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Near-field measurement can obtain the far-field radiation

pattern of the antenna under test (AUT) by performing

near-field-to-far-field transformation (NFT) [1]. Generally,

the minimum bounding for AUTs with different form-factors

should be convex surfaces and the optimal bounding should

be a spheroidal surface [2]. However, considering the

practicality and complexity, planar near-field measurement

is often used instead of the spheroidal one. In order to

reduce the impact of the truncation errors, it is necessary to

increase the reliable region of the near-field scanning plane,

but the time cost will increase significantly. Hence, how to

obtain the far-field AUT pattern with less sampling time

and truncation errors is an important research topic.

It can be known that the sample characteristics

distribution near the geometric center of the scanning plane

is much denser than that near the edge of the scanning

plane [2]. Consequently, the conventional half-wavelength

sampling rule [1] is not theoretically optimal for planar

near-field measurement resulting in a large amount of time.

Besides, in order to reduce the time cost while maintaining

far-field accuracy, a clustering and interpolation method was

proposed to reconstruct the non-uniformly sampled near-

field data and obtain the radiation pattern in [3, 4]. What

is more, the bandlimited signal extrapolation method was

further applied in the Gerchberg-Papoulis (GP) algorithm,

decreasing the truncation errors in reliable regions [5]. In

this article, we cluster and interpolate the non-uniformly

sampled initial dataset with a greater than half-wavelength

interval on the near-field scanning plane, and obtain

the AUT far-field pattern with reduced truncation error

through an iterative algorithm. The measurement results

demonstrate the effectiveness of the proposed method, and

the measurement time cost is just one-third of that of the

conventional planar near-field measurement.

Sampling theorem. The 2D Fourier transform of the

planar near-field data is expressed as

P (kx, ky) =

∫∫

E (x, y, d) ej(kxx+kyy+kzd)dxdy, (1)

where E (x, y, d) is the planar E-field, P (kx, ky) is the plane-

wave spectrum (PWS), d is the near-field scanning distance,

and k0 = 2π/λ0 =
√

k2x + k2y + k2z is the wavenumber. If

the scanning plane and the AUT aperture are marked as S1

and S2, then the samples on S1 are densely distributed in

the center and are sparsely distributed in the edge, and some

data are not mapped onto S1 from S2, causing data loss and

truncation errors [2]. Therefore, the sampling interval near

the edges of S1 can be sparser than that of the center [2],

leading to a non-uniformly sampled initial dataset Ainit,

and an under-sampling scheme with sampling interval larger

than λ0/2 can be used to reduce the time cost.

Interpolation method. Since the sampling interval is

larger than λ0/2, the under-sampled regions need to be

supplemented by an appropriate method. K-means method

can be used to cluster Ainit into k clusters, and the cluster

center cj can be calculated as

cj =
1

nj

∑

i∈Cj

ai, (2)

where nj is the number of the samples ai in the j-th cluster

Cj . Then the sum of squares of errors (SSE) of all the k

clusters is obtained as

SSEk =
k

∑

j=1

∑

i∈Cj

‖ai − cj‖
2 . (3)

Changing the clustering number k and recalculating (2)

and (3), and the optimal clustering number k can be
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acquired with a significant inflection point along the SSE-

curve. Then, use the Voronoi cell classification to calculate

the normalized cell area U (an) and gradient V (an) as

U (an) =
u (an)

u (a1) + u (a2) + · · ·+ u
(

aNsamp

) , (4)

V (an) =
v (an)

v (a1) + v (a2) + · · ·+ v
(

aNsamp

) , (5)

where u (an) is the cell area of each sample, v (an) =
∑Msamp

m=1

∣

∣▽E(an,am)

∣

∣, Nsamp is the number of the near-field

samples, Msamp is the number of adjacent samples having

common cell walls and vertices with an. Combining the two

parameters with coefficients z1 and z2 (z1 + z2 = 1),

Z (an) = z1 (1 + U (an)) + z2 (1 + V (an)) . (6)

Then a large Z (an) means 24 samples are added

around an (deep interpolation), and small Z (an) only

adds 8 samples (shallow interpolation). The interpolated

dataset is noted as Ainter. Notably, another uniformly

under-sampled dataset Aadd is needed to supplement the

additional samples to Ainit, because Ainit is non-uniformly

sampled whose incomplete dataset is insufficient to achieve

self-interpolation.

Iterative algorithm. GP algorithm is introduced to reduce

the truncation error of Ainter. The reliable region in the

wavenumber domain is [5]

η0=

{

k2x

(k sin θx)
2
+

k2y

k2
<ξx

}

∩

{

k2x
k2

+
k2y

(k sin θy)
2
<ξy

}

, (7)

where ξx and ξy are larger than one to take more

wavenumber modes into account, θx and θy are the angles

of the reliable region between S1 and S2 [3]. The data in η0
should be kept, and the filtered PWS can be derived as

F1 =

{

1, (kx, ky ∈ η0) ,

0, (kx, ky /∈ η0) ,
(8)

Pn+1
(F1)

(kx, ky) = F1P
0 (kx, ky) + Pn (kx, ky) [1− F1] , (9)

where P 0 (kx, ky) is the initial spectrum of Ainter, n is the

iterative times of the filtering. The E-field of the filtered

PWS can be obtained as

En+1(x, y)=
1

4π2

∫∫

Pn+1
(F1)

(kx, ky)e
−j(kxx+kyy)dkxdky .(10)

Then, the spatial domain filtering on the AUT aperture

S2 can be defined as

F2 =

{

1, (x, y ∈ S2) ,

0, (x, y /∈ S2) ,
(11)

En+1
(F2)

(x, y) = F2E
n+1 (x, y) . (12)

Consequently, the (n+ 1)-th filtered PWS is obtained by

the Fourier transform of (12)

Pn+1 (kx, ky) =

∫∫

En+1
(F2)

(x, y) ej(kxx+kyy)dxdy. (13)

After several times of iteration of (9)–(13), the reliable

region is enlarged and the planar near-field dataset after the

GP algorithm is acquired as AGP. Accordingly, the far-field

pattern can be calculated as

E (θ, ϕ) = j
e−jkr

2πr
k cos θPn+1 (kx, ky) . (14)

In order to obtain the optimal iteration times for the far-

field pattern E1
n1

(θ, ϕ), n1 = 1, . . . , N1 of AGP, a subset is

extracted from the interpolated dataset Ainter, and the far-

field pattern of the subset after GP algorithm is E2
n2

(θ, ϕ),

n2 = 1, . . . , N1. Then the energy difference is

E(n1,n2) =

∫∫

∣

∣E1
n1

(θ, ϕ)−E2
n2

(θ, ϕ)
∣

∣

2
sin θdθdϕ. (15)

Since the accurate components dominate E(n1,n2) before

the optimal termination time Nop, which is gradually

surpassed by the erroneous components, we can find the

minimum value of E(n1,n2), where the number n1 is the

optimal iteration time Nop.

Experiment results. A mm-wave array antenna working

at 29 GHz with gain of 21.0 dBi is measured with d = 3λ0

and S1 = 0.16 m × 0.16 m. The sampling intervals

for Ainit and Aadd are 0.6λ0 and 0.7λ0. A completely

sampled dataset Acomp with intervals of 0.3λ0 is obtained

for comparison with the NFT pattern of AGP. The

experimental results are provided in Appendix B, and we

give the comparisons of the final reconstructed pattern

accuracy in E- and H-plane by the relative errors

D =

∑θ2
θ=θ1

|Etheor (θ, ϕ)− Erecon (θ, ϕ)|2

∑θ2
θ=θ1

|Etheor (θ, ϕ)|
2

, (16)

where Etheor (θ, ϕ) is the theoretical pattern, Erecon (θ, ϕ)

is the NFT pattern of AGP or Acomp, θ1 = −65◦, θ2 = 65◦.

The errors D between theoretical pattern and AGP NFT

pattern in E- and H-plane are calculated as 7.21% and

5.15%, while the values D between theoretical pattern and

Acomp NFT pattern in E- and H-plane are 7.93% and

5.37%. Besides, the further theory of the proposed method

is illustrated in Appendix A, and the sampling interval for

the bandlimited signal is detailed discussed in Appendix C.

Conclusion. This letter introduces an interpolation and

bandlimited signal extrapolation method to reconstruct the

non-uniformly distributed samples with sampling intervals

larger than λ0/2. The proposed method saves the time cost

compared with the conventional measurement (sampling

interval smaller than λ0/2). Besides, the truncation

errors are decreased, and the testing accuracy is improved.

Therefore, the proposed method is accurate and efficient for

planar near-field measurements of mm-wave antennas.
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