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In large-scale wireless networks, network structure plays a

critical role in the transport process of information, espe-

cially when wireless networks encounter node failure [1]. The

capability of wireless networks to carry information reliably,

efficiently and timely is directly influenced by the connec-

tivity of network structures. Meanwhile, the deployment of

wireless networks has expanded from plane to space. How-

ever, the impact of increasing the dimension on the network

capacity of large-scale wireless networks is unclear. There-

fore, this work primarily focuses on the relationship between

network dimension and network capacity when the network

structure encounters node failure. However, it is difficult to

determine the exact network capacity of large-scale wireless

networks due to the factors including a shared transmission

medium, complex scheduling, interference, complex cooper-

ation among nodes, and unpredictable failures. In light of

this, an alternative method for analyzing the network ca-

pacity, which is related to the number of nodes, has been

proposed to comprehend the capabilities of large-scale wire-

less networks [2]. Unfortunately, the results are only suit-

able for explaining the network capacity of wireless networks

without node failure deployed in plane, instead of in three-

dimensional space. To fill this gap, it is necessary to analyze

the network capacity of wireless networks in d-dimension,

especially for d = 2, 3. In general, the k-connectivity struc-

ture can be applied to combat node failure by adjusting the

transmit power of nodes [3]. However, most studies only

focus on the network capacity under simple connectivity

(k = 1) without considering node failure [2, 4, 5]. There-

fore, how node failure impacts the network capacity scaling

law remains to be further investigated.

In this letter, we give the network capacity of k-

connectivity wireless network, which is deployed in the hy-

percube [0, 1]d, d > 2, when the network suffers from node

failure. Specifically, the network capacity is revealed from

three aspects: network dimensionality, the connectivity of

network structure, and the intensity of initial node failures.

It is shown that increasing network dimension can reduce the

cost of network capacity to improve the robustness of net-

work structure. This is because the consumption of valuable

volume by each transmission is reduced. Meanwhile, sup-

posing that the number of nodes is n and the number of the

initial failure nodes is m = n
1

β , where β (> 1) is the initial

failure exponent, the effect of node failure on the network

capacity is also quantified.

Notations. f(n) = O(g(n)) if there exist c > 0 and

n0 > 0 such that f(n) < cg(n) for n > n0. f(n) = Ω(g(n))

if g(n) = O(f(n)). f(n) = Θ(g(n)) if f(n) = O(g(n)) and

g(n) = O(f(n)).

Node failure model. For a wireless network with a k-

connectivity structure, n fixed nodes are distributed uni-

formly in the hypercube [0, 1]d, (d > 2) and randomly

divided into N(n) := n
2

distinct source-destination (S-

D) pairs. The locations of the source node and des-

tination node of S-D pair i are denoted as XS
i =

(xS
i,1, x

S
i,2, . . . , x

S
i,d) and XD

i = (xD
i,1, x

D
i,2, . . . , x

D
i,d), respec-

tively. Each node can use the same critical transmission ra-

dius rd(n, k) = ( log n+(k−1) log log n−log Γ(k)+µn

n
)1/d to gen-

erate the k-connectivity structure, where Γ(k) = (k − 1)!,

k (> 1) is the connectivity parameter which measures the

robustness of the network structure. When limn→+∞µn =

+∞, the probability that the k-connectivity structure is gen-

erated is asymptotic convergence one [3]. With a greater k,

a stronger connectivity structure can be constructed, which

has better resilience against node failure.

The initial failure nodes are uniformly distributed and

the number of failure nodes is denoted as m. The rela-

tionship between n and m is m = n
1

β , where β is called

as the initial failure exponent. Consequently, a smaller β

indicates that more initial failure nodes exist. β > 1 en-

sures m < n. Otherwise, all the nodes cannot communi-

cate with each other. The radius of the failure propaga-

tion is rd(n, k), i.e., all nodes lose the ability to relay data

packets with probability one in the region ∪Xj∈ΞOj , where

Oj = {x| ρ(x,Xj) 6 rd(n, k)} is the failure region, where Ξ

is the set of the initial failure nodes. ρ(·, ·) is the distance

between two nodes in d-dimensional Euclidean space.

Network protocol. For any source-destination pair i, data

packets are exchanged between the node XS
i and the node

XD
i by using the multi-hop strategy. The detail is described
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as follows:

• Cell partition. Divide the hypercube [0, 1]d, (d > 2)

into cells. The side length of each cell is a =
rd(n,k)

2
.

• Circumvented routing strategy. The S-D line of the

S-D pair i is constructed in the order XS
i → XR

i,1 →

XR
i,2 → · · ·XR

i,j · · · → XR
i,d−1 → XR

i,d = XD
i , where XR

i,j =

(xS
i,1, x

S
i,2, . . . , x

S
i,d−j , x

D
i,d−j+1, . . . , x

D
i,d), j = 1, . . . , d, i =

1, . . . , N(n). Then, a source XS
i delivers data packets to its

destination XD
i by hops along the adjacent cells lying on

its S-D line. Especially, when the S-D line is blocked due

to node failure, the circumvented routing strategy is used to

rebuild the S-D line. To understand the transport process of

data packets, an example is given in Appendix A.1 at d = 2.

In the above process, one single hop transmission is suc-

cessful if and only if Condition 1 is satisfied. This condition

ensures that there exists an interference-free schedule such

that each cell becomes active regularly once in τ time slots.

This ensures that other simultaneous transmission cells in

the same time slot are interference-free.

Condition 1 (Protocol model for successful transport [4]).

A transport between transmission node Xi and receive

node Xj is successful if and only if ρ(Xk ,Xj) > (1 +

△)ρ(Xi, Xj), k 6= j is satisfied for any other simultaneously

transmission node Xk, where △ (> 0) is the interference

parameter.

Definition 1 (Network capacity). In d-dimensional Eu-

clidean space, deploy a k-connectivity network in the unit

hypercube [0, 1]d. Network capacity is defined by

Sd(n,m, k) = (1− εd(n,m, k))N(n)Td(n,m, k),

where εd(n,m, k) is the fraction of unserved S-D pairs, N(n)

is the total number of S-D pairs and Td(n,m, k) (bps/Hz)

is the feasible throughput of each S-D pair.

Condition 1 and Definition 1 are further explained in Ap-

pendixes A.2 and A.3, respectively.

Analysis of network capacity. We analyze the order of

network capacity in d-dimensional Euclidean space. To this

end, two preliminary propositions are provided. According

to the node failure model, S-D pairs may not be serviced.

The fraction of unserved S-D pairs, which is dependent on

the number of nodes, number of initial failure nodes, and

connectivity parameter, is given in Proposition 1.

Proposition 1. The order of the fraction of unserved S-D

pairs is

εd,0(n,m, k) = O





(k logn)
d

d−1

n1−β−1



 , d > 2,

where β > 1 and n > k > 1. The proof is given in Appen-

dix B.1.

As the number of data paths carried by each cell is an

essential factor limiting network capacity, Proposition 2 will

provide the number of data paths carried by each cell. We

define the non-failures cells around the failure regions as

loaded cells and the others as regular cells. Compared with

the regular cell, each loaded cell not only carries the traffic

of its data paths but also carries the traffic of the re-build

data paths.

Proposition 2. Each regular cell can carry at most

∆ = 2ndad−1 data paths and each loaded cell can carry

at most (8ζ+1)∆ data paths w.h.p., where ζ = logm+(k−

1) log logm− log Γ(k). The proof is given in Appendix B.2.

From Proposition 2, there are significant differences in the

number of data paths carried by non-failures cells because

the circumvented routing strategy is used to combat node

failure. Based on Propositions 1 and 2, we obtain network

capacity in Theorem 1.

Theorem 1. For a k-connectivity wireless network in d-

dimensional Euclidean space, network capacity is given by

Sd(n,m, k)

=











(1 − εd(n,m, k))
(

n
k log n

)
d−1

d
, β > 2,

(1 − εd(n,m, k)) 1
k logn

(

n
k log n

)
d−1

d
, 1 < β 6 2,

where

εd(n,m, k) =































O

(

(k log n)
d−1

d

n
d−1

d
−β−1

)

, β > 2,

O

(

(k log n)
d

d−1

n1−β−1

)

, 1 < β 6 2.

The proof is given in Appendix B.3.

Remark 1. In the sense of order, the network capacity

at β > 2 is O (k logn) times that at 1 < β 6 2. When

β > 2, network capacity is Θ(( n
k log n

)
d−1

d ). The circum-

vented routing strategy is an effective strategy to rebuild

data paths. Otherwise, network capacity is significantly de-

graded under 1 < β 6 2. This means that other strategies

should be designed to combat node failure.

Remark 2. To improve the robustness of network struc-

ture, the consumed network capacity can be reduced by in-

creasing the network dimension when the number of nodes is

constant. This is because increasing the network dimension

reduces the effective volume consumed of per transmission.

Conclusions. In this letter, the impact of network di-

mension, connectivity parameter, and the number of failure

nodes on network capacity is quantified from the viewpoint

of order. These results can provide some suggestions for de-

signing the large-scale wireless networks with the ability to

combat node failure.

Acknowledgements This work was supported in part by
National Natural Science Foundation of China (Grant Nos.
62121001, 62341111, 62171344, 61931005), Key Industry In-
novation Chain of Shaanxi (Grant Nos. 2022ZDLGY05-01,
2022ZDLGY05-06), Key Research and Development Program
of Shannxi (Grant No. 2021KWZ-05), and Major Key Project
of PCL (Grant No. PCL2021A15).

Supporting information Appendixes A and B. The sup-
porting information is available online at info.scichina.com and
link.springer.com. The supporting materials are published as
submitted, without typesetting or editing. The responsibility
for scientific accuracy and content remains entirely with the au-
thors.

References

1 Xing L. Cascading failures in Internet of Things: review

and perspectives on reliability and resilience. IEEE Int

Things J, 2021, 8: 44–64

2 Gupta P, Kumar P R. The capacity of wireless networks.

IEEE Trans Inform Theory, 2000, 46: 388–404

3 Takabe S, Wadayama T. k-connectivity of random graphs

and random geometric graphs in node fault model. In: Pro-

ceedings of International Symposium on Information The-

ory and Its Applications (ISITA), Singapore, 2018. 252–256

4 El Gamal A, Mammen J, Prabhakar B, et al. Optimal

throughput-delay scaling in wireless networks — part I: the

fluid model. IEEE Trans Inform Theory, 2006, 52: 2568–

2592

5 Cho K H, Lee S H, Tan V Y F. Throughput scaling of covert

communication over wireless adhoc networks. IEEE Trans

Inform Theory, 2020, 66: 7684–7701

info.scichina.com
link.springer.com
https://doi.org/10.1109/JIOT.2020.3018687
https://doi.org/10.1109/18.825799
https://doi.org/10.1109/TIT.2006.874379
https://doi.org/10.1109/TIT.2020.3011895

