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Abstract Zero-shot semantic segmentation, which is developed to segment unseen categories, has attracted

increasing attention due to its strong practicability. Previous approaches usually applied semantic-visual

mapping based on seen categories to unseen categories, and thus failed to generate meaningful unseen visual

representations and struggled to balance the seen and unseen concepts in the classifier. To overcome the above

limitations, we propose a novel meaningful learning method that could be embedded into any generation-

based zero-shot semantic segmentation model, borrowing the idea from the educational psychology field. The

proposed meaningful learning method refers to the process that the new concepts could be learned by relating

to existing comprehensible concepts and harmoniously incorporated into the concept schema. Specifically, we

introduce a generator with conjugate conceptual correlation (G3C) which generates meaningful unseen visual

information through anchoring into existing concepts. Moreover, simulating the rational thinking mechanism,

we introduce a fast-slow concept modulator to alleviate the noisy over-correlation problem introduced by

G3C and further construct a comprehensive concept schema. Extensive experiments conducted on three

benchmarks demonstrate the superior performance of our method, especially according to the commonly-

acknowledged h-mIoU (e.g., 4% improvement on the Pascal-VOC dataset).
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1 Introduction

Semantic segmentation [1–5] is one of the most fundamental problems in computer vision and has been
widely applied in many real-world scenarios, such as geographic information systems [6], self-driving [7,8],
and medical image analysis [9–11]. However, it heavily depends on dense pixel-wise annotations which
are time-consuming and labor-expensive, and struggles to transfer previous knowledge to unseen classes.
On the other hand, humans could easily recognize an unseen class by connecting it with the concepts
they knew before.

To bridge the gap between humans and machine visual intelligence, zero-shot semantic segmentation
has been developed to segment objects of unseen categories based on previously seen categories with
semantic word embeddings, as shown in Figure 1(a). There have been a few attempts on zero-shot multi-
class semantic segmentation [12–14]. SPNet [13] learns to align each image pixel of seen classes with
a semantic word embedding vector to accomplish classification during training, and extend the existing
seen classifier with semantic embeddings of unseen classes. However, the classifier of SPNet is only
trained on seen classes, resulting in poor performance on unseen classes. In contrast, generation-based
methods, such as ZS3Net [14] and CaGNet [15] which utilize a generator to establish semantic-visual
mapping and generate the visual representations for both seen and unseen classes, could provide the
visual representations to train a comprehensive classifier.
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Figure 1 (Color online) The zero-shot semantic segmentation task and the underlying catastrophic forgetting problem. (a) The

zero-shot segmentation task which transfers the concepts from seen classes to unseen classes to accomplish segmentation on both

seen and unseen categories. (b) The mIoU value on seen classes (s-mIoU) and unseen classes (u-mIoU) of the previous state-of-

the-art method CaGNet and our method every 1000 iterations, respectively. It manifests that CaGNet suffers from catastrophic

forgetting while our method could evenly handle the previous experience and novel concepts.

Although previous generation-based zero-shot segmentation approaches have achieved promising per-
formance, they fail to generate meaningful unseen visual representations and struggle to balance the
seen and unseen concepts in the classifier. For one thing, the semantic-visual mapping trained on seen
categories is hard to apply to unseen categories, leading to unreasonable unseen visual representation
which further affects the training of the final classifier. For another, it is hard to prevent newly-learned
information from interfering with existing concepts in the classifier, also known as catastrophic forget-
ting [16].

What is worse, since the seen categories account for the largest share of the overall classes and thus
have a strong impact on evaluating the overall performance according to m-IoU metric, previous studies
tend to dampen the classification performance of unseen classes to maintain the performance for seen
categories. Figure 1(b) shows the mean intersection-over-union (mIoU) performance on seen classes (s-
mIoU) and unseen classes (u-mIoU) every 1000 iterations of previous zero-shot semantic segmentation
method CaGNet and ours. The u-mIoU of CaGNet increases at the first 2000 iterations, while the s-mIoU
is falling. To maintain the overall performance, CaGNet suppresses the learning of unseen classifier, with
the u-mIoU dropping more than 0.1 until 4000 iterations while s-mIoU is slightly rising. This is against
the intention of zero-shot learning.

To address the above problems, we propose a novel meaningful learning method for zero-shot seman-
tic segmentation, which is inspired by the relevant theory from the educational psychology field [17],
to generate meaningful unseen visual representation and construct a comprehensive concept schema of
previous seen classes and novel unseen classes. The term “meaningful learning” refers to the process of
learning the new information through anchoring into existing comprehensible concepts, thus making the
new-learned concept meaningful to the student, and integrating the existing and new concepts together
to eventually promote a comprehensive understanding. Our meaningful learning method correspondingly
consists of two novel components: a generator with conjugate conceptual correlation (G3C) which gen-
erates meaningful unseen visual information through anchoring into existing concepts, and a fast-slow
concept modulator (FSCM) which alleviates the noisy over-correlation problem introduced by G3C and
further constructs a comprehensive concept schema for segmentation. The G3C completes the process
of learning new information through existing comprehensible concepts of meaningful learning and the
FSCM accomplishes the process of the integrating the existing and new information. With the meaning-
ful learning and the establishment of such valuable correlations between new and existing concepts, it is
possible to better understand new knowledge and integrate it effectively with the previous knowledge.

Specifically, G3C generates the unseen visual representation through anchoring the existing seen visual
representations, which could be guided by their semantic correlations through word embeddings. In
other words, G3C models the valuable correlations between the new and existing concepts respectively
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from semantic and visual perspectives, and puts constraints on the semantic-visual mapping to pursue
correlation consistency. Connecting with the comprehensible existing concepts, the generated unseen
visual representations are more meaningful and authentic. Moreover, a spatially adaptive margin is
introduced to handle the semantic-visual gap and encourage visual diversity.

Although G3C could generate meaningful unseen visual representations through the correlations, it
would also cause the over-correlation problem due to the noisy semantic word embeddings pre-trained
with large-scale irrelevant corpus. Thus, the model cannot grasp the discriminative characteristics of
a category and struggles to construct a comprehensive concept schema, exacerbating the catastrophic
forgetting. Hence, we propose an FSCM consisting of a fast classifier, a slow classifier, and a recognition
controller, to alleviate the over-correlation and form a comprehensive concept schema. The recognition
controller allows the highly distinguishable samples obtained by the fast classifier to build the initial
discriminative unseen concept, and then slowly control the concept integration in the slow classifier step
by step.

To the best of our knowledge, this is the first endeavor to adopt the meaningful learning theory for
the zero-shot semantic segmentation problem. Figure 1(b) also exhibits that our solution harmoniously
improves the performance of both seen classes and unseen classes during the training phase. We hope our
attempt could provide a new insight into the community and promote a wide breadth of applications. In
summary, our main contributions are listed as follows.

(1) We propose a novel and general meaningful learning method for zero-shot segmentation, borrowing
the idea from the educational psychology field, which well learns novel concepts without visual instances
and handles conflicts between new concepts and the previous ones. It could be embedded into general
zero-shot semantic segmentation models and significantly improve the segmentation performance.

(2) We design a novel generator with conjugate conceptual correlation to generate meaningful unseen
visual representations through anchoring into existing comprehensible concepts.

(3) A novel fast-slow concept modulator is designed to alleviate the noisy over-correlation problem
introduced by G3C and further constructs a comprehensive concept schema for segmentation.

(4) Extensive experiments demonstrate that the proposed meaningful learning method outperforms
the state-of-the-art approaches on Pascal-VOC [18], Pascal-Context [19], and COCO-stuff [20] datasets.
Our model can achieve superior performance (e.g., 4% improvement of h-mIoU on Pascal-VOC dataset)
compared with state-of-the-art baseline methods.

2 Related work

2.1 Semantic segmentation

Semantic segmentation is a long-standing and challenging task in computer vision, aiming to accurately
predict pixel-wise semantic labels in an image. Most recent state-of-the-art models [21–26] are based on
FCN [27], the first framework adopting fully convolutional networks to address the task in an end-to-end
manner. Several studies [21, 28] introduce a post-processing module such as conditional random fields
(CRFs) on the predicted results of the network to improve the performance. Besides, models such as
PSPNet [23] or DeepLab [21] attempt to obtain multi-scale contextual information by performing spatial
pyramid pooling at multiples scales or applying several parallel atrous convolutions with different rates.
Moreover, the encoder-decoder networks [29,30] have been successfully applied to semantic segmentation
tasks, owing to their strong ability to capture higher semantic information and visual contextual infor-
mation. For instance, U-Net [29] consists of an encoder which down-samples the input image to a feature
map and a decoder that up-samples the feature map to input image size. Deeplabv3+ [30] integrates the
spatial pyramid pooling module and the encoder-decoder structure into a network, targeting to encode
multi-scale contextual information and capture sharper object boundaries. Although these state-of-the-
art methods have achieved good performance, they still need accurate annotations for each category,
limiting them to adapt to novel categories in new tasks quickly.

2.2 Zero-shot learning

Zero-shot learning has attracted significant attention in recent years, due to its great potential in gener-
alizing to unseen classes in classification tasks. These zero-shot learning methods can be roughly divided
into two classes of methods, namely (a) projection-based methods and (b) generation-based methods.
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The former class of methods [31–36] tend to learn a projection function which projects the semantic
embedding and visual features into a public latent space, and then directly apply the learned projection
to unseen classes in the testing process. Moreover, for the class-imbalance issue in zero-shot learning,
Ref. [36] designed a sample-balanced training process to encourage all training classes to contribute
equally to the learned model. However, such projection-based methods always have poor performance in
the generalized zero-shot learning which is more appropriate for real-life applications. Because there is
no extra supervised learning for unseen classes and the model trained on seen classes has a strong bias for
the seen classes. Generation-based methods mainly utilize generative adversarial networks [37] (GANs)
to generate unseen class features, which transfers the zero-shot learning into a fully supervised problem.
Ref. [38] firstly adopted a conditional Wasserstein GAN architecture for feature generation, consistently
improving the classification performance in both zero-shot learning and generalized zero-shot learning
settings, which is followed by later studies [34,39–45]. Such as, Ref. [39] proposed a cycle consistent loss
to constrain the generated visual features to reconstruct its original semantic features. Ref. [34] borrowed
the knowledge distillation idea to ensure the generated classifiers are discriminative to the visual features.
While these GAN-based methods have achieved good performance in zero-shot classification tasks, they
can only handle images with one object and can not directly guide zero-shot segmentation task, where
the input images always consist of many objects. Therefore, an explicit correlation constraint inside the
image is needed to guide the generator to generate more realistic feature maps for zero-shot semantic
segmentation.

In addition to classification, there are also some studies focusing on detection tasks. Ref. [46] proposed
an intra-class semantic diverging component and an inter-class structure preserving component to help
synthesize robust region features for zero-shot detection task. Ref. [47] designed an end-to-end framework
with class-sensitive modeling, semantic-agnostic modeling, and content-aware modeling.

2.3 Zero-shot semantic segmentation

Prior studies on zero-shot semantic segmentation [12, 48] mainly focused on single-class segmentation
which has less helpful to solving practical problems in real life. Recently, there are some methods [13–15,
49,50] proposed to solve multi-class semantic segmentation task. These methods can be roughly divided
into two categories, discriminative-based methods and generative-based methods. The discriminative-
based methods utilize the seen classes to explicitly build the relations between the semantic information
and vision information. SPNet [13] learned a visual-semantic embedding module with seen classes to
produce intermediate feature maps in the word embedding space and then projected those feature maps
into class probabilities via a fixed word embedding projection matrix. Finally, it segmented unseen
categories by replacing the projection matrix with word embeddings of novel classes. Ref. [50] introduced
the uncertainty aware losses for zero-shot semantic segmentation to learn at image level and pixel level.
Ref. [51] devised a self-training pipeline to obtain strong supervision for unseen classes. Generation-based
methods utilize the generative adversarial network to generate training examples for unseen classes, and
retrain the network with both seen classes and generated unseen classes. ZS3Net [14] learned the semantic-
visual mapping through a generative model which allowed the generation of visual representations from
semantic word embeddings of unseen classes. The generated visual representations were then used to
fine-tune the classifier of the network, making it compatible with seen and unseen categories. Based on
ZS3Net, CaGNet [15] introduced a contextual module after the feature embedding network to capture the
pixel-wise contextual information, which encouraged the diversity of visual representations and improved
the segmentation performance. CSRL proposed a consistent structural relation learning approach to
harness the similarity of category-level relations on the semantic word embedding space and to learn
a better visual feature generator. Ref. [52] introduced the spatial information module to incorporate
spatial information in semantic segmentation and proposed an annealed self-training to generate pseudo-
annotations for unlabeled samples.

3 Approach

Previous methods [12–14] fail to generate meaningful unseen visual representations and cannot accommo-
date the newly learned concepts with the existing concepts, resulting in inferior performance. To address
the above problems, we propose a meaningful learning method, borrowing the idea from the educational
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Table 1 Notations

Symbol Meaning

Cs The set of seen classes

Cu The set of unseen classes

Is The images containing seen classes

Is∪u The images containing seen and unseen classes

W s
n Semantic word embedding map according to the segmentation annotations

W s∪u
n Semantic word embedding map sampled by randomly stacking word embedding of both seen and unseen classes

E Feature extractor

G Conjugate consistent generator

D Discriminator

RC Recognition controller

FC Fast classifier

SC Slow classifier

Xs
n The real visual feature map for seen classes

X̃s∪u
n The generated visual feature map for seen and unseen classes

Zn The sampled noise map

α The adaptive semantic-visual margin of seen classes

Pm,i The compatibility of X̃s∪u
m,i with the prior knowledge

Rm,i The predicted logits of slow classifier for Xs∪u
m,i

psychology field, to learn the novel concepts by relating to the previous experience and incorporating
them into the existing concept schema.

The following content is organized as follows: we will introduce the preliminary of zero-shot segmenta-
tion first. Then we will depict the overall method and present the two crucial operations in meaningful
learning: the generator with conjugate conceptual correlation and the fast-slow concept modulator in
Subsections 3.3 and 3.4. Finally, we will introduce the learning and inference process.

3.1 Preliminary

In this part, we first present the definitions of all symbols in Table 1, in order to facilitate the understand-
ing of the formula in the paper. Then we give the formal definition of zero-shot semantic segmentation.
Specifically, let Cs and Cu respectively denote the set of seen classes and unseen classes, where Cs∩Cu = ∅.
The goal of zero-shot semantic segmentation model is to segment images Is∪u of Cs ∪ Cu, with the con-
cepts of the images only containing seen classes and their corresponding ground-truth segmentation maps
{Is,Y s}Nn=1, and the semantic word vectors of all the classes Cs ∪ Cu.

Previous generation-based zero-shot semantic segmentation architectures usually consist of a feature
embedding network E, a generator G, and a pixel-wise classifier C. The learning pipeline usually consists
of two stages: a basic learning stage for obtaining informative seen information and an extended learning
stage for learning and integrating unseen concepts. In the basic learning stage, the generator G mainly

constructs the semantic-visual mapping and generates fake seen visual representation X̃s
n = G ([W s

n ,Zn]),
close to the real seen visual representation Xs

n = E (Is
n). W

s
n is the word embedding map, and Zn is the

noise map. C is trained with both the real and generated seen visual representations. CaGNet [15] also
introduces a discriminator D, sharing the first layer with a classifier, to further regularize the mapping. In
the extended learning stage, the semantic word embedding of unseen categories is involved, and we could

obtain the generated unseen visual representations X̃s∪u
m = G ([W s∪u

m ,Zm]), and train the extended C

with both seen and unseen representations. Thus, in the inference phase, the classifier could process the
real unseen visual representation for prediction.

It can be seen that the semantic-visual mapping of the generator is only trained with seen samples,
which is inappropriate for unseen categories. In other words, the generator cannot provide meaningful
unseen visual representations for the classifier, which will affect the segmentation performance. More-
over, simply extending and fine-tuning the classifier is hard to balance the learning of the seen and
unseen concepts, causing the interference for both the unseen concepts construction and seen concepts
adjustment.
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Figure 2 (Color online) The architecture of the proposed meaningful learning method for zero-shot semantic segmentation. The

conjugate conceptual correlation (G3C) encourages the diversity and reality of unseen representations via establishing correlations

with meaningful seen representations, guiding the learning of the unseen concept schema in the classifier. The fast-slow concept

modulator (FSCM), consisting of the fast classifier FC, the recognition controller RC, and the slow classifier SC, alleviates the noisy

over-correlation problem introduced by G3C and further constructs a comprehensive concept schema eventually.

3.2 The overall

In this part, we will introduce our meaningful learning method for zero-shot semantic segmentation. We
first constrain the generator G with a conjugate conceptual correlation to generate the meaningful unseen
visual representations, and then replace the pixel-wise classifier C with our fast-slow concept modulator
to alleviate the over-correlation and accomplish concept integration. Figure 2 illustrates the architecture
of the proposed meaningful learning method.

In the basic stage, we follow the previous learning pipeline, while during the extended learning stage, we
first propose a conjugate conceptual correlation to regularize the mapping G, to encourage the diversity
and reality of unseen representations via establishing correlations with meaningful seen representations.

Moreover, we obtain the X̃s∪u
n and feed it into the FSCM. FSCM is composed of a fast classifier FC, a

recognition controller RC, and a slow classifier SC. We first put it in the FC. The recognition controller
RC screens out samples containing significant characteristics for unseen concepts according to the output
of FC, and allows such samples to pass to the slow classifier SC to make the final prediction, guiding the
model to establish a good initial concept for unseen classes in the comprehensive concept schema. At
the end of the training, the slow classifier SC evenly learns the meaningful novel concepts and fine-tunes
the existing concept schema, and eventually incorporates them into the entire concepts. We will further
elaborate on them in Subsections 3.3 and 3.4.

3.3 Generator with conjugate conceptual correlation

The generator in previous studies [14,15] constructed semantic-visual mapping only through seen samples
and cannot generate meaningful unseen visual representations. To overcome this problem, we design
a generator with G3C. The proposed G3C encourages the generated unseen visual representations to
connect with the comprehensible existing concepts, and the visual connecting should be consistent with
the semantic counterparts. Figure 3(a) depicts the idea.

Formally, given the m-th semantic word embedding map W s∪u
m ∈ Rc×h×w, we reshape the map to the

size of c × n, where n = h × w. Correspondingly, W s∪u
m,i of length c is the i-th column in the reshaped

map, where i = 1, . . . , n. In the meanwhile, we randomly pick a sample {Is,Y s} of seen classes, and
could also obtain its visual representation Xs

n, its semantic word embedding map W s
n , and its generated

visual representation X̃s
n.

The semantic correlations between the i-th patch ofW s∪u
m and the j-th patch ofW s

n could be calculated

by (W s∪u
m,i )

TW s
n,j. The visual connections could be calculated through (X̃s∪u

m,i )
TXs

n,j likewise. Intuitively,
the connections from both semantic and visual perspectives should be consistent. Hence, G3C could

generate the meaningful unseen visual representation X̃s∪u
m,i through the following constraints:

ℓCON =
∑

i,j

(
max(0, (W s∪u

m,i )
TW s

n,j − (X̃s∪u
m,i )

TXs
n,j − α)

)2

+
∑

i,j

(
max(0, (X̃s∪u

m,i )
TXs

n,j − (W s∪u
m,i )

TW s
n,j − α)

)2

, (1)
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Figure 3 (Color online) Two novel components of the proposed meaningful learning method. (a) The generator with conjugate

conceptual correlation (G3C). The proposed G3C encourages the generated unseen visual representations to connect with the

comprehensible existing concepts, and the visual connecting should be consistent with the semantic counterparts. The learning

process of fast-slow concept modulator (FSCM). (b) The FSCM consists of a fast classifier FC, a recognition controller RC, and a

slow classifier SC. RC justifies the intuitive decision made by the fast thinking of FC, and thus controls the rational thinking for

concept integration in the SC.

where α is the margin indicating the semantic-visual gap and max(·, ·) refers to the element-wise maximum
value.

In practice, to encourage visual diversity at different spatial positions, a pixel-wise adaptive margin is
introduced to ℓCON to explicitly transfer the spatial diversity of the seen classes to the unseen classes.
Specifically, we use the semantic-visual gap of real seen samples as the margin instead of a fixed one:

αij = abs
{
(W s

n,i)
TW s

n,j − (Xs
n,i)

TXs
n,j

}
, (2)

where abs{·} represents the element-wise absolute value.
In summary, our conjugate conceptual correlation loss can be formulated as

ℓCON =
∑

i,j

(
max(0, (W s∪u

m,i )
TW s

n,j − (X̃s∪u
m,i )

TXs
n,j −αij)

)2

+
∑

i,j

(
max(0, (X̃s∪u

m,i )
TXs

n,j − (W s∪u
m,i )

TW s
n,j −αij)

)2

. (3)

The adaptive margin takes the spatial information into account and flexibly adjusts the semantic-visual
gap, thus ensuring the visual diversity and improving the generalization ability.

G3C generates the unseen visual representation through the conjugate conceptual correlation, connect-
ing the unseen visual representation with the comprehensible seen ones and thus making them meaningful
and authentic. With the meaningful unseen representations, it could guide the learning of the unseen
concept schema in the classifier and the harmonious integration of the overall concepts.

3.4 Fast-slow concept modulator

Although G3C could generate meaningful unseen visual representations through the correlations, it would
also cause the over-correlation problem due to the noisy semantic word embeddings. Thus, the model
cannot grasp the discriminative characteristics of a category and struggles to construct a comprehensive
concept schema, exacerbating the catastrophic forgetting. Contrastively, humans could effortlessly in-
tegrate the new concepts to existing concepts, filtering out the noisy information. Therefore, we follow
the two types of human thinking mechanism [17] proposed by Kahneman, namely fast thinking and slow
thinking, and propose the FSCM to handle the over-correlation problem and construct a comprehensive
concept schema, harmoniously integrating the existing seen concepts and the novel unseen concepts for
the final classification.

Figure 3(b) depicts the learning process of the proposed FSCM. Specifically, FSCM consists of a fast
classifier FC, a recognition controller RC, and a slow classifier SC. RC justifies the intuitive decision made
by the fast thinking of FC, and thus controls the rational thinking for concept integration in the SC. SC
replicates the parameters of FC as an initialization and extends it with randomly initialized parameters
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for unseen classes. The parameters of the prediction layer in the FC are fixed in the extended learning
stage, while the parameters of the first layer will be updated during the extended learning stage.

Formally, the recognition controller RC separates the highly discriminative samples of unseen classes
according to the output of FC, which has been already trained in the basic learning stage with existing
concepts:

pm,i = RC(FC(X̃s∪u
m,i )), (4)

where pm,i ∈ [0, 1]2 is a two-dimensional vector respectively indicating the compatibility of X̃s∪u
m,i with

the prior concepts of seen classes and the possibility of it being out of the distribution.
We use a common cross entropy loss to guide the learning of the recognition controller:

ℓBCE =

1∑

k=0

pm,i[k] logpm,i[k], (5)

where the value of pm,i depends on its exact class label ys∪u
m,i at the i-th column of the reshape feature

map Xx∪u
m,i :

pm,i =

{
(0, 1)T, if ys∪u

m,i /∈ Cs,

(1, 0)T, if ys∪u
m,i ∈ Cs.

(6)

Intuitively, if pm,i[0] < pm,i[1], it means the possibility that X̃s∪u
m,i falls into the seen classes is lighter

than it does not. That is to say, X̃s∪u
m,i is a discriminative representation and should be processed first in

the SC to build a discriminative initial unseen concept in the overall concept schema:

Rm,i = I (pm,i[0] < pm,i[1])SC
(
Xs∪u

m,i

)
, (7)

where I (pm,i[0] < pm,i[1]) is the Kronecker delta function that is equal to 1 when pm,i[0] < pm,i[1] and
0 otherwise. Rm,i ∈ R|Cs∪Cu| is the predicted probability of the slow classifier for Xs∪u

m,i .
Except for the controlling of training samples for SC, we introduce a balancing factor to restrict the

severity of the penalty, concentrating mostly on discriminative unseen samples and indiscriminative seen
samples. Formally, the balancing factor is defined as

γi =

{
β1, if ys∪u

m,i = ys∪u
m,i ,

β2, if ys∪u
m,i 6= ys∪u

m,i ,
(8)

where ys∪u
m,i is the predicted class according to Rm,i.

The weighted classification loss can be written as

ℓCLS = −
n∑

i=1

|Cs∪Cu|−1∑

k=0

γiY
s∪u
m,i [k] logRm,i[k]. (9)

As the distinguishing ability of SC grows, some seen samples are inappropriate for the fast classifier
to be predicted due to the adjustment of the shared layer and will gradually be passed through the slow
classifier for further identification. At this time, the slow classifier simultaneously fine-tuned the existing
concepts and the newly-learned concepts, attempting to integrate them into the entire comprehensive
concept schema, and thus is capable of accomplishing the classification task for all the categories.

3.5 Learning and inference

In this subsection, we will elaborate on the training procedure. In the basic learning stage, the modules
{E,G,D,FC} are trained with seen samples and corresponding annotations, guided by the loss terms
similar as follows:

min
E,G,FC

max
D

ℓ̄CLS + ℓADV + λℓREC + ℓKL, (10)

where ℓ̄CLS is the cross entropy loss to guide the learning of FC, ℓADV is the adversarial loss for constraining
the generator G and the discriminator D, ℓREC is applied to mapping the visual embedding and the
semantic embedding, and ℓKL is utilized to project the visual context information to unit Gaussian
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Algorithm 1 Extended learning stage

Input: Seen samples {Is,Y s}N
n=1, semantic word embedding mapW s∪u

m ∈ Rc×h×w, W s
n ∈ Rc×h×w .

Output: The generator G, discriminator D, slow classifier SC, and recognition controller RC.

1: Initialize SC with parameters of FC:

2: while iterations t < T step do

3: Sample batch images Is
n;

4: Construct semantic word embedding map W s
n ;

5: Calculate the real visual representation Xs
n = E(Is

n);

6: Randomly sample the semantic word embedding map W s∪u
m and the noise map Zm;

7: Produce the visual representation X̃s∪u
m = G([W s∪u

m ,Zm]);

8: Generate the determination pm,i = RC(FC(X̃s∪u
m,i ));

9: Predict the probability Rm,i of the slow classifier for X̃s∪u
m,i ;

10: Calculate ℓADV by Xs
n and X̃s

n, ℓCON by Xs
n, X̃

s
n,W

s
n, and W s∪u

n , ℓBCE by pm,i, ℓCLS by Rm,i;

11: Update {G,D, SC,RC} with ℓCON, ℓADV, ℓCLS, and ℓBCE.

12: end while

distribution N (0, 1) which ensures the generator can sample the visual context information of unseen
classes directly from N (0, 1) and generate the visual representations of unseen classes in the extended
learning stage. The meaningful learning method is a general learning strategy, which could be inserted
in any zero-shot semantic segmentation model. We implement the proposed model based on the recent
state-of-the-art approach CaGNet [15] and inherit its loss function. Therefore, detailed definitions of the
above loss terms can be referred to as CaGNet [15].

In the extended learning stage, we update {G,D, SC,RC} with parameters of other modules fixed:

min
G,SC,RC

max
D

ℓCON + ℓADV + ℓCLS + ℓBCE, (11)

where ℓCON deriving from (3) is the proposed conjugate conceptual correlation loss to generate meaningful
unseen visual information, ℓBCE deriving from (5) is a binary cross entropy loss to guide the learning
of the recognition controller, and ℓCLS deriving from (9) is the weighted classification loss to guide the
learning of the slow classifier. ℓADV is the adversarial loss for constraining the generator G and the
discriminator D, which is the same as ℓADV in (10). The detailed optimization process is described in
Algorithm 1. To better construct a comprehensive concept schema, we perform the basic learning stage
and the extended learning stage alternately every 100 steps.

In the test phase, our model has constructed a comprehensive concept schema of the seen objects and
unseen objects and can directly predict the segmentation results via SC, with the fast classifier and the
recognition controller removed. Given an image Is∪u which may contain seen classes and unseen classes
as input, the final predicted segmentation map is formulated as R = SC (E (Is∪u)).

3.6 Discussion

The meaningful learning method comprises two main operations, learning the new information through
anchoring into existing comprehensible concepts, thus making the new-learned concept meaningful, and
integrating the existing and new concepts to eventually promote a comprehensive understanding. We
implement the meaningful learning method with the proposed conjugate conceptual correlation and the
fast-slow concept modulator. To the best of our knowledge, this is the first endeavor to adopt the mean-
ingful learning method to tackle the zero-shot learning problem. As for anchoring the new information
into existing comprehensible concepts, most studies [53, 54] simply utilized the semantic-visual mapping
trained on seen categories which are hard to apply to unseen categories to adapt to novel concepts.
A recent study [40] for zero-shot classification attempted to regularize the correlation between existing
concepts and novel ones which can be formulated as follows:

ℓ =
∑

i,j

(
max(0, (wT

i wj − (µ̃T
i µj − α)))

)2

+
∑

i,j

(
max(0, (µ̃T

i µj − (wT
i wj − α)))

)2
,

(12)

where wi,wj represent the semantic word embedding for the i-th and j-th class, while µj refers to the
prototype of j-th seen class and µ̃i refers to the generated prototype for class i. Although Ref. [40]
also could encourage the generated unseen visual representations connecting with the existing concepts,
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they also have the over-correlation problem due to the noisy semantic word embeddings pre-trained with
large-scale irrelevant corpus. Moreover, they merely utilized correlations of the prototype of each class to
constrain the generator and ignored the diversity of visual instances in different spatial positions, and the
fixed margin greatly limits the diversity of generated features. Therefore, it cannot well handle the zero-
shot segmentation tasks. Recent CSRL [49] which is similar with [40] also merely utilizes correlations
of the prototype of each class to constrain the generator and ignores the diversity of visual instances
in different spatial positions, still facing the same problem. Contrastively, we introduce an FSCM to
alleviate the noisy over-correlation problem and adopt an adaptive margin to take the spatial information
into account and flexibly adjust the semantic-visual gap, thus ensuring visual diversity and improving
the generalization ability. We also carry out experiments on ablation study with conjugate conceptual
correlation to verify our point.

As for concepts integration of meaningful learning, some zero-shot studies [55,56] attempted to preserve
existing concepts of seen classes via knowledge distillation when integrating the existing seen concepts
and the novel unseen concepts for the final classification which can be formulated as follows:

ℓ = ‖µs∪u
i − µs

i‖1 + ‖σs∪u
i − σs

i ‖1 , (13)

where µs
i ,σ

s
i refer to the distribution of the i-th seen class predicted by origin model trained on seen

classes, and µs∪u
i ,σs∪u

i are the distribution of the i-th class predicted by the model fine-tuned with novel
classes. These methods are computationally expensive and more likely to be biased towards the seen
classes with a large number of annotated images, leading to unbalanced seen and unseen concepts in
the classifier. Ref. [57] tried to directly map the novel concepts to the existing concepts learned from
ImageNet, which also restricts the learning of novel concepts and cannot balance the seen and unseen
concepts well. Contrastively, our fast-slow concept modulator simulates the thinking mechanism of the
human brain and well balances the learning of novel concepts and adapting of existing concepts, leading
to a new comprehensive concept schema. Combined with the G3C and FSCM, the proposed method is
a completely meaningful learning method that is simple yet effective, and achieves superior performance
on zero-shot semantic segmentation tasks.

4 Experiments

In this section, we conduct extensive experiments on three widely used datasets. First, we introduce the
experimental setup. Then we compare our method with state-of-the-art zero-shot semantic segmentation
approaches, after which we evaluate the effectiveness of the two crucial operations in meaningful learn-
ing. Subsequently, we provide the performance of each component in FSCM during extended learning.
Eventually, we analyze the effect of conceptual correlations of semantic word embeddings.

4.1 Experimental setup

Datasets. We employ the widely used datasets in prior studies, including Pascal-VOC 2012 [18], Pascal-
Context [19], and COCO-stuff [20]. The Pascal-VOC has 1464 training images with dense pixel-level
annotations from 20 categories. The Pascal-Context dataset consists of 33 categories, a total of 4998
training images, and 5105 validation images. The COCO-stuff has a larger data size than Pascal-Context
and Pascal-VOC, which contains 182 classes and 164k annotated images, and is more challenging. We
adopt the data split setting of the recent work CaGNet [15] for all models, and retrain the state-of-the-art
comparison methods with their published codes to guarantee a fair comparison. Specifically, we treat
“potted plant, sheep, sofa, train, tv monitor” as 5 unseen categories and the other 15 categories as seen
classes on Pascal-VOC. On Pascal-Context, we treat “cow, motorbike, sofa, cat” as 4 unseen categories.
And “frisbee, skateboard, cardboard, carrot, scissors, suitcase, giraffe, cow, road, wallconcrete, tree, grass,
river, clouds, playingfield” are treated as 15 unseen categories on COCO-stuff. We use two different
word embedding models, word2vec [58] (d = 600) trained on Google News and fast-Text [59] (d = 300)
trained on Common Crawl, and concatenate the two embeddings as the semantic supervision information,
following previous work [13]. For categories with multiple words, we directly average the embeddings of
each individual word. We adopt a generalized zero-shot semantic segmentation setting that both seen
and unseen categories can appear in test samples, but we only use the pixel-wise annotations of seen
categories and ignore the unseen pixels by marking the annotations of these pixels as ‘ignored’ during
training.
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Implementation details. As mentioned above, we implement the proposed model based on the
recent state-of-the-art approach CaGNet [15] and inherit its original network modules. Because CaGNet
has a more complete experimental setup, which is easy to reproduce the results in the paper. In particular,
our model is built on the DeepLab-v2 [23] which adopts ResNet-101 as the backbone to extract features
and applies an atrous spatial pyramid pooling layer to produce the visual features. Following SPNet [13]
and CaGNet [15], the weights pre-trained on ImageNet are utilized to initialize the backbone network,
but the unseen classes of the three datasets we employ have been specifically excluded in the pretraining
phase, which does not violate the zero-shot constraint. The generator G is implemented by a multi-layer
perceptron with 512 hidden neurons, Leaky ReLU, and dropout for each layer. The discriminator D,
the fast classifier FC, and the slow classifier SC are implemented with two 1 × 1 convolutional layers,
respectively, and share the parameters of the first layer. The recognition controller RC is implemented
with one convolutional layer. The number of iterations in the basic and extended learning stages is set to
40k and 6k, respectively. We adopt the SGD optimizer with an initial learning rate 2.5e−4 for the feature
embedding network, and two Adam optimizers for the generator and the discriminator with an initial
learning rate 2e−4 and 2.5e−4, respectively. The weight decay is set to 5e−4 and the mini-batch size is set
to 8 for all experiments. As for the hyper-parameters, we set λ = 10, β1 = 0.5, β2 = 2 via cross-validation.
We randomly crop the input images to 368 × 368 during training, and resize them to 513 × 513 when
testing. Following CaGNet [15], the images are first resized to 513× 513, and then randomly cropped to
the size of 368× 368 during training, which is a commonly-used data augmentation method, and no data
augmentation is used in testing, keeping the image size at 513× 513. For fair comparison, we keep the
same setting on all comparison methods (SPNet and ZS3Net) with published code.

Evaluation metrics. We investigate the performance of different methods using the standard seman-
tic segmentation metrics: pixel accuracy (PA), mean accuracy (MA), and mean intersection-over-union
(mIoU). Moreover, following the previous work, we also report harmonic metrics (h), namely harmonic
pixel accuracy (h-PA), harmonic mean accuracy (h-MA), and harmonic mean Intersection-over-Union
(h-mIoU). PA is the proportion of correctly marked pixels to total pixels, while MA is the average of the
proportion of correctly classified pixels in each class. mIoU calculates the degree of overlap between the
predicted segmentation map and the ground truth. Although PA, MA, and mIoU are commonly used
to evaluate semantic segmentation models, it should be emphasized that they tend to be usually domi-
nated by seen classes and neglect the improvement of unseen classes because there is a serious imbalance
between the number of seen and unseen classes in zero-shot semantic segmentation. Thus, these metrics
may not fully reflect the overall improvement of zero-shot semantic segmentation methods objectively
and fairly. On the contrary, we should pay more attention to the results of the harmonic metrics for the
overall classes. The harmonic metric eliminates the impacts brought by the imbalance class number, via
respectively considering the seen classes and unseen classes, which is defined as below:

h-metric =
2× s-metric× u-metric

s-metric + u-metric
, (14)

where “metric” could be mIoU, PA, or MA.

4.2 Comparison with state-of-the-arts

We investigate the performance of our model compared with state-of-the-art zero-shot semantic segmenta-
tion approaches: SPNet, ZS3Net, CaGNet, and SIGN. We carefully reproduce the methods which publish
their code and provide both quantitative results and quality results. As for the latest SIGN which did
not publish their code, we directly list the results they provided in their paper for fair comparison. We
also report the results of SPNet-c which deducts the prediction scores of seen categories by a calibration
factor. Moreover, we list the results with self-training (ST) strategy for all approaches following [14, 15].

Table 2 lists the quantitative results obtained with all methods on COCO-stuff, Pascal-Context, and
Pascal-VOC. Owing to the effective meaningful learning method, we can find that our method almost
achieves peak performance in all cases, especially according to harmonic metrics for overall classes and
metrics for unseen classes. According to harmonic evaluations, the proposed model reaches 0.2115, 0.2207,
and 0.4540 h-mIoU, respectively on COCO-stuff, Pascal-Context, and Pascal-VOC datasets. Besides, on
COCO-stuff dataset, our method almost brings 9% gains compared with the baseline model CaGNet on
unseen classes according to PA and MA. Compared with the latest SIGN, our method can also achieve
better performance on all datasets according to the most meaningful metric harmonic IoU. On the Pascal-
VOC dataset, our method could even get a 4% performance improvement. It is worth noting that our
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Table 2 Quantitative results of all zero-shot semantic segmentation methods on COCO-stuff, Pascal-Context, and Pascal-VOC

datasetsa)

Method
Overall-harmonic Overall-mean Seen Unseen

h-mIoU h-PA h-MA mIoU MA mIoU PA MA mIoU PA MA

COCO-stuff

SPNet 0.0145 0.0353 0.0148 0.3169 0.4650 0.3491 0.6667 0.5126 0.0074 0.0181 0.0075

SPNet-c 0.1607 0.3890 0.2655 0.3324 0.4450 0.3563 0.6237 0.4721 0.1037 0.2827 0.1847

ZS3Net 0.1670 0.3399 0.2228 0.3111 0.4627 0.3302 0.6326 0.4627 0.1118 0.2324 0.1467

CaGNet 0.1929 0.3960 0.3535 0.3224 0.4643 0.3405 0.6336 0.4821 0.1346 0.2880 0.2790

SIGN 0.2093 – – – – 0.3231 – – 0.1547 – –

Ours 0.2115 0.4653 0.4102 0.3251 0.4617 0.3416 0.5956 0.4712 0.1532 0.3818 0.3632

ZS3Net + ST 0.1708 0.4589 0.2217 0.3124 0.4315 0.3314 0.6425 0.4589 0.1151 0.3506 0.1462

CaGNet + ST 0.1947 0.4265 0.3784 0.3130 0.4481 0.3299 0.6162 0.4604 0.1381 0.3261 0.3213

SIGN + ST 0.2139 – – – – 0.3639 – – 0.1515 – –

Ours + ST 0.2131 0.4761 0.4066 0.3241 0.4663 0.3404 0.5990 0.4771 0.1551 0.3950 0.3543

Pascal-Context

SPNet 0.0013 0.0012 0.0013 0.2962 0.4414 0.3370 0.6281 0.5022 0.0006 0.0006 0.0006

SPNet-c 0.1134 0.3300 0.3400 0.3055 0.4156 0.3382 0.5670 0.4419 0.0682 0.2328 0.2246

ZS3Net 0.1430 0.2761 0.1927 0.3068 0.4540 0.3360 0.6167 0.5002 0.0908 0.1779 0.1194

CaGNet 0.2028 0.4671 0.4080 0.3176 0.4745 0.3415 0.5883 0.4917 0.1443 0.3873 0.3493

SIGN 0.2067 – – – – 0.3367 – – 0.1493 – –

Ours 0.2207 0.5131 0.4378 0.3202 0.4678 0.3419 0.5845 0.4764 0.1629 0.4572 0.4050

ZS3Net + ST 0.1247 0.3026 0.1752 0.2995 0.4293 0.3302 0.6133 0.4736 0.0768 0.2008 0.1075

CaGNet + ST 0.2266 0.4795 0.4214 0.3212 0.4809 0.3421 0.5996 0.4968 0.1694 0.3995 0.3659

SIGN + ST 0.2260 – – – – 0.3491 – - 0.1671 – –

Ours + ST 0.2399 0.5291 0.4430 0.3231 0.4710 0.3422 0.5919 0.4792 0.1847 0.4782 0.4119

Pascal-VOC

SPNet 0.00001 0.00002 0.00001 0.5703 0.7043 0.7603 0.9476 0.9391 0 0 0

SPNet-c 0.0977 0.1316 0.1091 0.5467 0.6928 0.7527 0.9588 0.9574 0.0523 0.0706 0.0579

ZS3Net 0.2825 0.3665 0.3668 0.6143 0.7307 0.7613 0.9128 0.8974 0.1734 0.2293 0.2305

CaGNet 0.4036 0.6275 0.5921 0.6423 0.7571 0.7650 0.8639 0.8588 0.2741 0.4927 0.4518

SIGN 0.4174 – – – – 0.7540 – – 0.2886 – –

Ours 0.4540 0.6602 0.6225 0.6702 0.7689 0.7872 0.8791 0.8629 0.3190 0.5286 0.4868

ZS3Net + ST 0.3312 0.4074 0.4220 0.6336 0.7503 0.7781 0.9185 0.9088 0.2104 0.2617 0.2748

CaGNet + ST 0.4547 0.7091 0.6678 0.6621 0.7675 0.7756 0.8482 0.8384 0.3217 0.6091 0.5549

SIGN + ST 0.4661 – – – – 0.7862 – – 0.3312 – –

Ours + ST 0.4791 0.7241 0.6712 0.6734 0.7804 0.7829 0.8675 0.8557 0.3451 0.6213 0.5517

a) The bold indicates the best performance, and the underline indicates the second best performance. “ST” stands for self-

training.

method achieves a similar performance with SIGN on the unseen class of the COCO-stuff dataset. It
is because SIGN cannot balance the knowledge of seen and unseen classes well. Therefore, although it
achieves the same performance as ours in unseen classes, it sacrifices the performance of seen classes,
so it is inferior to ours in h-mIoU. It fully illustrates that the proposed model could well learn the
novel concepts and generate meaningful unseen visual representations due to the valuable guidance by
the meaningful existing concepts provided by conjugate conceptual correlations. In the meanwhile, it
can obtain competitive results on seen classes, due to the fast-slow concept modulator that integrates
the existing and new concepts entirely. Moreover, the “ST” is a useful strategy in semi-supervised
learning that leverages a model’s own predictions on unlabelled data to heuristically obtain additional
pseudo annotated training data. It is a relaxed zero-shot setup where unlabelled pixels from unseen
classes are already available at training time and can always improve the performance for zero-shot
segmentation task. With the useful “ST” strategy, all three models could enhance their segmentation
performance according to the h-mIoU metric, and the proposed model still outperforms the others on the
most cases, proving the robustness of our model. However, with “ST” strategy, the mIoU performance
for overall classes on COCO-stuff is even worse, we believe that the core reason is that COCO-stuff
has a long-tail distribution and the model’s prediction for unseen classes is not precise. Therefore, the
obtained pseudo-labels have a serious long-tail problem, and the bias towards unseen classes further
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Figure 4 (Color online) Visualization of zero-shot semantic segmentation results on Pascal-VOC. “GT” is ground-truth segmen-

tation mask. “U” means unseen class, and “S” means seen class.

worsens the results. But our meaningful learning method not only does not lead to worse results of
self-training, on the contrary, but it has also greatly alleviated the problem compared to the baseline
method by better integrating the concepts of seen and unseen classes to balance the predictions. As
seen in Table 2, Ours+ST improves the h-mIoU by 1.84% on COCO-stuff dataset relative to the baseline
method CaGNet+ST. In particular, SPNet and SPNet-c usually show favorable performance on seen
classes due to the abundant data of seen classes, while they barely recognize unseen classes, which is
against the intention of zero-shot learning.

Figure 4 shows the visualization of zero-shot segmentation results on Pascal-VOC. For fair comparison,
we only provide the results of methods with a published code. The first two lines only contain unseen
classes (“sheep” and “train”), while the last row involves both unseen classes (“pottedplant”) and seen
classes (“bird”). It can be observed that our model delivers the closest segmentation performance to the
ground-truth, proving the superiority of the proposed meaningful learning method. Besides, it achieves
the lowest recognition error, compared with the other approaches where the pixels inside a sheep are
classified to “bird” and “cow”. Moreover, the zero-shot segmentation approaches tend to categorize the
pixels into seen classes due to the imbalanced data. For example, in the third row, previous methods
classify the unseen class “pottedplant” as the seen classes “bird” and “boat”. The proposed meaningful
learning method somehow alleviates that problem and thus yields competitive results.

From these observations, we can conclude that our meaningful learning method adequately generates
meaningful unseen visual representations and constructs a comprehensive concept schema of previous seen
classes and novel unseen classes, finally achieving decent zero-shot semantic segmentation performance.
Moreover, since all methods use DeepLab-v2 as the segmentation network, they have the same inference
cost.

4.3 Ablation study

In this subsection, we first study the effects of different parts in the proposed model and then provide
a detailed analysis of the proposed conceptual correlation and the fast-slow concept modulator. We
report the common-used evaluation metrics: h-mIoU, mIoU of all classes (o-mIoU), mIoU of seen classes
(s-mIoU), and mIoU of unseen Classes (u-mIoU).

Validation of network modules. To demonstrate the effectiveness of different components in our
method, Figure 5(a) respectively shows the evaluation of our modules from different perspectives. Specif-
ically, the four sub-figures sequentially present the results of the baseline model (I), the baseline model
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Figure 5 (Color online) (a) Ablation study on Pascal-VOC. It respectively shows the mIoU metrics of the baseline model (I), the

baseline model with the conjugate conceptual correlation (II), the baseline model with the fast-slow concept modulator (III), and

the full model (IV). (b) The mIoU performance of CaGNet and ours on each unseen class. (c) The semantic similarity between the

unseen and seen word embeddings. The darker color indicates a higher similarity.

Table 3 Ablation study of different implementations of conjugate conceptual correlation loss on Pascal-VOC. It shows the results

using the method without conjugate conceptual correlation (w/o ℓCON), the naive conjugate conceptual correlation without a

margin (ℓCON w/o α), the conjugate conceptual correlation with a fixed margin (ℓCON with a fixed α), and the conjugate conceptual

correlation with the adaptive margin (G3C), respectivelya)

h-mIoU o-mIoU s-mIoU u-mIoU

w/o ℓCON 0.4036 0.6423 0.7650 0.2741

ℓCON w/o α 0.4026 0.6419 0.7642 0.2733

ℓCON with a fixed α 0.3934 0.6332 0.7556 0.2659

G3C 0.4132 0.6475 0.7691 0.2826

a) The bold indicates the best performance.

with the conjugate conceptual correlation (II), the baseline model with the fast-slow concept modulator
(III), and the full model (IV).

From Figure 5(a), we can see that each component brings a performance gain compared with the
baseline model. The proposed model achieves the best performance, according to all evaluation protocols,
which validates the effectiveness of the meaningful learning method. According to s-mIoU and u-mIoU,
we can see that, although building the correlations would benefit the comprehension of concepts for both
seen classes and unseen classes, without the fast-slow concept modulator, the novel concepts learned by
model II cannot handle the potential over-correlation or well accommodate the concept schema and thus
could not achieve peak performance. Similarly, even though model III discreetly controls the integration of
existing concepts and new ones, without establishing the valuable correlations, the model just conducts
rote learning where novel concepts are hardly comprehensible and meaningful to such a model. Only
combining the two contributions can the model learn in a meaningful way and form a compatible concept
schema. Moreover, it can be observed that, the increases of h-mIoU and u-mIoU, nearly 5%, are more
obvious compared with those of o-mIoU and s-mIoU, about 2%, indicating that the proposed model
mainly devotes to the learning of unseen classes. However, the new concept schema also improves its
distinguishable ability for seen classes from 0.7650 to 0.7872, due to the comprehensive understanding on
both seen and unseen classes.
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Analysis of conjugate conceptual correlation. The conjugate conceptual correlation establishes
the valuable correlations between existing concepts and the new ones, and regularizes the generator to
generate meaningful unseen visual representations. However, the gap between the semantic and visual
space makes it hard to simply align the correlations in different spaces without any special designs.
Therefore, in Table 3, we carefully make comparisons between (1) the generator without conjugate con-
ceptual correlation (w/o ℓCON) and that of three margin settings which are adopted to eliminate the
semantic-visual gap, (2) the naive conjugate conceptual correlation without a margin (ℓCON w/o α),
(3) the conjugate conceptual correlation with a fixed margin (ℓCON with a fixed α), similar to the idea
of [49] discussed in Subsection 3.5, and (4) the conjugate conceptual correlation with the adaptive margin
(G3C).

As shown in Table 3, removing conjugate conceptual correlation has little impact on seen classes
according to o-mIoU and s-mIoU, while causing about 1% drop on unseen classes. It well confirms
our point that introducing conjugate conceptual correlation would help the learning of unseen classes.
Without an appropriate margin, the performance nearly stays the same or becomes even worse. Moreover,
with the improperly fixed margin, it witnesses 1% drop even on seen classes, meaning that it hurts the
semantic-visual mapping ability of the generator. Intuitively, semantic word embeddings are the highly
abstract class prototypes, while the visual instances contain both the class-specific commonness and the
individual uniqueness, so the margin should be introduced to bridge the semantic-visual gap. We can
observe that the variation of o-mIoU in Table 3 is essentially the same as the variation of s-mIoU, which
does not reflect the larger boost in u-mIoU when the adaptive margin is used. This observation also
demonstrates the weakness that the overall mIoU is usually dominated by the seen classes and ignores
the boost on unseen classes. The effectiveness of the adaptive margin could be measured more objectively
by comparing the h-mIoU metric and our method achieves a 1.06% improvement on h-mIoU when the
adaptive margin is used. Therefore, adaptive margins should be introduced to encourage the diversity
of the visual space. Only in this way can the model capture the valuable correlations and construct
reasonable semantic-visual mapping, thus generating meaningful unseen visual representations.

Analysis of conceptual correlation. Figure 5(b) shows the mIoU performance of CaGNet and
ours for each unseen class on the Pascal-VOC dataset and Figure 5(c) shows the similarity between seen
classes and unseen classes. It can be observed that the proposed method improves the performance on
each unseen class compared with CaGNet. Especially on the “tvmonitor” class, CaGNet barely segments
it correctly and the mIoU of “tvmonitor” class is only 0.074. However, our method can reach 0.1523 mIoU
of “tvmonitor” class which is a massive boost. Combining Figures 5(b) and (c), we can observe that if the
unseen class is similar to some seen classes, its mIoU performance will be satisfactory. Such as the “train”
class, on which the proposed method gains 6% mIoU performance, is highly similar to the seen class “bus”.
The experimental results fully validate that our method could establish the valuable correlations between
classes and thus effectively anchor the existing seen visual representations and generate meaningful unseen
visual representations, benefiting from the conjugate conceptual correlation in the meaningful learning
method.

Analysis of fast-slow concept modulator. In this subsection, we explore some different ways of
integrating the existing concepts and new ones and report the experimental results in Table 4. The
first two settings drop the fast-slow mechanism and get entangled in training seen and unseen classes.
The last three settings investigate different implementations for fast-slow thinking mechanism. From
Table 4, we can observe that whatever implementation of fast-slow thinking mechanism performs better
than dropping the mechanism, which fully demonstrates the superiority of the proposed module. As
for the models abandoning the mechanism, fixing the first layer maintains the existing experience and
thus delivers the best performance on seen classes. Still it cannot correct the noisy over-correlation
problem caused by G3C and construct a comprehensive concept schema for segmentation. Fine-tuning
all the parameters of the extended classifier could help learn the novel concepts at the cost of injuring
previous information, with a nearly 2% performance drop on s-mIoU. In the fast-slow concept modulator,
the recognition controller behind the first layer can also contribute to concept transfer, and increase
the h-mIoU by 2% compared with the “SC” setting. However, the generalization ability of the high-
dimensional feature vector is far less than that of the low-dimensional score distribution due to the
noise information contained in high-dimension vectors, which also leads to the decline of the model’s
performance compared with the full FSCM. Although the third experimental setting adopts the fast-slow
mechanism, it witnesses a 1% drop on h-mIoU, o-mIoU, and u-mIoU, because the existing concept schema
contained in the fixed fast classifier cannot be adapted to the new observations. Thus, the novel concepts
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Table 4 Ablation study of fast-slow concept modulator on Pascal-VOC. It shows the results of abandoning the fast-slow thinking

mechanism and fine-tuning the classification layer of the slow classifier with other parameters fixed (SC + 1-st layer fixed), aban-

doning the fast-slow thinking mechanism and simply fine-tuning all the parameters of the slow classifier (SC), adopting fast-slow

concept modulator and fine-tuning all the parameters of the slow classifier with the fast classifier fixed (FSCM + fixed FC), adopting

fast-slow concept modulator and deploying the recognition controller before the classification layer of the fast classifier (FSCM +

RCf ), and the overall fast-slow concept modulator (FSCM), respectivelya)

h-mIoU o-mIoU s-mIoU u-mIoU

SC + 1-st layer fixed 0.3320 0.6432 0.7875 0.2103

SC 0.4132 0.6475 0.7691 0.2825

FSCM + fixed FC 0.4423 0.6652 0.7842 0.3081

FSCM + RCf 0.4322 0.6626 0.7841 0.2980

FSCM 0.4504 0.6701 0.7872 0.3190

a) The bold indicates the best performance.
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Figure 6 (Color online) Visualization of the extended learning stage on Pascal-VOC of mIoU, respectively. The model is evaluated

on the test dataset every 200 iterations. (a) h-mIoU; (b) o-mIoU; (c) s-mIoU; (c) u-mIoU.

may be mistakenly classified as seen classes and cannot well accommodate in such a concept schema.
Therefore, the implementation of ours is reasonable and indeed yields the favorable performance.

4.4 Analysis of the extended learning process

In this subsection, we analyze the extended learning of each module in the fast-slow concept modulator.
We have presented the performance of the overall modulator in Section 1 where the full model could
evenly handle the previous experience and novel concepts. This subsection looks deep into the modulator
and investigates FC, SC, and the overall FSCM. Figure 6 provides the h-mIoU, o-mIoU, s-mIoU, and
u-mIoU performance of FC, SC, and the overall FSCM, respectively. Since the learning of novel concepts
happens rapidly, making it hard to distinguish the SC which becomes the final comprehensive concept
schema and the overall modulator, we record the performance every 100 iterations and only provide the
previous 800 iterations.

First, we can observe that the overall modulator FSCM outperforms other modules under all settings,
but it is hard to distinguish it from SC due to the fast learning of novel concepts, except the o-mIoU
and s-mIoU where seen classes play a more important role than unseen classes due to the computation of
evaluation metrics. The h-mIoU and u-mIoU performance of SC and FSCM is continuously increasing,
while s-mIoU and o-mIoU first drop and then increase. After 800 iterations, they will reach the previous
level or even better as shown in Figure 1, indicating that the proposed model could preserve the existing
knowledge or better understand it due to the novel observations. Moreover, the fast classifier cannot
predict unseen classes, and thus the h-mIoU and u-mIoU performance remain zero. Besides, with incom-
patible novel observations, the whole system FSCM alters its perceiving approach, and thus the rigid FC

even cannot be directly applied to existing concepts, leading to declining performance during extended
learning. Actually, as the learning proceeds, the recognition controller RC gradually loses its efficacy and
allows increasing seen samples to be fed in SC. SC starts to accommodate the new information evenly
and fine-tune the existing concept schema, eventually forming a comprehensive schema. As a result, the
performance of SC becomes similar to the overall modulator. The existence of FC and RC effectively pre-
vent the noisy semantic word embeddings pre-trained with large-scale irrelevant corpus from interfering
the learning of novel information, and thus help the proposed model modulate the previous and current
concepts.
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Table 5 The mIoU performance of vanilla CaGNet/ZS3Net and CaGNet/ZS3Net applying the meaningful learning method on

Pascal-VOCa)

h-mIoU o-mIoU s-mIoU u-mIoU

CaGNet 0.4036 0.6423 0.7650 0.2741

Ours (CaGNet) 0.4540 0.6702 0.7827 0.3190

ZS3Net 0.2825 0.6143 0.7613 0.1734

Ours (ZS3Net) 0.3221 0.6432 0.7901 0.2023

a) The bold indicates the best performance.
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Figure 7 (Color online) Sensitivity analysis of β1 and β2 in Pascal-VOC dataset. β1 varies in [0.1, 0.8] and β2 varies in [1, 4].

4.5 Analysis of generality

In this subsection, we analyze the generality of the proposed meaningful learning method on two open-
source generation-based methods: CaGNet and ZS3Net in Table 5. In Subsection 4.1, we have demon-
strated that the proposed method could greatly improve the performance of the CaGNet model and
achieve superior performance compared with the state-of-the-art methods. In this subsection, we further
apply the meaningful learning method to ZS3Net and conduct additional experiments on Pascal-VOC
to validate its generality. As shown in Table 5, ZS3Net applies the generator with conjugate conceptual
correlation and the fast-slow concept modulator shows a 3.96% improvement on h-mIoU and a 2.89%
improvement on o-mIoU, boosting the overall semantic segmentation performance of vanilla ZS3Net.
Specifically, on both seen and unseen classes, the meaningful learning method could construct a compre-
hensive concept schema and bring significant improvement according to s-mIoU and u-mIoU in Table 5.
All these results demonstrate that our method is general and effective that can be embedded into any
generation-based zero-shot segmentation model, not by careful tuning to improve a particular baseline
model.

4.6 Analysis of hyper-parameters

In Figure 7, we investigate the sensitivity of hyper-parameter β1 and β2 which are depicted in (8). As
mentioned in Subsection 3.3, β1 and β2 are introduced as a balancing factor to restrict the severity of
the penalty, concentrating mostly on discriminative unseen samples and indiscriminative seen samples.
In the early time of the extend learning stage, the model has a high accuracy rate for seen classes, so
it is intuitive to make β2 > β1, encouraging the model concentrating mostly on discriminative unseen
samples and indiscriminative seen samples. We carry experiments on the Pascal-VOC dataset, and vary
β1 to [0.1, 0.8] and vary β2 within the range [1, 4]. The h-mIoU is reported in Figure 7. It can be
easily included that with the change of the our introduced hyper-parameters, although the fluctuation
of h-mIoU is also around 2% with β1 and 1% with β2, it is relatively small compared with our 5%
improvement over CaGNet. Therefore, it can be proven that our method has better robustness to the
introduced hyper-parameters.
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5 Conclusion

In this paper, we propose a novel meaningful learning method for zero-shot semantic segmentation bor-
rowing the idea from the educational psychology field. Concretely, we introduce a generator with G3C to
generate meaningful unseen visual representation through anchoring the novel concepts into the existing
comprehensible concepts. Furthermore, simulating the rational thinking mechanism of the human brain,
we design a fast-slow concept modulator to alleviate the noisy over-correlation problem introduced by
G3C and further construct a comprehensive concept schema for segmentation. Extensive experiments
conducted on Pascal-VOC, Pascal-Context, and COCO-stuff datasets demonstrate that our meaningful
learning method could greatly improve existing zero-shot semantic segmentation methods and achieve
superior segmentation performance compared to the state-of-the-art. The exhaustive ablation studies
validate the rationality and effectiveness of each component. And, we also testify the generality of the
proposed method on generation-based zero-shot semantic segmentation models like CaGNet and ZS3Net.
Finally, we analyze the sensitivity of the hyper-parameters.
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