the chip designer transforms the RTL program into a netlist, a
gate-level circuit representation that is characterized as an HDL. This process primarily comprises two
core steps: logic optimization and physical mapping. The former step aims to simplify the circuit’s
Boolean expression and logical netlist structure to obtain a logical expression with the simplest possible
logic. The latter step aims to generate the simplest possible physical circuit by mapping the logical
expression to physical units for a given technology library, which defines the types of available gates and
standard cells. Effective utilization of logic synthesis enables the construction of a netlist without any
physical information, which is completed in subsequent processes. However, in practice, both steps are
challenging to identify the optimal logic expression and netlist due to the highly complex search space
in logic optimization [1, 70] and the poor generalization of determining the optimal solution in physical
mapping [71].

2.1.3 Physical design

Once the netlist is established, the physical design is conducted to obtain the placed and routed layout
of the design, which is suitable for delivery to the foundry for the purpose of tape-out. The physical
design typically contains multiple stages such as floorplanning, placement, clock tree synthesis (CTS),
and routing.

Floorplanning determines the initial physical information (i.e., physical design environment and param-
eters) for a layout and places instantiated modules and macros on the layout while considering physical
constraints. A well-executed floorplanning can generate a general region plan for placing standard cells
and is a critical requirement for successful placement deployment. Unfortunately, achieving desirable
quality floorplanning often requires expert knowledge and collaboration across various fields, leading to
high development costs and prolonged production cycles.

Placement assigns logic components (i.e., standard cells) on the layout based on the given netlist from
logic synthesis and available standard cell types in a technology library. Accurate placement is crucial for
improving design performance and routability, ultimately impacting chip manufacturability. However,
existing placement approaches still face three challenges. First, the optimal placed layout cannot be
theoretically obtained because the quality of placement is heavily dependent on the posterior unknown
routing strategy. The main reason is that the complexity of global placement, gate sizing, and power
delivery network (PDN) synthesis makes cross-step or global optimization difficult. Second, placement is
time-consuming, as global placement involves placing many standard cells with a complexity greater than
exponential, leading to a long runtime. Finally, gate sizing in placement requires careful consideration of
netlist context details [60] and often relies on expert knowledge, leading to a high dependency on human
participation.
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CTS is a process that aims to balance the delay of clock signals to all clock inputs by inserting buffers
or inverters along the clock paths of chip design, with the goal of minimizing the skew and insertion delay.
This optimization is crucial because it can significantly improve the maximum achievable clock frequency
(i.e., throughput) and overall chip performance. However, analyzing the skew can be a time-intensive
process, requiring the analysis of many paths and all possible design cases. Therefore, CTS is often
time-consuming, especially for large-scale design tasks.

Routing, or wire routing, is a crucial process that allocates routing resources for wires and establishes
connections between multiple components (i.e., macros and standard cells) based on specific design rules.
This process is critical for chip design as it ensures functional correctness and can significantly impact chip
performance and signal integrity (SI). However, existing routing approaches face two problems. Firstly,
global routing is time-consuming due to the exponential design space complexity relative to the number of
possible wires. Secondly, detailed routing requires human participation to check and eliminate congestion
with high accuracy.

2.1.4 Verification and test

Verification and test run through the whole process of chip design and are performed iteratively to ensure
the correctness of each stage’s output. This helps to save significant costs for chip designers and avoids
expensive trial and error in the design and manufacturing phases. Typical verification and test are com-
plicated and involve different types, including functional verification and test, logic verification and test,
circuit verification and test, netlist verification and test, and layout verification and test. Unfortunately,
each type of verification and test is time-consuming, and multiple iterations of these steps for a single
design task require a substantial amount of time and effort.

2.2 A primer on machine learning

As a branch of artificial intelligence (AI), ML focuses on enabling machines to ‘learn’ from data like human
beings. Typically, ML algorithms construct a model that utilizes sample data to enhance the accuracy
of predictions or decisions. In recent years, ML algorithms have demonstrated remarkable success in a
wide range of challenging tasks across various industries and academic domains, such as computer vision
(CV) [10], natural language processing (NLP) [72], automated decision-making [73], bioinformatics [74],
and mathematics [75]. Nowadays, ML is the dominant force in the field of AI and has brought prosperity
to AI.

ML has also proven to be successful in all stages of chip design. The common target problems en-
countered in chip design can be roughly formulated into three core ML problems: regression, search,
and generation. Consequently, numerous ML algorithms can be employed to address these three core
problems and enhance the performance of chip design.

Regression. Regression aims to learn the parameters of a model to estimate the relationship be-
tween independent and dependent variables. The independent variables are commonly input data, such
as raw data or hand-crafted features, while dependent variables refer to ground truth, such as labels
annotated by humans. Regression models are trained on input-output samples, and given input data,
the model generates predictions of the ground truth. Regression algorithms aim to minimize the distance
between predictions and ground truth. In chip design, regression algorithms are used to solve design
result estimation problems. The independent variables are extracted features of design at an exact step,
including chip specifications, design rules, and the current design. The regression model aims to esti-
mate design-related judgment, including quality, timing, performance, and resource costs. The produced
design-related judgments are then used to validate the design and guide design optimization. To improve
the accuracy and efficiency of regression, various ML algorithms, such as GP [14], MARS [62,63], DT &
RF [15,16, 25, 38, 39], NNs [17, 26, 40–49,76–80], and EL [18–20,27, 28, 50, 51], have been applied.

Search. Search intelligently finds the optimal solution from a search space that includes all possible
solutions. Simple exhaustive search can be inefficient and slow because the number of search steps grows
quickly in the large search space. To address this issue, heuristic search algorithms have been developed
with two goals. First, some heuristic search algorithms prioritize solutions that are more likely to be
optimal. Second, some heuristic algorithms eliminate some solutions that are unlikely to lead to optimal
solutions. In chip design, search algorithms are used for design optimization and correction problems,
where they read the design and iteratively explore the design space to discover a feasible and superior
design. The start points of search algorithms are designed by humans or EDA tools. These initial designs
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often have limitations or faults, including poor power, performance, and area (PPA), as well as functional
faults and design failures. Search algorithms iteratively tune the design to improve the quality of PPA,
correct functional faults, and find a design without failure. To accelerate the search process and improve
the quality of solutions, ML algorithms, such as DT & RF [21,22, 29], NNs [23, 52–54,64, 65, 81–83], and
RL [24, 30, 55–57,66–68,70, 84–86], are applied to estimate the appropriate search direction.

Generation. Generation focuses on predicting the target variable from the given observation variable.
This is accomplished by learning a generative model to build the joint probability distribution of the
observable and target variables and then using this model to estimate the target variable given the
observation variable. Nowadays, generation algorithms have shown impressive results in various fields
such as images [9], texts [72], and programs [87]. In chip design, generation algorithms are applied in two
ways. The first is to generate the representation of the design for the next stage based on the current stage.
For example, physical mapping generates a gate-level circuit representation from an RTL representation
of a circuit. The second is to add objects relevant to the next stage of the current design, such as
standard cells added during global placement. To improve the efficiency and quality of the generation
process, multiple ML algorithms, including BO [31, 71], NNs [32, 33, 58–61, 69, 88–90], and RL [34–37],
have been applied to solve the generation problem.

2.3 Taxonomy: from the algorithm perspective

In this paper, we survey and summarize studies of chip design with ML in taxonomy as depicted in
Figure 1. Chip design is divided into logic design, circuit design, physical design, as well as verification
and test, and the target problems in them are classified into three types: design result estimation, design
optimization and correction, and design construction. Based on our survey, design result estimation
problems can be formalized as regression problems, design optimization and correction problems can
be formalized as search problems, and design construction problems can be formalized as generation
problems.

Our taxonomy starts from an algorithm perspective for two reasons. Firstly, while chip design may
consist of various stages and problems, many of these can be reformulated as similar issues from an ML
perspective and thus can be addressed using similar ML algorithms. For example, estimating the design
quality is the same problem, where in logic design, the input is RTL designs [14–20], and in physical
design, the placed and routed layouts [26, 38–51, 62, 63, 78–80]. These problems can be formalized as
regression problems and solved with regression ML algorithms, such as the RF [15, 16, 25, 38, 39] and
NNs [17,26,40–49,76–80]. Secondly, reviewing and surveying studies based on tasks or functionality have
already been extensively explored [1–5]. Currently, for leveraging ML algorithms (especially emerging
DL and RL) in chip design, the most significant barrier is how to formalize a given chip design problem
as an ML problem. This survey aims to build links between them to help chip designers and chip design
researchers understand why a particular ML algorithm can be used to solve chip design problems, which
we think could be more helpful.

The rest of the paper introduces design result estimation problems solved with regression ML al-
gorithms, design optimization and correction problems solved with search ML algorithms, and design
construction problems solved with generation ML algorithms, respectively. All the studies introduced
below are summarized in Table 1.

3 Design result estimation with regression machine learning algorithms

3.1 Design result estimation problems

Design result estimation refers to problems that predict or estimate the quality of design. These problems
read the design and judge the current design in different stages for different purposes, as shown in
Table 2. In the logic design stage, design result estimation includes performance estimation, STA, quality
estimation, and routability estimation. In the physical design stage, design result estimation includes
STA, quality estimation, routablity estimation, IR drop estimation, bump inductance prediction, coupling
effect prediction, net length prediction, clock power estimation, and SI analysis.

Performance estimation. Performance estimation aims to estimate a chip design’s throughput and
throughput-to-area ratio, particularly in the logic design stage. Typically, the throughput is estimated
by the maximum achievable clock frequency from an HLS timing report. The estimated result is then
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Table 1 Taxonomy and corresponding papersa)

Stage Target problem category Target problem ML algorithm Ref.

Logic design

Design result estimation

Performance estimation

GP [14]

NNs [17]

EL [18]

Static timing analysis
NNs [19]

EL [20]

Quality estimation DT & RF [15]

Routability estimation DT & RF [16]

Design optimization and correction HLS design space exploration

DT & RF [21, 22]

NNs [23]

RL [24]

Design construction – – –

Circuit design

Design result estimation – – –

Design optimization and correction Logic optimization
NNs [81]

RL [70, 84, 85]

Design construction Physical mapping BO [81]

Physical design

Design result estimation

Static timing analysis

DT & RF [38]

NNs [40, 41]

EL [27, 28]

Routability estimation

MARS [62, 63]

DT & RF [25]

NNs [26, 42–47]

IR drop estimation
DT & RF [39]

NNs [48, 49]

Bump inductance prediction EL [50]

Coupling effect prediction NNs [79]

Net length prediction
NNs [80]

EL [51]

Clock power estimation NNs [78]

Signal integrity analysis NNs [76, 77]

Design optimization and correction

Floorplanning optimization
DT & RF [29]

RL [30]

Gate sizing
NNs [54]

RL [57]

Detailed routing RL [66–68]

Layout optimization
NNs [52, 53, 64, 65]

RL [55, 56]

Design construction

Module placement

BO [31]

NNs [32, 33]

RL [34–37]

Global placement NNs [58, 59]

Gate sizing NNs [60]

PDN synthesis NNs [61]

Clock tree synthesis NNs [88]

Global routing NNs [69]

Verification & test

Design result estimation – – –

Design optimization and correction
Test point insertion

NNs [82]

RL [86]

Test metrics optimization NNs [83]

Design construction Testbench generation NNs [90]

a) “–” shows that this paper does not mention any problem in this category, as is the case with subsequent tables.

used to optimize the design to meet the required performance. Although the performance estimation
in logic design is generally less precise than in circuit design and physical design, it is still valuable for
facilitating rapid design iteration.
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Table 2 Design result estimation problems in chip design

Design result estimation Problem description Input Output

Logic design

Performance estimation Estimate the throughput HLS reports Throughput

Static timing analysis Measure latencies RTL designs Latencies

Quality estimation
Measure hardware

characteristics
HLS reports QoRs

Routability estimation
Measure routing

possibility
RTL designs Congestion

Circuit design – – – –

Physical design

Static timing analysis Measure latencies Layouts Latencies

Routablity estimation
Measure routing

possibility
Layouts Congestion

IR drop estimation Evaluate power levels Layouts IR drop/EM

Bump inductance prediction Estimate PDN quality Layouts Bump inductance

Coupling effect prediction
Estimate coupling

capacitance
Layouts

Coupling

capacitance

Net length prediction Analyze net lengths Layouts Net lengths

Clock power estimation
Predict clock

network’s power
Layouts Power

Signal integrity analysis
Evaluate quality

of digital signal
Layouts EW/EH/BER

Verification & test – – – –

Static timing analysis. Static timing analysis measures the delay of all paths in the design to ensure
there are no timing violations, avoiding the need for costly and time-consuming full simulation. STA is
an essential step in every chip design stage to validate the design after transformation or optimization by
EDA tools. Even without a full simulation, the cost of STA is still not negligible.

Quality estimation. Quality estimation, or quality of results (QoRs) estimation, measures the
hardware characteristics of a design, including resource usage (especially area), timing, and power. It is
crucial in every chip design stage to assess whether the final chip meets the given constraints, such as chip
size, clock frequency, and power. However, quality estimation in the earlier stages is more challenging
and less accurate than in later stages.

Routability estimation. Routability estimation measures the possibility of whether a design can be
successfully routed after placement in the physical design stage. By estimating the routing result instead
of running computationally-expensive routers, routability estimation can help save time and resources.
However, it remains a computationally-intensive problem, and accurate estimation is still very challenging,
as routability is dependent on the router used, and each router is highly complex.

IR drop estimation. IR drop estimation evaluates IR drop (i.e., deviation of the power level from its
specification) and ElectroMigration (EM) to determine whether a circuit meets its timing and function
constraints. Accurate IR drop estimation can reduce the turnaround time among module placement,
PDN synthesis, and global placement [39], leading to faster design convergence. However, accurate IR
drop estimation methods can be time-consuming, especially as chip scale and complexity continue to
grow.

Bump inductance prediction. Bump inductance prediction measures the bump inductance on a
layout to estimate the quality of the PDN. The quality of the PDN is critical for ensuring that sufficient
power can be delivered to critical blocks in a chip [50], thus guaranteeing its functional correctness.
Unfortunately, current bump inductance prediction methods have low accuracy, resulting in a longer
turnaround time between PDN synthesis and manual optimization.

Coupling effect prediction. Coupling effect prediction measures the coupling capacitance of a design
to estimate crosstalk effects, which is performed prior to routing. Accurate crosstalk effect estimation can
improve the robustness of PPA optimization [79]. However, as the router determines coupling capacitance,
estimating crosstalk effects before routing lacks adequate information, which requires numerous iterations
between placement and routing.

Net length prediction. Net length prediction measures net lengths before routing to estimate routing
resource usage and critical path lengths. Accurate net length prediction ensures accurate timing [80]
or power [51] estimation and optimization. Unfortunately, as net lengths are determined during the
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routing stage, predicting net lengths beforehand suffers from inadequate information. Therefore, achieving
accurate net length prediction prior to routing poses a significant challenge.

Clock power estimation. Clock power estimation is to predict the power consumption of the clock
network before CTS. Clock power estimation is crucial in determining the overall power consumption of
a chip as the clock network is often the main power consumer in chip design [91]. However, accurately
estimating the power consumption of the clock network before CTS is challenging as it depends on the
clock network’s structure generated by CTS.

Signal integrity analysis. Signal integrity analysis evaluates the quality of the digital signal by
measuring the eye height (EH), eye width (EW), and bit error rate (BER). High-quality digital signals
ensure the reliability of a chip. However, SI analysis is computationally expensive and requires significant
resources, such as power, memory, and time [76, 92].

Summary. It can be summarized that accuracy and speed are the two most significant concerns in
the aforementioned design result estimation problems. Design result estimation problems require fast and
accurate estimation to enable iterative design. However, fast estimation methods often produce inaccurate
predictions, while accurate methods are computationally expensive. For example, performance estimation
is fast, but its optimistic result is not trusted, which leads to an increased number of iterations in the
entire chip design process; routability estimation is typically expensive and not directly integrated into
placement. To address these challenges, researchers have turned to ML algorithms, which primarily focus
on either accuracy or speed, or rarely both.

3.2 Regression machine learning algorithms

Design result estimation problems are commonly formalized as regression problems, where inputs are
mapped to outputs containing at least one continuous value. Roughly, for regression problems, a training
set with N samples is given, (xi, yi) for 0 6 i < N , then yi∗ = f(xi, θ) is trained with these N samples,
where the error E(y,y∗) is minimized between the given samples and the results from the regression
function (i.e., regression model) f , and θ is the parameters of regression function f . This process is
shown in Figure 3.

Formalized as regression problems, design result estimation problems can be solved with regression
ML algorithms, including Gaussian process (Subsection 3.2.1), multivariate adaptive regression splines
(Subsection 3.2.2), decision tree & random forest (Subsection 3.2.3), neural networks (Subsection 3.2.4),
and ensemble learning (Subsection 3.2.5). Table 3 shows representative related studies in terms of the
adopted regression ML algorithms.

3.2.1 Gaussian process

Gaussian process regression (i.e., typically used as a default surrogate model in BO) is a process to
model the relationship between input and output, i.e., the probability distribution over the regression
function F . Essentially, GP assumes that p(f(x0), . . . , f(xN−1)) is a jointly Gaussian distribution, and
the regression function f ∼ N (mean(X), κ(xi,xj)), where mean(·) is the mean function and κ(·, ·) is the
covariance function of the assumed distribution, respectively. When predicting with GP regression, the
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Table 3 Regression machine learning algorithms used to solve the design result estimation problems

Algorithm Problem Ref. Training samples Fitting function Error function

GP Performance estimation [14] Not mentioneda) Throughput MAE

MARS Routability estimation [62] 9 layouts Routing congestion MAE

DT & RF

Static timing analysis [38] Nets of 120 circuits Net delay/slew MSE

Quality estimation [15] Over 1300 HLS reports
Resource usage &

timing correction
RAE

Routability estimation [16] About 6500 IR operations Routing congestion MAE

IR drop estimation [39] 96 floorplans IR drop Not mentionedb)

NNs
Performance estimation [17] Cross-platform instances Speedup RMSE

Routability estimation [43] More than 300 floorplans #DRV/DRC hotpots MSE

EL
Performance estimation [18] 2700 HLS reports

Throughput &

throughput-to-area
RMSE

Static timing analysis [27] 1248 DEFs Slack MSE

a) Ref. [14] did not mention the type and number of training samples used.

b) Ref. [39] did not mention the error function that they used.

joint distribution still follows Gaussian distribution, i.e., p(y∗|X∗,X,y) ∼ N (µ∗,Σ∗), where (X,y) is
the set of training inputs and outputs, (X∗,y∗) is the set of testing inputs and outputs, µ∗ is the mean
function of the joint distribution, and Σ∗ is the covariance function of the joint distribution. Normally,
the parameters in the joint distribution (e.g., kernel function) can be determined by maximizing the
marginal likelihood.

Performance estimation. To address the accuracy issue in performance estimation, researchers
have explored using GP to improve the accuracy of estimating throughput on field programmable gate
arrays (FPGAs) [14]. Ferianc et al. [14] reused prior knowledge from a standard method of performance
estimation on FPGA [93], as the mean function of the GP to anchor the estimation within reliable bounds.
They then combine the mean function with collected data to avoid complete reliance on the data while
estimating performance. Compared with the standard method, Refs. [14, 93] achieved an approximately
30.7% improvement in accuracy.

3.2.2 Multivariate adaptive regression splines

Multivariate adaptive regression splines regression can be taken as an extension of linear models that
accounts for nonlinearities and interactions between variables, as well as the effects of interactions, and can
be seen as a form of the nonlinear generalized additive model. MARS has a form of f(x) =

∑k

i=1 ciBi(x),
where the Bi(·) are the basis functions, ci are the coefficients, and x is the high-order input. Each Bi(·)
is a tensor product basis of regression spines (e.g., (xi − ti) or (ti − xi)) to represent vector input x, e.g.,
(xi − ti)(tj − xj)(tk − xk), where ti, tj , tk are values from input x. The MARS model is built through
forward passes and backward passes. In the forward pass, MARS multiples f(·) with the regression
spines of a new value xi in x gradually, i.e., (xi − ti) and (ti − xi). In the backward pass, the MARS
model gradually removes basis functions that cause the smallest increase in the error. Until the error
stops improving through the greedy search style backward pass, MARS select the best model as the final
regression model.

Routability estimation. MARS has been proposed to address the challenge of accurate routability
estimation in physical design [62,63]. In particular, Qi et al. [62] used an MARS model to predict detailed
routing congestion based on layout data (especially global routes). Concretely, the MARS model takes
features extracted from the segment number, the via number, and the pin distribution data as input and
then predicts the number of design rule violations (#DRV) and routing resource utilization. The MARS
model captures nonlinear functions and interactions from layouts and global routes without requiring
time-consuming parameter tuning. The learned MARS model is integrated into the global routing step
to reduce detailed routing runtime and memory usage while improving solution quality. Compared with
a previous analytical model [94], Ref. [62] achieved 34% fewer DRVs and 37% less runtime. Zhou et
al. [63] further improved the MARS model by incorporating additional input features such as pin density,
routing blockage, and features of global routes and local nets. The trained MARS model predicts the
DRVs after routing with an average accuracy of 79.8%.
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3.2.3 Decision tree and random forest

A decision tree is a supervised learning algorithm that recursively partitions the input space into regions
where each region has a local model. DT follows the formula f(x) =

∑M

m=1 ωmφ((x),vm), where ωm is
the mean response, and φ(·) is the basis function in the m-th space. DT normally uses a greedy method
to find the optimal partition of the input space, where a full tree is built and then pruned. Random
forest further improves the accuracy by leveraging multiple trees, i.e., f(x) = 1

T

∑T

t=1 ft(x), where ft(x)
is the t-th tree trained with a randomly chosen subset of inputs.

Static timing analysis. DT & RF have been applied in STA to reduce pessimism and speed up timing
closure. Barboza et al. [38] proposed a method for predicting the net delay and slew using an RF model to
minimize the pessimism in slack estimation. The RF model takes as input various features extracted from
nets, including the driver and sink capacitance, the distance between the driver and the target sink, the
max driver input slew, and the context sink locations. The predicted net delay and slew obtained from
the RF model are then employed to measure the slack using a program evaluation and review technique
(PERT) algorithm [95]. The RF model achieves a receiver operating characteristic (ROC) score of 0.97,
indicating that it has low pessimism in the slack estimation compared with a commercial tool (0.85) and
other techniques, such as Lasso and MLP.

Quality estimation. DT & RF have been investigated for solving the problem of quality estimation,
which involves measuring the hardware characteristics of a design, such as resource usage (especially
area), timing, and power. Dai et al. [15] proposed a method that utilizes several ML models, including
linear regression, NN, and XGBoost [96], as regression models for estimating the resource usage (i.e.,
LUT, FF, DSP, and BRAM) and timing correctness of a design by analyzing HLS reports. The input
data of these regression models consist of 87 selected features, which are obtained by removing redundant
and irrelevant features from a set of 234 features. Experimental results demonstrate that XGBoost (1) is
the most competitive ML model among the regression models and (2) reduces the relative absolute errors
(RAEs) of the resource usage and timing correct estimations by up to 138%, compared with HLS reports
generated by a commercial tool.

Routability estimation. DT & RF have been applied to address the problem of routability es-
timation, which aims to reduce congestion prediction errors in both the logic design [16] and physical
design [25] stages. In the logic design stage, Zhao et al. [16] proposed a gradient-boosted regression tree
(GBRT) model for predicting routing congestion in FPGA HLS and identifying highly congested regions
in HDL source codes. They extract 302 possible features from operator information, dependency among
operators, and scheduling and global information as input to the GBRT model. Experimental results
demonstrate that the GBRT model achieves the smallest errors compared with linear regression and
NNs, with errors of 6.71% and 10.05% for vertical and horizontal routing congestion, respectively. In the
physical design stage, Cheng et al. [25] proposed a DT regression model and a boosted DT regression
model for predicting half-perimeter wirelength (HPWL) and routing congestion, respectively. These two
models outperform linear regression, NNs, and Poisson regression on average in the two tasks.

IR drop estimation. Ho et al. [39] proposed IncPIRD, an XGBoost-based model that predicts the
static IR drop based on the prediction before the modification. The input data of the XGBoost model
in IncPIRD are features extracted from technology files (e.g., DEFs and LEFs) using Kirchhoff’s circuit
law (KCL), Kirchhoff’s voltage law (KVL), branch equations, and superposition. IncPIRD achieves a
22–1000× speedup compared with RedHawk1), a golden IR drop signoff tool, with an average error of
less than 1 mV. Moreover, IncPIRD exhibits strong generalizability that can handle the modification of
macro blocks, standard cell blocks, the PDN structure, and power pads without requiring retraining the
model.

3.2.4 Neural networks

Neural networks, including deep neural networks (DNNs), differ from traditional ML algorithms by having
a multi-layer architecture where each layer contains multiple neurons. These neurons are connected to the
next layer with synapses, usually with weights, in different ways, such as connecting all neurons (fully-
connected layer) or partial neurons (convolutional layer). The output of each neuron is computed by a
non-linear function known as the activation function. Combining different types of layers, various NN
models can be built, such as the multi-layer perceptron (MLP), the convolutional neural network (CNN),

1) Ansys. RedHawk user guide. https://www.ansys.com/.
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the Transformer, the graph neural network (GNN), and the generative adversarial network (GAN). NNs
are trained using backpropagation, where the error between network outputs and desired outputs (labels)
is propagated from the final layer to the first layer while modifying synapse weights. During prediction,
input flows through the network layer by layer, and the final layer acts as a linear regression model.
Although there are NN methods that do not rely on backpropagation [97–100], they have not yet been
applied to chip design.

Performance estimation. Makrani et al. [17] proposed a performance estimation tool called XPPE,
which employs an MLP to predict the potential throughput speedup of porting an application from
one FPGA device to another. XPPE extracts features from HLS reports, the target FPGA’s available
resources, and the application for cross-platform, and uses a 3-layer MLP to predict the throughput
speedup of the target FPGA. The MLP takes the extracted features as input and uses root mean squared
error (RMSE) as the loss function for training. Experimental results demonstrate that the coefficient of
determination between the estimated speedup and the actual speedup is greater than 0.97.

Static timing analysis. NNs have been utilized in STA to predict the path delay and arrival time in
both logic design [19] and physical design [40,41] stages. In the logic design stage, De et al. [19] proposed
a GNN-based hybrid model to improve circuit delay prediction accuracy. First, they extract critical
HLS combinatorial paths from HLS timing reports and translate them into dataflow graphs. Then, HLS
path features are classified into global features (e.g., component counts and cumulative HLS delays) and
local features (e.g., structural connectivity and component features). Next, the local features are used to
generate graph embeddings through a GNN. Finally, a non-graph regression model (e.g., RF) is utilized
to predict the circuit delay using both the global features and the graph embeddings. The hybrid model
improves the delay prediction accuracy by 93% compared with simple additive models. In the physical
design stage, Guo et al. [40] utilized a GNN model to improve arrival time prediction accuracy. First,
the given circuit is mapped to a heterogeneous graph where the edges represent nets and the cells/nodes
represent pins. Then, a GNN model with 3 convolution layers is employed to predict the net delay. The
GNN model takes physical information of pins, cells, and nets as input features. Concretely, each layer
performs graph broadcast and reduction along net edges and reversed net edges, respectively. Next,
an MLP with 3 layers is used to predict the cell delay. Finally, the arrival time is computed level-by-
level, where the cell delay is predicted by the MLP, and the net delay is predicted by the GNN model.
Compared with the previous state-of-the-art (SOTA) model which is based on RF [38], Ref. [40] achieved
higher accuracy on the test set. Additionally, Yang et al. [41] developed a transformer-based model to
estimate the path delay. First, the circuit is divided into timing paths. Then, each path’s physical and
timing features are treated as sequential data and input into a transformer [11] to predict the residual
value of the path delay. Compared with the RF-based model described in [38], the prediction error of the
path delay is less than 3.12% for unseen circuits in terms of relative root mean squared error (rRMSE).

Routability estimation. In the routability estimation problem, NNs, including MLPs [42], CNNs [26,
43–45], and GNNs [46,47], have been widely used to improve the accuracy and efficiency of routing con-
gestion prediction. For the CNN-based work, Xie et al. [43] proposed RouteNet to predict #DRV and
the locations of design rule check (DRC) hotpots. RouteNet uses an 18-layer ResNet [10] to predict
the probability of different #DRV classes based on three types of features extracted from macros and a
pre-routing congestion estimator using rectangular uniform wire density (RUDY) [101]. The results show
that RouteNet achieves similar accuracy with less runtime compared with a global router in Cadence2).
In addition, RouteNet detects DRC hotpots before detailed routing using a 9-layer fully convolutional
network (FCN), consisting of 7 convolutional layers and 2 transposed-convolutional layers. Besides the
features used in the former ResNet model, the FCN model is additionally fed with features extracted from
detailed placement layouts and global routing layouts. The result of the DRC hotpot location detection
achieves a great progress of 50% accuracy improvement compared with Cadence. Besides, the result is
also better than the support vector machine (SVM) and logistic regression-based prediction. As CNNs
have been proven to be good at image recognition while layout information (e.g., pin density) can be
treated as images, there are also some other CNN-based routability estimation studies [26, 44, 45] that
follow [43]. Liang et al. [44] proposed J-Net, a general DRC hotpot prediction framework before global
routing, which uses a customized architecture based on U-Net [102]. The model takes input channels of
different resolutions and feeds them to different levels at the encoding path to address the mixed input
resolution issue, resulting in a 37%, 40%, and 14% improvement in true positive rate (TPR) compared

2) Cadence. Cadence encounter user guide [cited Nov. 3, 2022]. http://www.cadence.com.
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with the FCN, conditional GAN (cGAN), and CNN, respectively. Huang et al. [26] used a CNN-based
model to predict #DRV which is embedded into a simulated annealing (SA)-based macro placer to opti-
mize floorplan. The CNN model takes macro density maps, pin density maps, and connectivity maps as
three kinds of input features, and the optimized floorplan reduces violations compared with the original
floorplan. Liu et al. [45] proposed an FCN-based model that predicts congestion hotspots, incorporated
into DREAMPlace [58] to improve design routability. The prediction model takes three features (i.e.,
RUDY, pin density map using RUDY, and macro region) from the global placement solution as input.
Experimental results show that Ref. [45] achieved a 9.05% reduction in congestion rate and 5.30% re-
duction in wirelength compared with DREAMPlace [58] and NTUplace4dr [103], respectively. For the
GNN-based work, Ghose et al. [46] proposed an embedding-enhanced GNN that uses matrix factorization
methods to learn node embeddings that can be generalized across netlist graphs, resulting in over 90%
runtime savings of congestion estimation compared with current methods [104–106]. After that, Wang
et al. [47] treated the congestion spot density estimation problem as a pixel-wise classification problem
and proposed a heterogeneous GNN architecture named lattice hypergraph neural network (LHNN) to
address it. LHNN takes the graph-form representation of circuits, lattice hypergraph (LH-graph), as
input and estimates congestion with routing demand regression. LHNN achieves more than 35% im-
provement in F1 score compared with other pixel-wise classification networks such as Pix2Pix [107] and
U-Net [102]. For the MLP-based work, Tabrizi et al. [42] proposed a 1-layer MLP (with 20 nodes) that
predicts short violations before routing. The MLP takes features extracted from placed layouts divided
into non-overlapping rectangular tiles as input, achieving 90% accuracy for short violation prediction
with 7% false alarms.

IR drop estimation. NNs have been used to improve the accuracy and efficiency of IR drop estima-
tion. Specifically, CNN-based methods such as PowerNet [48] and cGAN-based methods like GridNet [49]
have been proposed to achieve these goals. PowerNet, proposed by Xie et al. [48], is a CNN-based method
that incorporates design-dependent features (e.g., cell locations and timing information) into power maps
and predicts the maximum transient IR drop. The method improves accuracy in vectorless IR drop
estimation by 9% compared with XGBoost-based methods [108]. GridNet, proposed by Zhou et al. [49],
is a cGAN-based framework that accelerates incremental EM-induced IR drop estimation and IR drop
violation fixing during PDN synthesis. GridNet takes continuous time and given electrical features as
input, and predicts the EM-induced time-varying voltage of the PDN represented as data series images.
Experimental results demonstrate that GridNet achieves a 105× speedup over the current coupled EM
and IR drop estimation tool, EMSpice [109].

Signal integrity analysis. NNs have been applied to accelerate the prediction of EH and EW, which
are important parameters in SI analysis [76,77]. Ambasana et al. [76] used a 2-layer MLP to predict EH
and EW based on frequency domain S-parameter data (i.e., return losses and insertion losses), resulting
in significant runtime reduction compared with full-factorial time domain analysis. After that, Lu et
al. [77] used a 7-layer MLP to predict EH and EW at early design stages through extrapolation with
saved coefficients without the need for complex simulations.

Clock power estimation, coupling effect prediction, and net length prediction. NNs have
also been applied to estimate clock power [78], coupling effect [79], and net lengths [80]. For clock power
estimation, Kwon et al. [78] used multiple MLPs to predict the clock tree components, including clock
gating cells, buffers, and their wireloads, which are subsequently used to calculate the clock network power.
The MLPs take as input features extracted from CTS constraints and the chip area. Experimental results
show that the average error in clock tree component estimation is 13%, while the error in the estimated
clock power waveform is only 2%. For coupling effect prediction, Lee et al. [79] addressed the problem
as an image-to-image translation problem and utilized a GAN after coupling-free global placement. The
GAN takes in features extracted from cell position maps, RUDY maps, and macro position maps as
input. Experimental results show that the GAN achieves 91% similarity to the ground truth image with
a 50× speedup over NCTUgr [110], a traditional global router. For net length prediction, Xie et al. [80]
proposed a graph attention network named Net2, which models a layout as a graph by treating the nets
in the layout as the nodes. Net2 contains multiple convolutional layers to incorporate edge and node
features. Experimental results show that Net2 improves the accuracy in predicting long nets and critical
paths compared with the previous studies [111–113].
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3.2.5 Ensemble learning

Ensemble learning learns a combination of multiple models to achieve better prediction results than a
single model. It can be formed as f(y) =

∑M

m=1 ωmfm(x), where ωm is the tuning parameter, fm(·) is
a regression model, and f(·) is the final regression function with x as input and y as output. EL can
also be taken as a committee method, as each of the regression models gets a weighted vote for the final
result.

Performance estimation. Mohammadi et al. [18] proposed an EL model named Pyramid to estimate
the performance of an HLS design, specifically the throughput and the throughput-to-area ratio. The
Pyramid model is a stack regression framework consisting of up to 50 layers. Each layer involves adding a
new base model, which can be a linear regression, an MLP, an SVM, or an RF. The new model is combined
with the previous one to estimate either the throughput or the throughput-to-area ratio. The process of
adding a new layer is repeated until the maximum number of layers is reached or the RMSE meets the
requirement. The input of each base model consists of 72 features, selected from a total of 183 features
extracted from HLS reports using linear regression. Experimental results show that the Pyramid model
improves throughput accuracy and the throughput-to-area ratio estimation to 95%, which outperforms
linear regression, MLP, SVM, and RF.

Static timing analysis. EL has been applied to solve STA in both logic design [20] and physical
design [27, 28] stages. In the logic design stage, Que et al. [20] stacked several classification models,
including linear regression, DTs, RFs, SVMs, and NNs, to improve the accuracy of STA and speedup
timing closure by reducing the number of iterations between FPGA HLS and STA. This work achieves
an average area under curve (AUC) score of 0.05 and delivers a 2.7× reduction in iteration counts. In the
physical design stage, Chan et al. [27] proposed an SVM kernel boosting method to predict timing failure
risk in floorplanning. The key contribution of [27] is proposing a boosting model that uses a weak SVM
learner [114] to combine both linear and nonlinear ML techniques. Concretely, the linear technique used
is LASSO regression, while the nonlinear techniques include SVM with a radial basis function kernel [115]
and NN [115]. They select 27 model parameters from the netlist structure, floorplan context, and layout
constraints as the input of the boosting model. This model achieves an average error of less than 10 ps in
slack prediction, which is better than the 42 ps achieved by the nonlinear SVM model. Afterward, Zhang
et al. [28] applied a stacking model to predict static random-access memory (SRAM) post-layout slack
during floorplanning. They first select 27 possible features from design rules, the netlist, and floorplan
contexts and then use XGBoost [96] to reduce the possible features to 15 for input into the stacking
model. Experimental results show that the stacking model achieves an MAE of less than 23.03 ps in slack
prediction, which is superior to typical EDA tools.

Bump inductance prediction and net length prediction. EL has also been used to solve bump
inductance prediction [50] and net length prediction [51]. For bump inductance prediction, Cao et al. [50]
proposed a piece-wise-linear hybrid surrogate model that combines the prediction from an NN, an SVM,
and MARS to make a final prediction. This model achieves an average error of 21.2% or less with only
pin maps and technology information. With layout information, the error is reduced to 17.5%. For net
length prediction, Hyun et al. [51] proposed an EL algorithm to predict the net lengths from placement-
aware synthesis. The algorithm extracts parameters from a given virtual path and compiles them into
a handful of parameters through linear discriminant analysis. These parameters are then submitted to
14 ML models, such as LASSO, NNs, and SVMs. The final prediction of net lengths is produced by
a weighted sum of the predictions from these 14 ML models, where the weights are determined by the
population of the neighbors in parameter space. This algorithm achieves a 93% accuracy, which is better
than the 79% accuracy achieved by conventional virtual placement.

3.2.6 Summary

It can be summarized that GP, MARS, DT & RF, NNs, and EL are suitable for different design result
estimation problems due to their respective strengths and weaknesses.

GP can be applied to design result estimation problems with sufficient human experience and low-
dimensional input. On the one hand, GP can incorporate the established analytical foundations as prior
knowledge through the specification of a mean function. Based on the established analytic foundations,
GP can provide a high-accuracy prediction in an empirical confidence region. On the other hand, the high
computational complexity of GP makes it ineffective in high-dimensional space. Therefore, alternative
ML algorithms are often necessary to address high-dimensional problems.
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Table 4 Design optimization and correction problems in chip design

Design optimization

and correction
Problem description Input Output

Logic design
HLS design

space exploration
Optimize RTL designs RTL designs Optimized RTL designs

Circuit design Logic optimization
Simplify Boolean

expressions
Logic circuits Optimized logic circuits

Physical design

Floorplanning

optimization
Optimize floorplans Floorplans Optimized floorplans

Gate sizing Choose standard cells Placed layouts Optimized placed layouts

Detailed routing Correct routing violations Routed layouts Corrected routed layouts

Layout optimization Optimize layouts Layouts Optimized layouts

Verification & test
Test point insertion Insert test points Circuits Circuit with test points

Test metric

optimization
Improve test metrics Circuits Tested circuits

MARS is suitable for design result estimation problems where input variables display near-additivity
or involve interactions, primarily due to its ability to accurately model relationships in these scenarios by
automatically detecting non-linearities and interactions between variables. Additionally, MARS provides
strong interpretability and low runtime. However, the susceptibility of MARS to outliers may result in
overfitting, which should be taken into consideration while using MARS in practical applications.

DT & RF are well-suited for design result estimation problems that require an interpretable and easily
visualized decision-making process, as well as problems that deal with both categorical and numerical
data. The primary reason is that the tree-based structure of these models enables a clear and intuitive
representation of the decision-making process, which can be easily interpreted and communicated to
non-experts. However, DT is prone to overfitting when dealing with data that are either noisy or high-
dimensional. Moreover, RF cannot be effective in handling high-dimensional and sparse data.

NNs are adaptable to a wide range of design result estimation problems due to the various types of
NN models. For example, GNNs have been successfully applied to problems where circuit netlists can be
naturally represented as graphs [19,40]; CNNs can learn more abstract patterns from circuits that can be
treated as images [43]; and Transformers are used for timing path analysis since the timing paths can be
treated as sequences [41]. However, NNs exhibit limited interpretability due to their complex structure.
Furthermore, parameter tuning for neural works is significantly challenging due to the vast number of
parameters.

EL is suitable for design result estimation problems where the data is noisy and the predictions made
by individual models are subject to a high degree of uncertainty. The main reason is that EL can reduce
the risk of overfitting by combining multiple models. Additionally, EL can save considerable time in
parameter tuning because EL typically requires only a small number of parameters. However, combining
multiple models can lead to limited interpretability, which may hinder the comprehension of underlying
data.

4 Design optimization and correction with search machine learning algo-
rithms

4.1 Design optimization and correction problems

Design optimization and correction refer to the problems that optimize design quality and correct design
errors. These problems read the design and correct/optimize it without altering its form. Design opti-
mization and correction in different design stages have various purposes, as shown in Table 4. In the logic
design stage, design optimization and correction include HLS DSE. In the circuit design stage, design
optimization and correction include logic optimization. In the physical design stage, design optimization
and correction include floorplanning optimization, gate sizing (adjustment), detailed routing, and layout
optimization. In verification and test, design optimization and correction include test point insertion
(TPI) and test metric optimization.

HLS design space exploration. High-level synthesis design space exploration searches the input
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space or the intermediate representation space of HLS tools, aiming to optimize the design in terms
of PPA. In practice, HLS DSE can improve the quality of C/C++ code, which can further improve
the quality of the RTL design, netlist, layout, and final chip. However, finding the optimal design is
challenging because the quality of the design is largely determined by physical design.

Logic optimization. Logic optimization simplifies the Boolean expression of a circuit before physical
mapping to obtain the simplest logical expression possible. The quality of the obtained logical expression
significantly impacts the quality of the netlist, layout, and final chip. However, due to highly-complex
search space [1, 70], identifying the optimal logic expression remains challenging.

Floorplanning optimization. Floorplanning optimization aims to optimize the floorplans through
two approaches. The first approach is searching the neighborhood of a given floorplan for near-optimal
or optimal solutions. The second approach is searching for an optimization direction in an existing tool.
The goals of floorplanning optimization are twofold: (1) to improve the quality of the design and (2) to
accelerate the floorplanning process.

Gate sizing (adjustment). Gate sizing selects the appropriate process, voltage, and temperature
(PVT) of standard cells from standard cell libraries, which represent different crafts under specific con-
straints. It is a critical step in achieving superior PPA and ensuring timing closure and SI satisfac-
tion [57, 60]. Gate sizing can be classified into two groups: adjustment [54, 57] and prediction [60].
Adjustment searches the standard cell libraries to select PVT for cells iteratively. However, the primary
challenge with adjustment is its large search space, which requires repeatedly considering massive context
details of the netlist. On the other hand, prediction can refer to Subsection 5.1.

Detailed routing. After global routing, detailed routing checks the obtained layout and eliminates
any possible congestion. Detailed routing can guarantee the correctness of the chip’s routing results
by producing exact routes for electric components. However, existing detailed routing approaches have
limited generalization ability, which hinders their ability to quickly determine complex design rule con-
straints, especially when the routing grids become denser in advanced technology nodes [66, 68].

Layout optimization. Layout optimization aims to optimize the placement and routing processes
by finding the optimal/near-optimal parameters or guiding the search directions. It is generally divided
into two categories: placement optimization and routing optimization. Placement optimization aims
to accelerate the placement process [52, 56], while routing optimization aims to improve the quality of
routing results and speed up the routing process [64, 65].

Test point insertion. Test point insertion adds control and observation points to a circuit to improve
fault coverage while minimizing performance loss. The control points set signal lines to specified logic
values, while observation points make nodes observable. TPI is effective in improving circuit testability,
resulting in a faster and less complex test. However, two difficulties are associated with TPI. First,
achieving the optimal TPI is time-consuming because it is an NP-complete problem [116]. Second,
inserting test points can reduce the quality of the area, power, and timing of the circuit [82].

Test metric optimization. Test metric optimization aims to improve the quality metrics of verifi-
cation and test, such as performance, generalizability, and robustness. Therefore, improving the metrics
can lead to more efficient, generalized, and robust verification and test. However, improving the metrics
is time-consuming and requires increased computational complexity due to the exponential relationship
between the circuit scale and the test space.

Summary. In summary, the design optimization and correction problems introduced above are char-
acterized by the trade-off between design quality and runtime. While these problems aim to achieve
high-quality designs quickly, striking a balance between these two factors can be challenging. One exam-
ple is HLS DSE, where obtaining a high-quality RTL design is time-consuming due to the need to explore
a vast design space thoroughly. However, accelerating the DSE process can compromise the quality of
the obtained RTL design because less design space can be explored within the limited exploration time.
As a result, researchers have turned to ML algorithms to optimize design quality and runtime to better
balance this trade-off.

4.2 Search machine learning algorithms

Currently, design optimization and correction problems are commonly formalized as search problems that
find the optimal or near-optimal solution from a search space. Roughly, for search problems, a set of
states {y} is given, known as the search space F . At the start of the search, a start state y0 in the state
set is first selected randomly or given by an initialization algorithm. Then, the search space is explored
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Figure 4 (Color online) Framework of the search algorithm.

Table 5 Search machine learning algorithms used to solve the design optimization and correct problems

Algorithm Problem Ref. States Evaluation metric(s)

DT & RF Floorplanning optimization [29] Floorplans PPA

NNs

HLS design space exploration [23] RTL designs QoRs

Logic optimization [81] Logic circuits Delay & area

Gate sizing [54] Standard cells Design quality

Layout optimization [64] Routed layouts Confidence bound

Test point insertion [82] Circuit nodes F1 score

Test metric optimization [83] Test states Coverage

RL

HLS design space exploration [24] RTL designs Design quality

Logic optimization [85] Logic circuits QoRs

Gate sizing [57] Standard cells TNS

Detailed routing [66] Routed layouts DRVs

Test point insertion [86] Circuit nodes Coverage

with an ML search algorithm M : F −→ F , which produces a search state y at each step. The ML search
algorithm usually produces the search state by predicting the search direction and step length or learning
a heuristic function. An evaluation function E(y), which takes one or more metrics into consideration, is
applied to determine whether the current searched state y is acceptable. Finally, the search stops once
the evaluation function E(y) shows the current state is acceptable (i.e., a goal state y∗ is found) or the
maximum runtime T is achieved. This process is shown in Figure 4.

Formalized as search problems, design optimization and correction problems can be solved with search
ML algorithms, including decision tree and random forest (Subsection 4.2.1), neural networks (Subsec-
tion 4.2.2), and reinforcement learning (Subsection 4.2.3). Table 5 shows representative related studies
in terms of the adopted search ML algorithms.

4.2.1 Decision tree and random forest

HLS design space exploration. Existing studies have explored the use of DT & RF to solve the
problem of HLS DSE and reduce the runtime of HLS tools [21, 22]. To accelerate the convergence of
the DSE, Liu and Carloni [21] proposed an RF-based model that selects the best knob-setting with
binary choices. Additionally, Ref. [21] employed a transductive experimental design method [117] to
sample various micro-architecture options, which makes it easier to train the model and improve the
efficiency of HLS. Following this trend, Mahapatra and Schafer [22] proposed an efficient DT-based SA
algorithm, FSA, which uses a simulated annealer to generate a training dataset and then uses that
dataset to construct a DT. Based on the results of the DT, FSA can (1) fix the synthesis directives (i.e.,
pragmas) that facilitate minimizing/maximizing the cost function objective and (2) continue the annealing
procedure with the DT. Experimental results show that FSA improves efficiency by 36% compared with
the annealer.

Floorplanning optimization. To improve the PPA quality of floorplans, the use of DT & RF
has been proposed for solving the floorplanning optimization problem. Shanthi et al. [29] introduced a
four-phase C4.5 DT-based approach to floorplanning. The approach uses a supply voltage assignment
for each core in the first phase, followed by island partitioning using a C4.5 DT algorithm [118] in the
second phase. In the third phase, a genetic algorithm is used to optimize the blocks for island-level
floorplanning. Finally, SA is applied in the fourth phase for chip-level floorplanning, where islands
are rotated or swapped. Experimental results show that the DT algorithm achieves 90% accuracy in
island partitioning, while the genetic algorithm and SA effectively decrease the costs and runtime of
floorplanning.
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4.2.2 Neural networks

HLS design space exploration. Kwon and Carloni [23] proposed an NN-based model for hybrid-
sharing multi-domain transfer learning to improve exploration efficiency in HLS DSE. The model extracts
knowledge from spaces to be explored and applies the extracted knowledge in the early stage of the DSE.
The approach includes a shared model connected with an independent sub-model for each task to reflect
the diversity of various source and target applications. The experimental results in [23] show that the
NN-based model can effectively reduce the runtime and cost of HLS DSE.

Logic optimization. Neto et al. [81] proposed an automated hybrid logic optimization method named
LSOracle to improve the area-delay product. The key approach of LSOracle is to combine two SOTA
logic optimizers, an and-inverter graph (AIG) and a majority-inverter graph (MIG), and use an MLP to
select the optimal optimizer for different portions of circuits automatically. These portions are divided by
k-way partitioning. Experimental results demonstrate that LSOracle improves the area-delay product by
6.87% and 2.70% on average compared with AIG and MIC, respectively. Furthermore, LSOracle achieves
a small area similar to AIG and a high speed comparable to MIG.

Gate sizing (adjustment). Zhou et al. [54] have explored the use of a heterogeneous GNN to
accelerate gate sizing adjustment. Their approach aims to speed up the widely-used Lagrangian relaxation
algorithm by narrowing down the range of cells. Concretely, they first represent the timing graph as
a heterogeneous directed graph and then design a heterogeneous GNN as the encoder. The GNN is
trained to imitate the selection behavior of the Lagrangian relaxation algorithm using imitation learning
and then used to predict which cells need to be changed. Experimental results demonstrate that the
proposed approach achieves a 22.5% reduction in runtime while maintaining comparable design quality
when compared with the non-ML-based method [119].

Layout optimization. NNs have been explored to solve layout optimization problems in the context
of placement [52, 53] and routing [64, 65] optimization. For placement optimization, Lu et al. [52] pro-
posed PL-GNN, a two-stage GNN-based framework. In the first stage, GNNs are used for unsupervised
node representation learning of a given netlist to learn accurate node representations associated with
the logical affinity and attributes of the netlist. In the second stage, instances are divided into clusters
that serve as placement guidance for commercial tools to optimize metrics. Compared with the place-
ment process in Synopsys IC Compiler II, the proposed framework reduces the runtime by 85.7% while
maintaining comparable wirelength and power. After that, Guo and Lin [53] proposed a timing-driven
placement paradigm based on a differentiable timing engine inspired by an MLP. In this paradigm, the
STA is mapped to the MLP propagation, allowing the MLP training to optimize the design timing. Ex-
perimental results demonstrate that the proposed paradigm can reduce total negative slack (TNS) and
worst negative slack (WNS) by 32.7% and 59.1%, respectively. For routing optimization, He and Bao [64]
proposed a CNN-based depth-first search (DFS) algorithm to improve the efficiency of Monte Carlo tree
search [120]. In the search process, the CNN is trained to prioritize available nodes (i.e., routing re-
sources) for a given net. Then, instead of random node selection in the vanilla Monte Carlo tree search,
a DFS algorithm is used to select nodes step by step. The CNN-based DFS algorithm accelerates the
search process significantly and achieves results of higher quality compared with the vanilla Monte Carlo
tree search. Meanwhile, Chen et al. [65] proposed a routability optimization tool, PROS, to improve the
design quality of SOTA commercial EDA tools. PROS consists of two key components: an FCN-based
predictor and a parameter optimizer. The FCN-based predictor estimates global routing congestion using
placement results data, and the parameter optimizer adjusts global routing cost parameters based on the
estimation results. The combination of the two components generates better-routed layouts with fewer
DRC violations. Experimental results show that PROS reduces DRC violations by an average of 11.65%.

Test point insertion. Ma et al. [82] proposed a graph convolutional network (GCN)-based model
for improving fault coverage and reducing the number of inserted test points in logic circuits’ irregular
graph representations. The proposed GCN-based model consists of three key stages, an aggregator, an
encoder, and a classifier. These generate node embedding, predict difficult-to-observe observation point
candidates, and propose observation point insertion, respectively. The trained GCN-based model achieves
superior accuracy in predicting difficult-to-observation nodes compared with traditional ML models, such
as linear regression, RF, SVM, and MLP. Moreover, it reduces observation points by 11% and test pattern
count by 6% with similar fault coverage compared with a commercial testability analysis tool [82].

Test metrics optimization. Gad et al. [83] proposed a two-phase graph-based framework with
an adaptive NN to improve simulation-based verification in sequential circuits. In the first phase, the
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adaptive NN receives test states and instructions to generate a graph, where the nodes represent the
states of a design under test and the edges represent operations between the states. In the second phase,
a test instruction sequence is extracted from the graph using the Dijkstra algorithm, a shortest-path
algorithm. Experimental results show that the proposed graph-based framework achieves full coverage
closure using various training datasets. In contrast, other methods’ quality deteriorates with a decrease
in the training dataset size. In short, the framework overcomes the sensitivity of RF and fixed NN to the
size and quality of the training dataset [83].

4.2.3 Reinforcement learning

Reinforcement learning is an ML framework that trains an intelligent agent to take action in an en-
vironment where the agent receives a reward instead of being told to take which action. Typically,
reinforcement learning is modeled as a Markov decision process (MDP), including (1) a set of environ-
ment and agent states S, (2) a set of available actions A of the agent, (3) probability of transition
Pa(s, s

′) = Pr(st+1 = s′|st = s, at = a) from state s to state s′ at time t under action a, and (4) im-
mediate reward Ra(s, s

′) after transition from s to s′ with action a. Based on the MDP, the agent first
receives the current state st and the reward rt at each time t. Then, the agent chooses an action a from
the available action set A and sends it to the environment. With the action, the environment moves to a
new state st+1. Meanwhile, a reward rt+1 related to the transition st

a
−→ st+1 is determined. The goal of

the agent is to learn a policy π : S × A → [0, 1] (i.e., π(a, s) = Pr(at = a|st = t)), which maximizes the
expected cumulative reward.

HLS design space exploration. Wu et al. [24] proposed an RL-based framework named IronMan
to improve the RTL design quality. The framework comprises three key components: GPP, RLMD,
and CT. Firstly, GPP is a GNN-based performance predictor that estimates resource utilization and
critical path timing for HLS designs. The GNN-based predictor not only suits the data form (i.e., design
flow graphs) but also demonstrates faster than Vivado HLS3). Secondly, RLMD is a deep reinforcement
learning (DRL)-based multi-objective DSE engine that finds the optimal resource allocation strategy.
Lastly, CT is a code transformer that extracts data flow graphs from the intermediate representations
generated by Vivado HLS and produces synthesizable C/C++ programs with directives optimized by
RLMD. Experimental results show that (1) GPP reduces prediction errors by 10.9× in resource usage
and 5.7× in timing when compared with Vivado HLS; (2) RLMD reduces resource usage by 12.7% and
12.9% compared with genetic algorithm and SA, respectively; and (3) IronMan uses 2.54× fewer DSPs
and attains 6× shorter latencies than Vivado HLS.

Logic optimization. Several RL-based studies have been explored to solve the problem of logic
optimization with the goal of improving the quality of output circuits [70, 84, 85]. Haaswijk et al. [84]
first modeled the logic optimization problem as a deterministic MDP, and then used DRL to learn how
to navigate the MDP. Concretely, they model the policy function of the DRL as a GCN-based NN, which
is trained to predict the most promising candidate action. Experimental results demonstrate that the
proposed approach can deliver an 86% improvement in the logic depth of realistic circuits compared with
the SOTA method, resyn2. Meanwhile, Zhu et al. [85] also modeled the logic optimization problem as
an MDP and used a trained GCN-based policy network to navigate the MDP. Instead of using MIGs
in [84], they use AIGs to represent the logic expressions, thus achieving greater scalability for more
experiments. Experimental results show that Ref. [85] achieved faster speed using the same action
space compared with the SOTA, resyn2. In contrast to the GCN-based policy network, Hosny et al. [70]
proposed DRiLLS, which trains an advantage actor-critic (A2C) agent to minimize area subject to timing
constraints. DRiLLS (1) maps the search space to a “game” and (2) applies the A2C agent to maximize its
reward (i.e., reduce area subject to timing constraints) by iteratively selecting primitive transformations
with the highest expected reward. As experimental results show, DRiLLS improves QoRs by 13% on
average, which is better than [121, 122].

Floorplan optimization. He et al. [30] proposed an RL-based approach to obtain desirable floorplans
by using a local search algorithm. The primary objective of the work is to develop algorithms for solving
combinatorial problems without human knowledge. The authors first formulate the local search problem
as an MDP and then use a deep Q-learning [13] algorithm to train the agent to select a candidate neighbor
solution. Experimental results show that the proposed RL-based local search outperforms SA and can

3) Xilinx. Xilinx Vivado high-level synthesis. 2021 [cited Nov. 4, 2022]. https://www.xilinx.com/products/design-tools/

vivado.html.
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effectively reduce the dead space in floorplanning.

Gate sizing (adjustment). Lu et al. [57] proposed an autonomous gate sizing agent, RL-Sizer, for
timing optimization. In RL-Sizer, the gate sizing problem is modeled as an MDP, and GNN-based RL
algorithms are used to solve it. The input features of RL-Sizer can be obtained from timing-related
instance characteristics using a GNN-based encoder. The reward function of RL-Sizer is defined as the
TNS change of a local graph, which threads across various instances and accelerates the learning pro-
cess. Experimental results show that RL-Sizer achieves comparable TNS optimization on six commercial
designs that use advanced technology nodes, compared with Synopsys IC-Compiler II.

Detailed routing. Solving detailed routing by RL has been explored to enhance solution gener-
alizability and quality and reduce runtime [66–68]. Liao et al. [66] proposed the attention router, an
RL-based router that employs an attention model to tackle the track-assignment detailed routing prob-
lem. In the attention router, the detailed routing algorithm first encodes design rules and constraints.
An attention-model-based algorithm called REINFORCE is then applied to sequence device pairs that
need to be routed, which is the most critical step in detailed routing. Experimental results show that
the attention router not only demonstrates generalizability to unseen problems but also achieves a more
than 100× speedup over a novel genetic router with similar solution quality. Several following studies
are inspired by [66], including [67, 68]. Ju et al. [67] proposed a multi-agent RL-based detailed router to
eliminate routing congestion, which performs 3 steps as follows: (1) routing asynchronization by model-
ing nets as agents and regarding pin-connection tasks as path planning, (2) assigning each agent a local
view field to reduce feature size and training difficulty, and (3) setting up an information storage unit for
each agent’s communication to eliminate routing congestion. Experimental results show that the router
improves the success rate of detailed routing to 96% and reduces the cost by 15.7%, compared with the
baselines [123, 124]. Meanwhile, Lin et al. [68] proposed an asynchronous RL-based framework and a
transfer learning algorithm to solve the detailed routing problem. The RL-based framework explores
optimal ordering strategies, while the transfer learning algorithm accelerates the detailed routing speed.
Compared with the SOTA router [125], Ref. [68] could reduce 26% of DRC violations.

Layout optimization. Vashisht et al. [55] proposed a placement framework that combines cyclic
RL and SA to improve the quality of the placement solution. The placement problem is formulated
as a sequence pair and solved in a customized environment. The proposed framework leverages the
strengths of both RL and SA to provide a good initial state for SA. Experimental results demonstrate
that the framework improves the quality of the placement solution by providing better SA initialization.
After [55], Agnesina et al. [56] proposed a DRL framework for optimizing placement. In the training
stage, an autonomous agent is trained using RL algorithms that perform self-search. The agent can learn
to optimize parameters without human participation, which helps to overcome the data sparsity and
reduce the placement runtime. In the testing stage, handcrafted features from graph topology theory
and graph embeddings generated by unsupervised GNNs are leveraged to optimize placement parameters
for unseen designs. Experimental results show that the trained RL agent can deliver an improvement of
11% and 2.5% in wirelength compared with manual work and a SOTA tool [126], respectively, on unseen
netlists.

Test point insertion. Shi et al. [86] proposed a DRL-based TPI approach, DeepTPI, to improve fault
coverage in logic built-in self-test (LBIST). In this approach, netlists are modeled as directed graphs, and
a graph-based value network is proposed to predict the action values. The DRL agent combines a GNN
and a deep Q-learning network (DQN) to improve the test coverage. DeepTPI is experimentally shown
to outperform pattern simulation [127] in terms of test coverage improvement.

4.2.4 Summary

It can be summarized that DT & RF, NNs, and RL can each be utilized to tackle various design op-
timization and correction problems or to serve distinct functions in the problem-solving process due to
their unique strengths and limitations.

DT & RF can serve as aides in tackling design optimization and correction problems by partitioning
regions and searching for parameters. The main advantage of using DT & RF in this capacity is that they
are typically employed as classification or regression algorithms rather than search algorithms. However,
to the best of our knowledge, there is a scarcity of existing work that exclusively employs DT & RF to
address design optimization and correction problems alone.

NNs are adaptable to a wide range of design optimization and correction problems due to the various
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Table 6 Design construction problems in chip design

Design construction Problem description Input Output

Logic design – – – –

Circuit design Physical mapping Generate netlists RTL designs Netlists

Physical design

Module placement Place macros/instantiated modules Netlists Floorplans

Global placement Place standard cells Floorplans Placed layouts

Gate sizing Choose standard cells Placed layouts Cell types

PDN synthesis Generate PDNs Layouts PDNs

Clock tree synthesis Generate clock tree Placed layouts Clock trees

Global routing Routing Unrouted layouts Routed layouts

Verification & test Testbench generation Generate testbenches Circuits Testbenches

types of NN models. For instance, MLPs are appropriate for design optimization and correction prob-
lems involving complex input/output relationships due to their deep architecture with multiple hidden
layers [81], while FCNs are well-suited for problems with inputs of different resolutions as they can handle
inputs of arbitrary size and produce outputs of the same size [65]. However, the complicated structure of
neural networks results in limited interpretability. Additionally, optimizing a vast number of parameters
poses a significant challenge for NN parameter tuning.

RL is suitable for design optimization and correction problems, especially when the optimal solution
depends on previous actions and environmental responses. The primary reason is that RL models the
search problem as an MDP and takes into account the long-term reward when searching. Additionally,
the MDP formulation process in RL relies only on the current state without being influenced by the
sequence of past states. Moreover, RL can be applied to problems without clear supervision. However,
RL is very sensitive to the initial conditions and parameters, so it may not obtain the optimal solution
if given unsuitable initial conditions or parameters. More importantly, RL is ineffective in addressing
large-scale problems due to the expensive computational cost.

5 Design construction with generation machine learning algorithms

5.1 Design construction problems

Design construction refers to problems that change the chip’s representation (e.g., physical mapping) or
complete the layout (e.g., global placement). These problems are crucial steps in chip design that analyze
the design and generate a netlist, layout, or layout components in different stages for different purposes,
as shown in Table 6. In the circuit design stage, design construction includes physical mapping. In
the physical design stage, design construction includes module placement, global placement, gate sizing
(prediction), PDN synthesis, CTS, and global routing. In verification and test, design construction
includes testbench generation.

Physical mapping. Physical mapping transforms the RTL program into a gate-level representation
using a specific technology library. Its primary objective is to generate a basic physical circuit, represented
as a netlist, without incorporating any physical information. The subsequent processes further complete
this netlist. However, determining the optimal solution in physical mapping is challenging due to the
uncertainty regarding design quality and the need to achieve satisfactory generalization [71, 128, 129].

Module placement. Module placement, which plays a crucial role in the floorplanning process, di-
vides the chip into blocks and positioning macros and instantiated modules within those blocks. Effective
floorplanning is essential for achieving high-quality module placement. However, obtaining a satisfactory
floorplan often relies heavily on expert knowledge and necessitates close collaboration between experts
from various domains.

Global placement. Global placement determines the optimal placement of standard cells on the
layout while considering various constraints to achieve the highest quality and performance. It is a critical
step in the overall placement process, as the quality and performance of the global placement directly
impact the chip’s overall performance and routability. However, global placement is time-consuming,
as it places many standard cells, and its complexity grows exponentially. Furthermore, identifying the
theoretically optimal placement layout is challenging due to the diverse objectives of routing optimization,
such as wirelength, timing, and resource usage.
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Figure 5 (Color online) Framework of the generation algorithm.

Gate sizing (prediction). Gate sizing prediction, instead of a step-by-step search process in gate
sizing adjustment, assigns standard cell types using a generation algorithm. It offers a significant reduction
in the runtime compared with the adjustment way, which is introduced in Subsection 4.1. Unfortunately,
obtaining the optimal solution for gate sizing prediction remains time-consuming due to the extensive
design space involved.

Power delivery network synthesis. Power delivery network synthesis generates a network that
facilitates the delivery of power from voltage regulator modules to the circuits on the chip. The PDN
plays a crucial role in the overall performance, quality, and reliability of the chip [39, 49]. However,
generating an optimal PDN is time-consuming due to the significant number of design iterations involved
and the presence of stringent constraints [39, 61].

Clock tree synthesis. See the details in Subsection 2.1.3

Global routing. Global routing allocates routing resources and establishes connections between com-
ponents, such as macros and standard cells, to generate an approximately acceptable routing scheme.
A high-quality global routing result contributes to improved timing and power characteristics. Unfortu-
nately, global routing is excessively time-consuming due to the exponentially large design space and the
associated complexity that grows with the number of potential wire configurations.

Testbench generation. Testbench generation generates a comprehensive set of test inputs and their
corresponding expected outputs. These inputs and outputs are utilized to verify the functional correctness
of a design. A well-designed testbench aims to cover all potential design flaws. However, achieving high
coverage often necessitates a large number of test cases, resulting in the presence of redundant test vectors.
Consequently, the existence of such redundancy leads to increased runtime during the testing process.

Summary. In summary, speed is a primary concern in the design construction problems introduced
above. These problems typically require efficient design runtimes. However, exploring the vast design
space and iteratively improving design quality are both time-consuming. For instance, physical mapping
explores a design space with more than exponential complexity, particularly as the design scale increases.
Similarly, global placement requires iterative improvements to achieve timing closure. To tackle this
challenge, researchers have turned to ML algorithms with a focus on improving speed.

5.2 Generation machine learning algorithms

Currently, design construction problems are commonly formalized as generation problems, where inputs
are mapped to outputs containing a netlist, layout, or layout components. Roughly, for generation
problems, an observable domain X and a target domain Y are given. Then, a generative model Gθ :
X −→ Y, where θ is the parameters of the model, is learned to build a joint probability distribution
P (X,Y ) on the given observable domain and target domain. Based on the distribution, observable
variable X in the observable domain X is mapped to target variable Y in the target domain Y. This
process is shown in Figure 5.

Formalized as generation problems, design construction problems can be solved with generation ML
algorithms, including Bayesian optimization (Subsection 5.2.1), neural networks (Subsection 5.2.2), and
reinforcement learning (Subsection 5.2.3). Table 7 shows representative related work in terms of the
adopted generation ML algorithms.
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Table 7 Generation machine learning algorithms used to solve the design construction problems

Algorithm Problem Ref. Observable variable Target variable Evaluation metric(s)

BO Physical mapping [71] RTL designs Netlists QoRs

NNs

Module placement [32] Netlists Floorplans Wirelengths

Global placement [58] Unplaced layouts Placed layouts Design quality

Gate sizing [60] Placed layouts Gate types Accuracy

PDN synthesis [61] Floorplans & placed layouts PDNs Routing resources

CTS [88] Placed layouts Clock networks Clock network quality

Global routing [69] Unrouted layouts Routed layouts Routability

Testbench generation [90] Circuits Testbenches Coverage

RL Module placement [34] Netlists Floorplans PPA

5.2.1 Bayesian optimization

Bayesian optimization is typically used to find the minimum or the maximum of a function f(x) on a
bounded set X , which is a subset of RD. As evaluating the function f(x) is generally expensive, BO first
constructs a probabilistic surrogate modelM for f(x). The probabilistic surrogate model is then exploited
to select an x ∈ X that maximizes or minimizes an acquisition function a (i.e., argmax

x∈Xa(x,M)), where
the acquisition function balances the exploration and exploitation of the exploration. The selected x is
evaluated, and the result of the evaluation is then used to refit the probabilistic surrogate model M .
Finally, BO finds the minimum or maximum of the function in a short time with only a few evaluations.

Physical mapping. Grosnit et al. [71] proposed a BO-based generation algorithm named BOiLS,
aiming to obtain superior QoRs in the circuit design stage. BOiLS consists of two main steps. Firstly,
BOiLS employs specially designed kernels for AIG transformation sequences to fit a surrogate GP model
to the QoR data. This enables efficient modeling and prediction of QoRs. Secondly, BOiLS suggests new
synthesis flows for evaluation based on the updated GP model. To handle high-dimensional problems,
BOiLS utilizes a local trust-region acquisition function maximization technique. Experimental results
demonstrate that BOiLS achieves superior QoRs compared with other methods in the majority of the
designs tested (8 out of 10). In contrast, the SOTA BO-based method [130] only outperforms BOiLS in
one design. Furthermore, BOiLS improves sample efficiency by more than one-third compared with the
SOTA method [130].

Module placement. Oh et al. [31] proposed a solution to the macro placement problem by modeling
it as a combinatorial optimization problem involving pairs of sequences. They employ BO to address this
problem effectively. The main concept is to transfer batch BO on permutations [131] into batch BO on
sequence pairs. Moreover, Oh et al. [31] developed a batch acquisition function that suggests multiple
candidate solutions for macro placement. This enables parallel evaluation of a batch of candidates,
significantly accelerating the BO process. Experimental results demonstrate that the proposed approach
in [31] outperforms the SA algorithm in terms of the HPWL metric, indicating better placement quality.

5.2.2 Neural networks

Module placement. Researchers have explored the use of NNs to solve the module placement problem,
aiming to achieve high-quality floorplans in a shorter runtime [32, 33]. Liu et al. [32] proposed Flora, a
graph attention-based floorplanner that efficiently generates floorplans with reduced wirelength. Flora
utilizes a graph attention network [132] to capture the connectivity of sub-circuits, and then the mapping
between the circuit connectivity and the physical wirelength can be learned. By leveraging this learned
mapping, Flora predicts the physical locations of blocks, enabling the generation of high-quality floor-
plans to guide the module placement process. Experimental results demonstrate that Flora achieves an
average reduction of 18% in runtime and 2% in wirelength compared with the SOTA placer, DREAM-
Place 3.0 [133]. Building upon Flora, Liu et al. [33] proposed GraphPlanner, a variational GCN-based
DL method for floorplanning. GraphPlanner incorporates a clustering method that combines hyper-
edge coarsening and graph spectral clustering techniques to divide large-scale netlists into clusters with
minimized inter-cluster weighted connectivity. Compared with DREAMPlace 3.0 [133], GraphPlanner
achieves reductions of 25% in runtime and 4% in wirelength.

Global placement. Researchers have explored the use of NNs to accelerate the global placement pro-
cess, resulting in several notable studies [58,59]. Lin et al. [58] proposed DREAMPlace, a GPU-accelerated
placement framework based on the ePlace/RePlAce family [134, 135]. DREAMPlace transforms the an-
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alytical global placement into a NN training problem and employs GPU optimization techniques to
accelerate compute-intensive steps such as wirelength and density computation. Experimental results
demonstrate that DREAMPlace achieves a speedup of over 30× speedup compared with RePlAce [135]
while maintaining similar quality. Building upon DREAMPlace, subsequent versions, including DREAM-
Place 2.0 [136], DREAMPlace 3.0 [133], and DREAMPlace 4.0 [137], have been developed to further
enhance design quality and reduce runtime for the global placement problem. Liu et al. [59] proposed
Xplace, another GPU-accelerated placer that leverages a Fourier NN as a global guide for placement.
Xplace achieves a 2× speedup compared with DREAMPlace [58] while delivering improved design quality.

Gate sizing (prediction). Nath et al. [60] proposed a transformer-based generative model for gate
sizing, aiming to enhance both accuracy and efficiency. The approach in this work maps the domain of
an unoptimized netlist to the domain of the corresponding optimized netlist. Subsequently, a transformer
model is employed to train the joint probability distribution between these two domains. The transformer
model generates optimal sizes for all gates within a timing path. Experimental results demonstrate that
the proposed model achieves a 93% accuracy in gate sizing prediction while offering a substantial speedup
of 1400× compared with a commercial EDA tool.

Power delivery network synthesis. Chhabria et al. [61] proposed an NN-based approach to syn-
thesize a PDN based on pre-designed templates. The approach leverages manually-specified templates
of PDNs and employs NNs in both the floorplanning and placement stages. In floorplanning, an MLP
is utilized to generate an optimized PDN, taking into account estimated current and congestion. In
placement, a CNN is employed to optimize the PDN iteratively, considering more accurate current and
congestion estimation. The applied NNs in each stage generate a PDN that satisfies IR drop and EM
specifications. Experimental results demonstrate that the proposed approach achieves a 3% reduction in
routing resources compared with the SA algorithm.

Clock tree synthesis. Lu et al. [88] proposed a novel framework called GAN-CTS, which employs a
combination of GANs and RL to tackle the CTS problem. GAN-CTS comprises three key components: a
regression model, a parameter generator, and a discriminator. The regression model utilizes ResNet [10]
and transfer learning techniques to extract features from placed layouts and predict the CTS outcomes.
The parameter generator is the crucial component that employs RL and cGANs to generate optimal CTS
parameters. The discriminator is responsible for verifying whether the CTS process satisfies the design
rules and specifications. Experimental results demonstrate that GAN-CTS significantly improves the
performance of CTS. Specifically, it achieves a 3% average prediction error and reduces clock power by
51.5%, wirelength by 18.5%, and maximum skew by 5.3%, compared with a commercial tool. Further-
more, GAN-CTS attains an F1-score of 0.952 in determining the success of the CTS process. Nonetheless,
GAN-CTS incurs additional runtime due to placement and trial routing. To overcome this issue, Koh et
al. [89] proposed an NN-based clock tree predictor that employs MLPs to predict the number of clock
buffers for each clock branch. These predicted results are used to generate buffer trees and a binary
search algorithm is applied to determine the minimum number of buffers. Experimental results show
that the proposed approach in [89] can reduce the number of clock buffers by 31% on average compared
with a commercial logic synthesis tool.

Global routing. Utyamishev and Partin-Vaisband [69] proposed an NN-based global router that
is trained on previously routed layouts and can infer unseen routed layouts. They redefine the global
routing problem as an image-to-image processing problem and solve it using a specially designed NN
model that includes a variational autoencoder and a custom loss function. The main advantage of their
work is the ability to parallelize the global routing process. Experimental results demonstrate that their
approach achieves over 5× speedup with comparable routability when compared with the SOTA router,
FastRoute [138].

Testbench generation. Zheng et al. [90] proposed NNBNTS, an NN-based configurable framework
for test selection, aiming to reduce simulation effort while maintaining similar coverage as random sim-
ulation. The key idea behind NNBNTS is to identify the novelty or unexplored part of the test space.
To achieve this, NNBNTS takes test features as input and novelty definitions as the output space. The
framework has three configurations: (1) an autoencoder that reconstructs the input test vector, where the
output space is the reconstructed input space, with high reconstruction errors indicating novelty; (2) a
configuration that predicts the correlation between the space of test features and coverage and assigns a
novelty score to each test based on NN calculations; and (3) a configuration that generates a non-linear
score to evaluate the novelty degree. Experimental results show that NNBNTS reduces simulation time
by 53.74% with 99% coverage compared with random test simulation.
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5.2.3 Reinforcement learning

Module placement. The use of RL to solve the macro placement problem has been extensively explored
in order to enhance the quality of floorplans and decrease runtime [34–37]. Mirhoseini et al. [34] proposed
an RL-based approach to macro placement, which reduces runtime. They formulate the macro placement
problem as an RL problem and train an agent to place macros on a chip canvas. The trained agent
sequentially places macros during each iteration of training. In the RL problem, the policy and value
networks utilize a neural architecture encoder that predicts rewards for netlists and their placements and
produces feature embeddings of the input netlists. Experimental results demonstrate that the proposed
method achieves significantly better or comparable PPA in less than 6 h instead of the several weeks
required by human experts. Building upon [34], Chang et al. [37] proposed a flexible multiple-objective RL
framework to enhance the efficiency and effectiveness of module placement. The framework utilizes a pre-
trained model, MOPPO, to support variable weights during inference in objective functions. To accelerate
MOPPO training, the framework applies trial macro placements for a suitable cluster size, thereby
accelerating reward computation. Experimental results indicate that for two uncorrelated objectives, the
framework can recover the Pareto frontier in just a single round of training. In addition, Xu et al. [35]
modeled the macro placement problem as an MDP and proposed an end-to-end GCN- and RL-based
model to address it. Firstly, they build a GCN to form the graph embedding of netlists. They then apply
an A2C algorithm to explore the solution space effectively. Compared with SOTA floorplanners based
on heuristic [139, 140]4), the proposed model offers superior design quality and success rate. However,
Ref. [35] did not demonstrate significant improvement in runtime compared with SA. Amini et al. [36]
proposed a DRL method to address the floorplanning problem by directly predicting block ids and
locations. The method includes three highlights. The first highlight is the utilization of hyper-graph
NNs to encode hyper-net information in circuit netlists. Additionally, the method applies transformer-
like action selection for large action space exploration, with transferability and generalizability across
netlists. This avoids the influence of the number of blocks by fixing the complexity of the parameter
space. Moreover, the method trains an RL agent to transfer prior knowledge into new design generation
quickly. The proposed method effectively reduces the computing complexity of floorplanning (i.e., from
exponential to O(n)).

5.2.4 Summary

It can be summarized that BO, NNs, and RL are suitable for different design construction problems due
to their respective strengths and weaknesses.

BO is appropriate for design construction problems that demand high-quality solutions. This is primar-
ily because BO can dynamically adjust the density of sampling points to explore and exploit the search
space more efficiently. Additionally, BO can rapidly identify the global optimal solution by adaptively
modifying the location and size of the next sample based on previous sampling points. However, the
computational cost of BO is greatly expensive for large-scale data as evaluating the acquisition function
for the surrogate model (e.g., GP) can be time-consuming, especially when the function is expensive to
compute or the input space is high-dimensional.

NNs possess adaptability to a wide range of design construction problems because of the availability
of diverse types of NN models. See the details in Subsections 3.2.6 and 4.2.4.

RL is suitable for design construction problems that can be formulated as combinatorial optimiza-
tion problems. The primary benefit of utilizing RL in this context is that it is commonly utilized as a
search algorithm rather than a generation algorithm. However, since RL is sensitive to initial conditions
and parameters, it will miss the optimal solution if the algorithm starts with an unsuitable initializa-
tion. Besides, applying RL to solve large-scale problems can be challenging work due to the expensive
computation.

6 Future work

Although the application of ML algorithms in chip design has been proven effective in accelerating
chip design, reducing design costs, and improving design quality, three key challenges remain yet to be

4) Adya S, Chan H H, Markov I. Parquet 4.5: Fixedoutline floorplanner. 2006 [cited Nov. 3, 2022]. http://vlsicad.eecs.umich.

edu/BK/parquet/.

http://vlsicad.eecs.umich.edu/BK/parquet/
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addressed.
(1) Some traditional studies of chip design still depend on human participation in the high-level

(Challenge-1). Many critical steps, such as hardware programming and detailed placement, rely heavily
on manual design and correction by chip designers. Additionally, chip performance specifications are
often written and tuned by human experts based on design quality and rules. This reliance on human
expertise can result in expensive development costs and long production cycles.

(2) Existing studies fail to globally optimize design quality (Challenge-2). This is due to the fact that
a chip is designed and optimized stage by stage, and the strategies used in later stages are not foreseen
during earlier stages. As a result, it is challenging for the existing studies to achieve a globally optimal
design.

(3) Existing studies have limitations in terms of practicality (Challenge-3). Currently, these studies’
design scale is considerably smaller than real chips, making applying them in industrial chip design
processes challenging. Additionally, the community lacks realistic, diverse, and standardized datasets
and benchmarks based on actual data from commercial chips. This is a special case for chip design with
ML algorithms. Therefore, applying existing studies in the industrial chip design process is difficult,
which can be a great hurdle for the community in practice.

To address the aforementioned challenges, several future studies can be explored as follows.
(1) Single-stage end-to-end generation. ML algorithms can be applied to replace each stage of

the current chip design (i.e., single-stage end-to-end generation), including HLS, logic synthesis, floor-
planning, placement, CTS, and routing (i.e., to address Challenge-1). Specifically, single-stage end-to-end
generation takes the input of a chip design stage as the input of the generation and the output of the
chip design stage as the output. Since the end-to-end generation does not need iterations between design
steps in the stage, it can effectively speedup the design process. Besides, applying ML algorithms in
single-stage end-to-end generation can also eliminate human participation in each stage. However, it is
still hard to conduct the single-stage end-to-end generation with an acceptable correct rate or high design
quality by leveraging ML algorithms. Thus, further exploring in this direction is of great significance but
with challenges.

(2) Cross-stage end-to-end generation. Replacing two or more adjacent stages with ML algo-
rithms (i.e., cross-stage end-to-end generation) can be further explored (i.e., to address Challenge-1 and
Challenge-2). Currently, such generation is only discussed in [141], where a joint learning framework
is proposed to simultaneously replace the placement and routing. The proposed framework can ob-
tain better design quality compared with SOTA single-stage studies [34, 58, 135], which demonstrates
great potential for cross-stage design and optimization. Moreover, like single-stage end-to-end genera-
tion, cross-stage end-to-end generation can also offer a fast chip design without human participation in
the replaced stages. However, the design space in the cross-stage end-to-end generation is much more
complicated than that of the single-stage one. The main reason is that a typical cross-stage generation
involves multiple stages with different high complexity. Here, the complexity of cross-stage generation is
the product of the complexity of the multiple stages, which incurs a highly-complex design space. As a
result, conducting an efficient cross-stage end-to-end generation can be much more challenging.

(3) Whole-process end-to-end generation. ML algorithms can be used to read chip specifications
and generate a finished layout in an end-to-end way, and thus replace the current chip design process
(i.e., whole-process end-to-end generation, to address Challenge-1 and Challenge-2). For the input, chip
specifications can be roughly divided into functional specifications and performance specifications. Chip
functional specifications can be given in the form of input/output pairs or a (part of) truth table of the
expected chip, which is simple work for the users. Chip performance specifications are given based on
human experience and the actual design result. For the output, the finished layout is complemented
by components and routes and then delivered to the foundry for tape-out. Research on whole-process
end-to-end generation has a great potential to reduce the professionalism of chip design because human
participation in chip design can be entirely eliminated. Besides, the appliance of end-to-end generation
algorithms in whole-process generation can also speedup chip design. Moreover, whole-process generation
can globally optimize the design and thus find the globally optimal layout. However, the whole-process
end-to-end generation is much more difficult than both the single-stage and the cross-stage end-to-end
generation because of the high complexity of design space, where the complexity is the product of the
complexity of all stages. Therefore, the exploration in such a direction is greatly challenging.

(4) Practicability improvement. The practicability of chip design with ML can be improved
by exploring two directions (i.e., to address Challenge-3). First, the chip design scale with ML must
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be improved. In fact, the design scale of most existing studies is less than that of current real chips.
Concretely, the largest design scale of the existing studies is about tens of millions of transistors [58]. In
contrast, the scale of current real chips is about billions of transistors [1]. For example, the A100 GPU
chip released by Nvidia in 2020 integrates more than 50 billion transistors. Therefore, improving the
scale of chip design with ML can significantly enhance the practicability and is promising for industrial
deployment. Second, datasets and benchmarks based on real data can be proposed for chip design
with ML. In recent years, several circuit benchmarks have been proposed for different problems in chip
design. For example, ISPD 2005 contest benchmark [142] has been used to explore the global placement
problem [58]. However, transforming these benchmarks into datasets is hard because of the lack of
specifications and design rules. Besides, some benchmarks use designs that are not extracted from real
circuits or chips, and therefore, it is difficult to transfer the experimental results to actual work. Moreover,
most benchmarks are not open-source, which greatly hinders the reproduction of classical and SOTA work
in chip design with ML.

(5) Others. Beyond end-to-end generation and practicability, ML algorithms can be applied to
explore more directions of a chip. On the one hand, ML algorithms can be leveraged to automatically
generate chip performance specifications, such as timing specifications, area specifications, and power
specifications (i.e., to address Challenge-2). As a result, research and experiments on different chips can
be greatly boosted since there is no need for iterations between chip design and writing chip performance
specifications. On the other hand, chips with new functions can be explored and invented by using ML
algorithms. In this way, chip development and invention are significantly facilitated because lots of time
and human resources can be saved in designing new functions of chips.
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