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Abstract The unsupervised cross-modality image segmentation has gained much attention. Many methods

attempt to align different modalities via adversarial learning. Recently, self-training with pseudo labels for

the unsupervised target modality has also been widely used and achieved very promising results. The pseudo

labels are usually obtained by selecting reliable predictions whose highest predicted probability is larger than

an empirically set value. Such pseudo label generation inevitably has noise and training a segmentation

model using incorrect pseudo labels could yield nontrivial errors for the target modality. In this paper, we

propose a confidence-weighted mutual supervision on dual networks for unsupervised cross-modality image

segmentation. Specifically, we independently initialize two networks with the same architecture, and propose

a novel confidence-weighted Dice loss to mutually supervise the two networks using their predicted results

for unlabeled data. In this way, we make full use of all predictions of unlabeled images and leverage the

prediction confidence to alleviate the negative impact of noisy pseudo labels. Extensive experiments on three

widely-used unsupervised cross-modality image segmentation datasets (i.e., MM-WHS 2017, Brats 2018, and

Multi-organ segmentation) demonstrate that the proposed method achieves superior performance to some

state-of-the-art methods.
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1 Introduction

Semantic image segmentation has achieved great progress [1–10] thanks to the development of deep
learning. Most of the existing semantic segmentation methods heavily rely on a large amount of precisely
annotated data, which is expensive to obtain. Besides, the presence of different imagining modalities
(e.g., visible and infrared light images, different medical imaging modalities) categorized by the method
in which images are generated further exacerbates the annotation expense. Therefore, there has been a
growing interest in the field of unsupervised cross-modality image segmentation, which aims to achieve
segmentation without relying on manual annotation specifically for the target modality, instead using
only manual annotations from the source modality.

Most methods frame the unsupervised cross-modality image segmentation as an unsupervised domain
adaptation (UDA) segmentation task. These UDA methods aim at performing domain adaptation by
transferring the knowledge learned from labeled source data to unlabeled target data with very different
image appearances. Image translation methods [6, 11, 12] that attempt to align the image distribution
between the source and the target domain via adversarial training are widely adopted in UDA segmen-
tation tasks. Since the source and target data share some common features (such as semantic content
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Figure 1 (a) Evolution of accuracy on whole heart segmentation (WHS), brain tumor segmentation (Brats), and abdominal multi-

organ segmentation (Abdo), with respect to the confidence threshold used for extracting reliable pseudo labels. (b) Schematic

view of the proposed confidence-weighted mutual supervision on dual networks. →, 99K, 9, and ⊗ denote forward, backward

propagation, gradient stop, and pixel-wise multiplication, respectively. We leverage the prediction confidence c to alleviate the

impact of inevitable noisy pseudo labels, while making full use of all pseudo labels.

and geometric shape), some other methods [13–15] alternate to align intermediate features to learn do-
main invariant representation for UDA segmentation. In addition to these image/feature-level alignment
methods, some other methods [15–18] directly align the structured segmentation output, which preserves
more sufficient spatial complexity and rich semantic information for the segmentation tasks [19].

The above alignment-based UDA semantic segmentation methods mainly focus on reducing the domain
gap, rather than learning precise segmentation networks for unlabeled target domains. To fully utilize
the unlabeled target data, self-training methods [20–22] that rely on pseudo labels as supervision for the
unlabeled target data have been commonly used. Self-ensembling methods [20, 21] use the pseudo labels
generated from the teacher model to train the student model. The bias toward the dominant semantic
classes in pseudo labels is still inevitable. Some methods [23–25] aim at tackling such class-imbalance
issues in the pseudo labels.

Thanks to the pseudo labels of extended data from the target domain [20, 21, 23–25], self-training
methods have achieved very encouraging results in UDA semantic segmentation. However, without
the exact supervision information from precise mask annotation, self-training-based UDA segmentation
methods are still prone to generate noisy labels. This can cause the error accumulation in the network [26],
degrading segmentation results.

To tackle the issue of noisy pseudo labels, CCT [27] learns discriminative features from different views to
improve the accuracy of pseudo labels. FixMatch [28] alternates to learn from strong augmented unlabeled
data using the selected pseudo labels of the weakly augmented one. Though these methods [27, 28] do
alleviate the harm from the noisy pseudo label, they are still prone to mistake the noisy pseudo labels as
the clean one due to the confirmation bias of a single network [26], and neglect the risk that the network
memorizes noisy label during training processing [29, 30].

In this paper, we propose the confidence-weighted mutual supervision on dual networks to address the
problem of noisy labels for unsupervised cross-modality image segmentation. Specifically, pioneered by
the work of deep mutual learning in [31], we make use of dual networks initialized independently based
on [32] to get rid of some noisy pseudo labels caused by the confirmation bias [26] in a single network.
We further introduce a confidence measure based on the entropy of the predicted score, to assess the
quality of pseudo labels. Figure 1 shows that for most cases as the confidence increases, the segmentation
accuracy gets better, implying that predictions with higher confidence are more likely to provide correct
pseudo labels. However, entropy-based confidence could still contain noise, in particular in the setting
of UDA segmentation in which the domain shift increases the difficulties in pseudo label generation and
in turn yield unreliable entropy-based measure. To address this problem, we propose a novel confidence-
weighted Dice loss on the unlabeled target data to mutually supervise the dual networks. In this way, we
make full use of the pseudo labels, and effectively alleviate the negative impact of noisy pseudo labels.

The main contributions of this paper are threefolds.

(1) We propose a novel approach for unsupervised cross-modality image segmentation by introducing
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dual networks with confidence-weighted mutual supervision. To the best of our knowledge, this is the
first application of the mutual supervision on dual networks to address the challenges of unsupervised
cross-modality image segmentation.

(2) We introduce a unique confidence-weighted Dice loss, which enables confidence-weighted mutual
supervision. This innovative loss function allows us to effectively leverage pseudo labels while considering
their quality.

(3) We validate the proposed method in segmenting cross-modality medical images, which often exhibit
shared anatomical structures and larger gaps compared with the domain gap present in cross-domain
natural images. Through extensive experiments, our approach achieves state-of-the-art results on three
popular unsupervised cross-modality image segmentation tasks.

2 Related work

The unsupervised cross-modality image segmentation is usually framed as UDA semantic segmentation.
Therefore, we mainly focus on reviewing related UDA semantic segmentation methods, which can be
roughly categorized into two classes: alignment-based and self-learning-based methods.

2.1 Alignment-based UDA semantic segmentation

The source and target domains usually exhibit different appearance distributions. Many methods attempt
to achieve UDA semantic segmentation by reducing such domain gaps caused by distribution shifts. For
that, most methods mainly align source and target distribution in three-levels: image/feature/output
level. Specifically, some methods [25, 33] aim to transfer the labeled source images to unlabeled target
distribution. The image distribution alignment is usually achieved by image translation networks such
as CycleGAN [11] and DSFN [12]. Yang and Soatto [33] transferred the source image to the target
style by using the high-frequency component of the Fourier frequency spectrum of target images. In
addition to the image level alignment, the feature level alignment [13–15,34] is also widely used to learn
invariant features for both source and target domains. These methods [13–15,34] usually perform feature
level alignment using adversarial training. Recently, output level alignment is widely used in many
methods [15–18,35, 36]. Directly aligning the structured output achieves impressive results. Some other
methods [37–41] perform both image level and output level alignment. Such a combination learns the
unified input and output distribution relationship between the source domain and the target domain [38].

The proposed method also adopts CycleGAN [11] to reduce the domain gap between the source and
target domain by aligning the image appearance distribution. Different from these alignment-based
methods, we propose a confidence-weighted mutual supervision on dual networks to make full use of the
pseudo labels, yielding many improved results.

2.2 Self-training methods

Recently, self-training [20, 21, 42] that relies on pseudo labels is widely adopted for unsupervised domain
adaptive semantic segmentation. Most methods [20,21,43] generate the pseudo labels on unlabeled target
images by thresholding the predicted probability or predicted confidence with an empirically set value.
The pseudo labels are then used to re-train the segmentation model on the unlabeled target images. For
instance, self-ensembling [20] utilizes the pseudo labels generated from an online updated teacher model to
supervise the student model trained on the labeled source data. Li et al. [21] first selected reliable pseudo
labels based on the consistency between the predictions on different image views. The selected pseudo
labels are then used for retraining on the unlabeled target data. In addition to the thresholding-based
approaches, some methods [23–25] aim at tackling the pseudo labels bias among the semantic classes.

Self-training is also popularized in semi-supervised learning. For example, FixMatch [28] and CCT [27]
deal with noisy pseudo labels to avoid the error flow in the iteration. FixMatch [28] combats the noisy
supervision information by learning from both strongly and weakly perturbed unlabeled data under the
supervision of thresholded pseudo labels. CCT [27] de-noises the pseudo labels by learning consistent fea-
tures from two perturbed networks. Following the pioneer work of deep mutual learning in [8], CPS [32]
improves CCT [27] by learning multiple features using pseudo labels produced from two perturbed net-
works with the same architecture. The method in [44] extends CPS [32] by adopting one shared encoder
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and two segmentation heads, and using strongly and weakly augmented unlabeled data. Fan et al. [44] se-
lected the pseudo labels based on the confidence of the prediction to supervise the prediction on strongly
augmented data. Specifically, in [44], for each pixel, only the prediction with higher confidence is se-
lected as the pseudo labels to supervise the other network with lower confidence on that pixel using the
cross-entropy loss.

Compared with those UDA semantic segmentation methods based on self-training, the proposed
method leverages dual networks to alleviate the negative impact of noisy pseudo labels predicted by
the single network. Besides, we do not threshold the predicted probability to get somehow reliable
pseudo labels. Instead, we make full use of all pseudo labels by considering the confidence of prediction.
The most related studies are [32,44] dedicated for semi-supervised semantic segmentation. The proposed
method adopts mutual supervision on dual networks for unsupervised cross-modality image segmenta-
tion. Besides, we introduce a novel confidence-weighted Dice loss to consider the quality of all pseudo
labels for image segmentation. In this way, we get rid of some noisy pseudo labels in mutual supervision
on dual networks, yielding improved segmentation results.

3 Method

Problem setting. Let XS = {xs
j}

NS

j=1 denote the set of source modality images with the corresponding

ground-truth segmentation label Y S = {ysj}
NS

j=1, and XT = {xt
j}

NT

j=1 denote the unlabeled target modality
images. The goal is to accurately segment the target modality images. To put it simply, we train the
segmentation network f with the labeled source data (XS, Y S) and unlabeled target data XT, and aim
to make such trained segmentation network f generalize well to the unseen target modality images.

3.1 Overview

Unsupervised cross-modality image segmentation is a very challenging task. Most methods draw inspira-
tion from unsupervised domain adaptive semantic segmentation, where self-training that leverages pseudo
labels for network training is widely used. Based on the observation that the prediction with a higher
probability is more likely to be correct, many self-training methods [20, 28] only select reliable pseudo
labels whose predicted probability is higher than an empirically set threshold value. Despite the encour-
aging results, recent self-training methods still suffer from noisy pseudo labels existing in prediction with
high probability, due to the confirmation bias in a single network [26]. This may lead the network to
overfit some incorrect pseudo labels, resulting in degraded segmentation accuracy.

To cope with the confirmation bias, some semi-supervised methods [27,32] train two independent net-
works with mutual supervision for unlabeled data to alleviate the bias of noisy pseudo labels given by a
single network. Such a mutual supervision strategy reduces the negative effect caused by noisy pseudo
labels. Yet, it is still inevitable for the network to memorize some noisy pseudo labels [29,30] during the
training process. Besides, the unreliable prediction with low probability may also contain some useful
information [45, 46]. Intuitively, a more sophisticated way is to take into account the quality of pseudo
labels in mutual supervision on dual networks. Therefore, we adopt a dual network (described in Sub-
section 3.3), and design a confidence measure based on the entropy of predicted probability distribution
to assess the quality of pseudo labels. We then propose a confidence-weighted Dice loss (detailed in
Subsection 3.4) to mutually supervise the dual networks. This helps to combat against the noisy pseudo
labels and further explore the useful information in the noisy pseudo labels. To further improve the
quality of the pseudo labels in cross-modality image segmentation, we also apply image translation based
on CycleGAN (see Subsection 3.2) before the self-training process. The overall pipeline is depicted in
Figure 2.

3.2 Image translation

Images of different modalities often have very different appearances. To reduce the domain gap between
the source modality images and the target modality images, we transfer the source modality images to the
style of the target modality images using CycleGAN [11]. Concretely, we first translate the source images
to the target style by adversarial training based on the generator GS→T and discriminator DT. Similarly,
we train the target to source translation networks based on the generator GT→S and discriminator DS.
We also enforce the preservation of source content.
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Figure 2 The pipeline of the proposed method, consisting of a CycleGAN module and dual segmentation networks f1 and f2

with different initialization. For the source modality images of the target style, we adopt the classical segmentation loss LS
seg to

supervise the prediction ps of both networks. For the target modality images, we introduce a confidence measure ct and design a

confidence-weighted Dice loss LdiceC based on the pseudo labels ŷt to mutually supervise the dual networks.

3.3 Segmentation network architecture

The family of variants of U-Net [2] achieves good results in medical image segmentation. Though some
variants [47, 48] achieve better results than the original U-Net on some specific tasks, it has been shown
that the original U-Net still achieves good results in most cases [49]. Therefore, we simply adopt the de
facto U-Net for the dual segmentation networks f1 and f2. A stronger segmentation network may lead to
better results. Yet, since the main contribution of the proposed approach does not lie in the segmentation
network, we do not seek for stronger segmentation network. It is noteworthy that the dual networks have
the same U-Net architecture, but are initialized differently.

3.4 Confidence-weighted mutual supervision

We online feed the source modality images with the target style and target modality images to the dual
networks during training. Let ps = f(xs) and pt = f(xt) denote the predicted probability map for the
source and target images, respectively. ŷt = argmax(pt) stands for the pseudo labels of the target image.
The training objective for the source and target modality images is detailed in the following.

Training objective for the target style-like source modality images. Since the source images
have accurate annotation, we adopt the classical cross-entropy loss Lce and Dice loss Ldice to train both
networks f1 and f2. Specifically, for a given source image, the corresponding losses are given bellow:

Lce(p
s, ys) = −

1

H ×W

H×W
∑

i=1

K
∑

k=0

ysk(i)× log psk(i), (1)

Ldice(p
s, ys) =

1

K

K
∑

k=0

(

1− 2×

∑H×W

i=1 ysk(i)× psk(i) + γ
∑H×W

i=1 (ysk(i) + psk(i)) + γ

)

, (2)

where H , W , and K denote the height, width of the image, and the number of foreground semantic
classes, respectively. γ is used to prevent the zero division and is set to 0.0001. For both networks, the
overall segmentation loss LS

seg for the source images is given by

LS
seg =

1

NS

∑

xs∼XS

(

Lce(p
s, ys) + Ldice(p

s, ys)
)

. (3)

Training objective for the target modality images. Since there is no annotation for the target
modality images, we leverage the pseudo labels ŷt1 and ŷt2 of the dual networks to mutually supervise
each other. Specifically, in the early stage of training, both networks are not well optimized. The pseudo
labels are not very reliable. Therefore, we simply apply mutual supervision using the Dice loss based
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on the pseudo labels. More precisely, in the early stage, the dual network f1 and f2 are optimized with
Lt
1 = 1

NT

∑

xt∼XT Ldice(p
t
1, ŷ

t
2) and Lt

2 = 1
NT

∑

xt∼XT Ldice(p
t
2, ŷ

t
1), respectively.

With the process of training, the quality of the pseudo labels for target modality images becomes
more and more reliable. Yet, both pseudo labels of the dual networks contain some noises. The straight
forward mutual supervision may make the network to memorize the noisy label, leading to degraded
segmentation performance on the unlabeled target data. To alleviate such issues of noisy labels in the
mutual supervision, we start to take into account the quality of pseudo labels in the late training stage.
For that, we define a confidence map ct based on the entropy E of the predicted probability map pt. For
the i-th pixel, the entropy Et(i) is given by

Et(i) = −
K
∑

k=0

ptk(i)× log ptk(i). (4)

The confidence map ct(i) on the i-th pixel is defined as follows:

ct(i) =
2

1 + exp (Et(i))
, (5)

which is in the range (0, 1). In the late training stage, e.g., starting from the ne-th epoch, as shown in
Figure 2, we pay more attention to confident pseudo labels and trust less on the noisy pseudo labels of
low confidence. This is achieved by multiplying the estimated confidence map ct to the pseudo labels in
the Dice loss for mutual supervision. Such confidence-weighted Dice loss is given by

LdiceC(c
t, pt, ŷt) =

1

K

K
∑

k=0

(

1− 2×

∑H×W

i=1 ct(i)× ytk(i)× ptk(i) + γ
∑H×W

i=1 (ct(i)× ytk(i) + ct(i)× ptk(i)) + γ

)

. (6)

More specifically, in the late stage, for the target images, the dual network f1 and f2 are optimized
with LT

1 = 1
NT

∑

xt∼XT LdiceC(c
t
2, p

t
1, y

t
2) and LT

2 = 1
NT

∑

xt∼XT LdiceC(c
t
1, p

t
2, y

t
1), respectively. Since

the pseudo label for the target images is generally less confidence than the ground-truth annotation
for the source images, we also weigh the confidence-weighted Dice loss on the target domain with a
hyper-parameter λt.

4 Experiments

4.1 Dataset and evaluation protocol

(a) Datasets. We conduct experiments on three types of unsupervised cross-modality image segmenta-
tion tasks, including whole heart segmentation on the MM-WHS 2017 dataset [50], brain tumor segmen-
tation on the Brats 2018 dataset [51], and abdominal Multi-organ segmentation dataset consisting of the
CHAOS challenge dataset and the BTCV dataset [52, 53]. The detail of these involved datasets is given
in the following.

MM-WHS 2017. The Multi-Modality Whole Heart Segmentation (MM-WHS) Challenge 2017
dataset [50] consists of unpaired 20 MRI and 20 CT volumes from different clinical sites. The goal
is to segment four cardiac structures: the ascending aorta (AA), the left atrium blood cavity (LAC),
the left ventricle blood cavity (LVC), and the myocardium of the left ventricle (MYO). The original size
of each slice ranges from 256 × 256 to 512 × 512. We conduct experiments under both “MRI to CT”
(MRI2CT) and “CT to MRI” (CT2MRI) cross-modality settings.

Brats 2018. The Multi-Modality Brain Tumor Segmentation Challenge 2018 dataset [51] contains
MRI images with four different modalities (FLAIR, T1, T1CE, and T2) from 75 low-graded glioma (LGG)
cases. We conduct cross-modality brain tumor segmentation experiments by regarding the T2 modality
as the source domain, and the rest modalities as the target domains. The original size of the slices in
the Brats 2018 dataset [51] is 240 × 240. There are three types of tumors in the Brats 2018 dataset,
i.e., the enhancing tumor, the peritumoral edema, and the necrotic and non-enhancing tumor core. We
follow [12] to combine the three types of tumors as a single tumor class for a fair comparison with existing
studies [25, 37].
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Multi-organ segmentation. The last type of dataset is from abdominal multi-organ segmentation
task [52,53]. Similarly to the whole heart segmentation task, we also conduct experiments under MRI2CT
and CT2MRI settings. The MRI modality images are from the Combined Healthy Abdominal Organ
Segmentation (CHAOS) challenge dataset [52], containing 20 T2w MRI volumes. The CT modality
images are from the Multi-Atlas Labeling Beyond the Cranial Vault Challenge (BTCV) [53]. This dataset
consists of 30 contrast-enhanced portal venous phase CT scans. We aim to segment the liver, left and
right kidneys (LKid and RKid), and spleen. The original size of each slice in BTCV [53] is 512 × 512.

For all datasets, all the source modality images are used as the training set. Following SIFA [39] and
DSFN [12], for the target modality images, we randomly select 80% cases as the training set and 20%
as the test set. Each slice is re-sampled into the size of 256 × 256 for a fair comparison with the other
methods. The image intensity is first normalized by subtracting the mean intensity and dividing by
the standard deviation, and then normalized into range [−1, 1]. We also perform some classical dataset
augmentations such as random crop and rotation during training.

(b) Evaluation protocol. We adopt the Dice score (%) to benchmark all the unsupervised cross-
modality image segmentation tasks. The Dice score evaluates the similarity between the predicted seg-
mentation and the ground-truth 3D mask annotation. Besides, we also adopt the distance-based metrics.
Specifically, we adopt the average symmetric surface distance (ASSD) in terms of voxel for the MM-WHS
2017 [50] and Multi-organ segmentation datasets [52, 53], and Hausdorff distance (HD) for the Brats
2018 [51] dataset. ASSD is obtained by computing the average distance between the surface of the pre-
diction and ground-truth 3D segmentation and vice versa. HD is the maximum distance between two
sets of voxels from the predicted mask and ground-truth segmentation.

4.2 Implementation details

We implement the proposed method with the PyTorch framework on a workstation with two Nvidia Titan
X (Pascal) 12 GB memory GPU. For the CycleGAN [11] module described in Subsection 3.2, we adopt
9 layer ResNet [54] architecture as the generator and basic 70×70 PatchGAN [55] as the discriminator.
We use the Adam optimizer [56] to train the CycleGAN. The learning rate is set to 1×10−4 for both the
generator and the discriminator. For the segmentation network detailed in Subsection 3.4, we train the
dual networks for 100 epochs on the MM-WHS 2017 [50] and Brats 2018 dataset [51], 200 epochs on the
Multi-organ segmentation dataset [52, 53], using also the Adam optimizer [56]. We set the batchsize to
16 for all datasets. The learning rate is set to 1×10−3. The hyperparameter λt involved in the loss on
target modality images is set to 0.5, while γ in the Dice loss is set to 10−4. The starting epoch ne for
using the confidence-weighted Dice loss is set to 50, 50, and 120 for the MM-WHS 2017, Brats 2018, and
Multi-organ segmentation dataset, respectively.

4.3 Experimental results

We conduct experiments on the MM-WHS 2017 dataset [50], Brats 2018 dataset [51], and Multi-organ
segmentation dataset [52, 53]. We mainly compare the proposed method with some state-of-the-art
approaches and the baseline model of mutual supervision on the dual networks denoted by MS-Dual.
Since the dual networks preform similarly, for a fair comparison, we report the performance given by the
averaged predicted scores of the dual networks for both the baseline model MS-Dual and the proposed
method denoted in the following by CWMS-Dual, which leverages the confidence-weighted Dice loss for
mutual supervision on dual networks.

Experimental results on the MM-WHS 2017 dataset. We first evaluate the proposed method
on the cross-modality whole heart segmentation on the MM-WHS 2017 dataset. Some qualitative illus-
trations are given in Figure 3. Since both networks f1 and f2 perform similarly, we simply illustrate the
segmentation result given by the first network f1. As shown in Figure 3, the proposed method achieves
accurate segmentation, and outperforms the baseline model MS-Dual.

The quantitative comparison of the proposed method with some state-of-the-art methods for the
MRI2CT setting is depicted in Table 1. The proposed method improves the baseline model MS-Dual by
1.08% Dice score, demonstrating the usefulness of the proposed confidence-weighted Dice loss and the
confidence-guided fusion. Compared with SIFA [39] which simultaneously learns common feature across
domains and translate images from the source to the target using the shared encoder, the proposed
method achieves 12.68% improvement in terms of Dice score. Compared with DSFN [12] that bridges the
gap between two domains by translating images in both source-to-target and target-to-source directions,
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(a) (b) (c) (d) (e)

Figure 3 Some segmentation results on the MM-WHS 2017 dataset. Top two rows: CT2MRI segmentation; bottom two rows:

MRI2CT segmentation. Different colors in the segmentation denote different regions. Yellow: ascending aorta (AA); green: left

atrium blood cavity (LAC); red: left ventricle blood (LVC); blue: myocardium of the left ventricle (MYO). (a) Image; (b) baseline;

(c) ours; (d) confidence map; (e) ground truth.

Table 1 Quantitative benchmark of MRI2CT segmentation results on MM-WHS 2017 [50] a)

Method
Dice score (%) ↑ ASSD (voxel) ↓

MYO LAC LVC AA Average MYO LAC LVC AA Average

w/o adaptation 17.71 73.60 7.68 66.24 41.31 23.05 11.58 60.68 11.99 26.82

CycleGAN [11] 28.11 68.88 28.89 79.82 51.42 13.83 6.00 14.25 10.05 11.03

SIFA [39] 61.60 79.50 73.80 81.30 74.10 8.50 6.20 5.50 7.90 7.00

IB-GAN [13] 61.50 79.67 76.27 80.24 74.42 6.09 6.34 7.15 11.88 7.86

ARL-GAN [14] 81.60 80.60 69.00 71.30 75.70 6.50 5.90 6.70 6.30 6.40

DSFN [12] 62.40 76.90 79.10 84.70 75.80 15.70 11.90 10.60 7.40 11.40

DADASeg-Net [34] 61.20 80.70 77.90 87.00 76.70 5.50 5.60 4.70 4.50 5.10

DSAN [37] 66.52 84.76 82.77 79.92 78.50 5.59 6.65 3.77 7.68 5.92

UMDA-SNA-SFCNN [15] 66.20 82.70 82.60 89.20 80.20 4.50 3.60 3.00 6.70 4.40

ICMSC [41] 72.40 86.40 84.30 85.60 82.20 3.20 3.30 3.40 2.40 3.10

DaLST [17] 67.59 90.09 86.13 89.92 83.44 – – – – –

MPSCL [43] 72.51 87.08 86.45 90.26 84.08 3.41 3.16 2.85 3.47 3.47

MS-Dual (baseline) 75.40 89.08 86.25 92.10 85.70 3.76 3.56 3.00 3.14 3.37

CWMS-Dual (ours) 77.48 90.20 86.41 93.02 86.78 3.62 2.79 2.88 2.54 2.96

a) The best results are in bold.

the proposed method improves it by 10.98% Dice score. The proposed method also outperforms the most
recent methods DaLST [17] and MPSCL [43] by 3.34% and 2.70%, respectively. Besides, the proposed
method also achieves the best ASSD.

Table 2 lists the quantitative results of CT2MRI segmentation. The proposed method outperforms
the baseline model by 2.14% Dice score. Compared with the state-of-the-art approaches, the proposed
method improves SIFA [39] by a large margin. Compared with DaLST [17], we make an improvement of
1.31% in terms of the Dice score. The proposed method also scores the best according to ASSD.
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Table 2 Quantitative evaluation of CT2MRI segmentation results on MM-WHS 2017 [50] a)

Method
Dice score (%) ↑ ASSD (voxel) ↓

MYO LAC LVC AA Average MYO LAC LVC AA Average

w/o adaptation 0.64 17.80 14.61 7.16 10.05 30.53 26.88 22.32 24.50 26.06

CycleGAN [11] 39.33 12.73 70.91 31.29 38.56 7.09 17.87 7.76 12.13 11.21

SIFA [39] 47.30 62.30 78.90 65.30 63.40 4.40 7.40 3.80 7.30 5.70

DSAN [37] 52.07 66.23 76.30 71.29 66.45 4.25 7.30 5.46 4.44 5.36

MPSCL [43] 55.90 77.34 81.61 64.66 69.87 3.50 2.64 3.44 5.59 3.80

DaLST [17] 73.85 78.58 92.97 69.36 78.69 – – – – –

MS-Dual (baseline) 62.93 83.21 89.34 75.95 77.86 3.89 2.30 3.33 6.37 3.97

CWMS-Dual (ours) 67.19 83.82 91.92 77.08 80.00 3.03 2.45 1.86 6.10 3.36

a) The best results are in bold.
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Figure 4 Some qualitative segmentation results on the Brats 2018 dataset.

Experimental results on the Brats 2018 dataset. We then conduct experiments on the Brats
2018 dataset. As shown in Figure 4, the proposed method achieves accurate brain tumor cross-modality
segmentation. The quantitative evaluation is depicted in Table 3. The proposed method improves the
baseline model by 1.55% Dice score. Compared with SIFA [39], the proposed method increases the Dice
score from 59.30% to 75.37%. We outperform DSFN [12] by 9.27% Dice score. Compared with the more
recent methods, DSAN [37] and Self Semantic Contour [40], the proposed method achieves 8.19% and
6.80% Dice score improvement, respectively. Based on the Hausdorff distance measure, the proposed
method also performs the best on the unsupervised cross-modality brain tumor segmentation task.

Experimental results on the Multi-organ segmentation dataset. Figure 5 illustrates some
qualitative cross-modality multi-organ segmentation results. As shown in Figure 5, the proposed method
achieves a rather accurate cross-modality segmentation result. The quantitative comparison with some
state-of-the-art methods on CT2MRI and MRI2CT settings is depicted in Tables 4 and 5, respectively.
The proposed method performs the best for CT2MRI segmentation in terms of both Dice score and ASSD.
The proposed method improves the baseline model by 0.13%. Compared with DSAN [37] and DaLST [17],
we achieve 0.92% and 1.11% Dice score improvement, respectively. The proposed method outperforms
PSIGAN [57] by 0.81%. For the MRI2CT segmentation, the proposed method performs the best in terms
of ASSD. Based on the Dice score, we outperform the baseline model by 2.04%. It is noteworthy that
though the proposed method performs slightly worse than DaLST [17] and AttENT [38] in terms of
Dice score, DaLST [17] and AttENT [38] use PSPNet [3] and Deeplab-V2 [4] with ResNet101 [54] as the
backbone. Besides, they are both pre-trained on the ImageNet [58].
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Table 3 Quantitative benchmark of different methods on Brats 2018 [51] a)

Method
Dice score (%) ↑ Hausdorff distance (mm) ↓

T1 T1CE FLAIR Average T1 T1CE FLAIR Average

w/o adaptation 8.99 5.55 64.60 26.38 76.31 80.01 49.17 68.50

CycleGAN [11] 38.10 42.10 63.30 47.80 25.40 23.20 17.20 21.90

SIFA [39] 51.70 58.20 68.00 59.30 19.60 15.10 16.90 17.10

DSFN [12] 57.30 62.20 78.90 66.10 17.50 15.50 13.80 15.60

DaLST [17] – – 81.26 – – – – –

DSAN [37] 57.70 62.04 81.79 67.18 14.24 13.70 8.62 12.19

Self Semantic Contour [40] 59.30 63.50 82.90 68.57 12.50 11.20 7.90 10.53

MS-Dual (baseline) 71.97 66.63 82.85 73.82 10.86 11.78 4.64 9.10

CWMS-Dual (ours) 73.29 68.95 83.87 75.37 9.87 10.69 4.33 8.30

a) The best results are in bold.

(a) (b) (c) (d) (e)

Figure 5 CT2MRI (top two rows) and MRI2CT (bottom two rows) segmentation results on the Multi-organ segmentation dataset.

Different colors denote different regions. Yellow: spleen; green: left kidney; red: right kidney; blue: liver. (a) Image; (b) baseline;

(c) ours; (d) confidence map; (e) ground truth.

5 Discussion

The core idea of the proposed method revolves around confidence-weighted mutual supervision. We first
analyze the confidence map defined in (5). As illustrated in Figure 1(a), the confidence map effectively
evaluates the quality of pseudo labels. Pseudo labels with higher confidence are more likely to be correct.
Therefore, integrating such confidence measures in mutual supervision enables better utilization of pseudo
labels from the dual networks, thereby enhancing the segmentation results. As illustrated in Figures 3 and
5, pixels with low confidence mainly locate around region boundaries, which is reasonable. By mitigating
the impact of false supervision in these areas, the segmentation accuracy is significantly improved.

We then conduct three types of ablation studies to discuss the effect of the proposed method. Firstly, we
evaluate the effect of different modules involved in the proposed pipeline: CycleGAN, mutual supervision
on dual networks (MS), and confidence-weighted Dice loss (CWDL). For this study, in addition to the
result of averaged predicted scores of dual networks, we also show the result for each of the dual networks
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Table 4 Evaluation of different CT2MRI segmentation results on the Multi-organ segmentation dataset [52, 53]

Method
Dice score (%) ↑ ASSD (voxel) ↓

Liver RKid LKid Spleen Average Liver RKid LKid Spleen Average

w/o adaptation 14.12 3.87 46.47 20.09 21.14 8.22 8.92 5.61 7.63 7.59

CycleGAN [11] 86.00 75.00 88.00 87.00 84.00 2.00 3.20 1.90 2.60 2.40

SIFA [39] 90.00 89.10 80.20 82.30 85.40 1.50 0.60 1.50 2.40 1.50

AttENT [38] 91.05 81.38 80.51 89.75 85.67 0.99 1.03 1.26 1.12 1.10

DaLST [17] 90.67 87.36 87.52 93.03 89.65 – – – – –

DSAN [37] 89.30 90.16 90.09 89.83 89.84 2.18 1.25 1.10 1.10 1.41

PSIGAN [57] 91.00 87.00 91.00 90.00 90.00 – – – – –

MS-Dual (baseline) 87.50 93.21 92.05 89.74 90.63 0.68 0.12 0.15 0.35 0.32

CWMS-Dual (ours) 88.02 92.54 91.81 90.59 90.76 0.51 0.13 0.24 0.36 0.31

Table 5 Evaluation of different MRI2CT segmentation results on the Multi-organ segmentation dataset [52, 53]

Method
Dice score (%) ↑ ASSD (voxel) ↓

Liver RKid LKid Spleen Average Liver RKid LKid Spleen Average

w/o adaptation 40.03 15.14 35.16 36.24 31.64 8.94 Infinite 11.17 11.83 Infinite

CycleGAN [11] 84.50 78.60 80.30 76.90 80.10 1.80 1.30 1.20 1.90 1.60

SIFA [39] 88.00 83.30 80.90 82.60 83.70 1.20 1.00 1.50 1.60 1.30

DSAN [37] 87.50 83.40 82.90 83.63 84.36 – – – – –

AttENT [38] 88.56 80.66 85.59 86.34 85.29 0.68 1.31 1.43 1.21 1.16

DaLST [17] 90.52 85.08 87.36 86.64 87.40 – – – – –

MS-Dual (baseline) 89.29 82.55 83.22 75.38 82.52 0.32 0.55 0.46 1.26 0.65

CWMS-Dual (ours) 90.59 83.41 85.50 79.55 84.94 0.26 0.53 0.35 0.74 0.47

Table 6 Ablation study on each component for MRI2CT segmentation on MM-WHS 2017 dataseta)

Method
Dice score (%) ↑ ASSD (voxel) ↓

MYO LAC LVC AA Average MYO LAC LVC AA Average

CycleGAN only 28.11 68.88 28.89 79.82 51.42 13.83 6.00 14.25 10.05 11.03

MS-Dual (baseline) 75.40 89.08 86.25 92.10 85.70 3.76 3.56 3.00 3.14 3.37

CycleGAN+MS+CWDL (U-Net1) 76.47 89.51 85.30 92.49 85.94 3.81 3.22 3.27 4.43 3.68

CycleGAN+MS+CWDL (U-Net2) 77.34 90.08 86.26 92.73 86.61 3.83 3.05 2.85 2.61 3.08

CycleGAN+MS+CWDL (averaged score) 77.48 90.20 86.41 93.02 86.78 3.62 2.79 2.88 2.54 2.96

a) MS and CWDL denote mutual supervision and confidence-weighted Dice loss, respectively. U-Net1, U-Net2, and averaged

score are the results of the prediction from each of the dual networks and the averaged score of dual networks, respectively. The

best results are in bold.

Table 7 Ablation study on each component for CT2MRI segmentation on MM-WHS 2017 dataseta)

Method
Dice score (%) ↑ ASSD (voxel) ↓

MYO LAC LVC AA Average MYO LAC LVC AA Average

CycleGAN only 39.33 12.73 70.91 31.29 38.56 7.09 17.87 7.76 12.13 11.21

MS-Dual (baseline) 62.96 83.21 89.34 75.95 77.86 3.89 2.30 3.33 6.37 3.97

CycleGAN+MS+CWDL (U-Net1) 66.34 83.16 91.42 76.98 79.47 3.54 4.76 2.12 6.07 4.12

CycleGAN+MS+CWDL (U-Net2) 67.48 83.22 92.11 76.99 79.95 3.20 2.37 1.77 5.87 3.30

CycleGAN+MS+CWDL (averaged score) 67.19 83.82 91.92 77.08 80.00 3.03 2.45 1.86 6.10 3.36

a) MS and CWDL denote mutual supervision and confidence-weighted Dice loss, respectively. U-Net1, U-Net2, and averaged

score are the results of the prediction from each of the dual networks and the averaged score of dual networks, respectively. The

best results are in bold.

denoted by U-Net1 and U-Net2. Then we conduct an ablation study on when to apply the confidence-
weighted Dice loss. Finally, we compare our confidence weighting strategy with the hard thresholding
strategy to validate the advantage of our confidence-weighted Dice loss. We conduct all ablation studies on
the MM-WHS 2017 dataset [50], which is widely used in unsupervised cross-modality image segmentation.

Ablation study on different modules. As depicted in Tables 6 and 7, using only CycleGAN
achieves relatively reasonable results, but is far from satisfied. The mutual supervision on dual networks
is quite effective. The proposed confidence-weighted Dice loss further improves the result of CycleGAN by
35.36% and 41.44% Dice score, under MRI2CT and CT2MRI settings. Compared with the baseline model
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Table 8 Ablation study on the starting epoch ne of applying the confidence-weighted Dice loss to the MRI2CT and CT2MRI

segmentation on the MM-WHS 2017 dataseta)

Starting epoch ne

Dice score (%) ↑ ASSD (voxel) ↓

MYO LAC LVC AA Average MYO LAC LVC AA Average

MRI2CT

40th Epoch 75.50 89.21 85.21 92.32 85.56 3.66 3.62 3.10 6.09 4.12

45th Epoch 76.76 89.25 85.80 92.05 85.96 3.51 3.53 3.10 4.67 3.70

50th Epoch (ours) 77.48 90.20 86.41 93.02 86.78 3.62 2.79 2.88 2.54 2.96

55th Epoch 74.26 89.20 87.01 92.72 85.80 3.81 3.83 2.78 5.33 3.94

60th Epoch 76.25 89.62 86.02 92.77 86.17 3.44 3.42 3.17 3.07 3.30

CT2MRI

40th Epoch 67.68 84.43 93.67 76.17 80.49 2.98 2.22 1.23 6.26 3.17

45th Epoch 66.38 84.16 91.67 76.05 79.56 3.25 2.80 1.80 6.61 3.62

50th Epoch (ours) 67.19 83.82 91.92 77.08 80.00 3.03 2.45 1.86 6.10 3.36

55th Epoch 67.98 82.94 91.79 77.66 80.09 3.35 2.53 1.68 5.90 3.37

60th Epoch 67.86 83.31 92.72 76.79 80.17 2.98 2.26 1.71 6.44 3.35

a) The best results are in bold.

Table 9 Ablation study on hard thresholding and confidence weighting in MRI2CT and CT2MRI tasksa)

Method
Dice score (%) ↑ ASSD (voxel) ↓

MYO LAC LVC AA Average MYO LAC LVC AA Average

MRI2CT

thresh = 0.80 75.06 89.46 86.42 92.85 85.95 3.64 3.74 2.86 3.68 3.48

thresh = 0.85 74.26 89.22 85.82 92.20 85.37 3.50 3.32 3.09 3.97 3.47

thresh = 0.90 75.26 89.84 87.18 91.65 85.98 3.50 3.09 3.02 2.59 3.05

thresh = 0.95 76.64 89.44 86.44 92.51 86.25 3.63 3.49 2.90 4.08 3.53

thresh = 0.96 75.32 89.05 87.33 91.34 85.76 3.57 3.61 2.80 2.95 3.23

CWMS-Dual (ours) 77.48 90.20 86.41 93.02 86.78 3.62 2.79 2.88 2.54 2.96

CT2MRI

thresh = 0.80 64.98 83.49 90.18 75.68 78.58 3.19 2.58 2.59 6.10 3.61

thresh = 0.85 68.17 82.29 91.98 75.50 79.48 3.00 2.78 1.88 6.90 3.64

thresh = 0.90 67.15 82.08 91.89 75.44 79.13 3.23 2.55 1.95 6.35 3.53

thresh = 0.95 67.64 82.46 91.12 74.53 78.93 3.06 3.62 1.89 7.04 3.90

thresh = 0.96 66.42 82.55 90.55 75.12 78.66 3.28 2.80 2.68 6.77 3.87

CWMS-Dual (ours) 67.19 83.82 91.92 77.08 80.00 3.03 2.45 1.86 6.10 3.36

a) The best results are in bold.

MS-Dual, the proposed method achieves an improvement 1.08% and 2.14% Dice score under MRI2CT
and CT2MRI setting, respectively. Besides, each of the dual networks also outperforms the result of
averaged scores from the dual networks in the baseline model.

Ablation study on the starting epoch ne. As shown in Table 8, the starting epoch of applying
the confidence-weighted Dice loss somehow influences the segmentation accuracy. Yet, the performance is
rather stable for a wide range of starting epochs from 40 to 60 under both MRI2CT and CT2MRI settings.
We choose ne = 50 as the optimal starting epoch for the cross-modality whole heart segmentation and
brain tumor segmentation on Brats 2018 dataset. For the multi-organ segmentation task, we set the
starting epoch ne to 120.

Ablation study on hard thresholding vs. confidence-weighting. As shown in Table 9, hard
thresholding on the pseudo labels may also achieve interesting results. Yet, it is somehow difficult to
set a fixed threshold value (e.g., 0.95 for MRI2CT task and 0.85 for CT2MRI task) to get good results.
Besides, compared with all hard thresholding settings, our soft confidence weighting strategy achieves
superior performance thanks to the full utilization of the information from the pseudo labels.

6 Conclusion

In this paper, we aim to tackle the problem of unsupervised cross-modality image segmentation. For that,
we propose a pipeline of confidence-weighted mutual supervision on dual networks. Specifically, we first
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apply image translation based on CycleGAN to reduce the domain shift between different modalities. We
then adopt self-learning and rely on mutual supervision to get rid of some noisy pseudo labels caused by
the confirmation bias of a single network. To further alleviate the negative impact of noisy pseudo labels,
we propose a confidence-weighted Dice loss to take into account the quality of pseudo labels for the dual
networks. Extensive experimental results on three widely used datasets demonstrate that the proposed
method consistently improves the baseline model, and outperforms some state-of-the-art methods.
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