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Appendix A Mathematical preliminaries
A digraph G = (V, E) contains a finite set of nodes V = {0, 1, . . . , N} with node 0 as the leader system and an edge set E ∈ V×V. The

node i is the neighbor of node j if there exists an edge E from node i to node j denoted by (i, j). Thus Ni = {j|(j, i) ∈ E} denotes

the neighbor set of node i. The weighted adjacency matrix A = [aij ], with aij > 0 if and only if (vi, vj) ∈ E and aij = 0, otherwise.

The information flow from node i to node j is captured by a subsequence of edges satisfying {(mi,mk), (mk,ml), . . . , (mv,mj)}. If

information flows from one node to another, then a digraph is said to have a spanning tree. The matrix G = diag{gi} (i = 1, . . . , N)

denotes the influence of the leader received by other nodes, and gi > 0 if agent i can receive information from node 0. The definition

of degree matric ∆(G) of G is as follows ∆(G) = diag( aii), where aii =
∑N

j=1, j ̸=i aij , i = 1, 2, · · · , N . The Laplacian matrix

of G is defined as L = ∆(G) − A. LG is obtained by removing the 1st row and the 1st column of Laplacian associated with G.
Obviously, we can get such an equation LG = L + G, where L is the Laplacian of subgraph Ḡ that only includes followers and the

matrix G = diag{gi}. The Kronecker product operation is denoted by ⊗. The n-dimensional Euclidean space is denoted by Rn .

The set of m × n dimensional real matrices is denoted by Rm×n . The set of all unit quaternions is denoted by Qu. Leader body

and the ith rigid body frames are denoted by Bk, k = 0, 1, . . . , N . The matrix function (·)× : R3 7→R3×3 is defined as follows: For

each m = col(m1,m2,m3) ∈ R3,

(m)
×

=


0 −m3 m2

m3 0 −m1

−m2 m1 0

 .

Euclidean norm of a vector or a matrix is denoted by ∥ · ∥. ⊙ denotes the quaternion product, for qi, qj ∈ Qu,

qi⊙qj =

 q̄iq̂j + q̄j q̂i + q̂×i q̂j

q̄iq̄j − q̂Ti q̂j

 .

In addition, q−1 denotes quaternion inverse, for q ∈ Qu, q−1 = col(−q̂, q̄). The vector function q(·) is defined as follows: For

each m = col(m1,m2,m3) ∈ R3, q(m) = col(m, 0) ∈ R4. The quaternion function C(·) is defined as: For λ ∈ Qu, C(λ) =

2λ̂λ̂T − 2λ̄λ̂× + (λ̄2 − λ̂T λ̂)I3.

Appendix B Proof of Theorem 1
First, we need to state some properties for later proof. Under the Lemma 1, LG(t) must be an invertible matrix. Then, we can

obtain the following inequality

∥η̃∥ ⩽
∥Γ∥

σmin(LG(t) ⊗ I4)
, (B1)

we can also have

∥ξ̃∥ ⩽
∥H∥

σmin(LG(t) ⊗ I3)
, (B2)

where ξ̃ = [ξ̃T1 , ξ̃T2 , . . . , ξ̃TN ] = [ξT1 − ωT
0 , ξT2 − ωT

0 , . . . , ξTN − ωT
0 ]T, H = (LG(t) ⊗ I3)ξ̃.

Proof. The communication topology of MRBSs is time-varying due to the existence of CLFs. This means that at some times the

system may have a directed spanning tree with the leader as the root node, and at other times the whole system may be divided

into several independent subsystems. In order to include communication topology at each time, we consider two situations. In

Case 1, we study the error variation of state observers when the digraph has a spanning tree. In Case 2, we consider all agents

to be divided into subgraphs under CLFs. We design two Lyapunov candidate functions to obtain the observed error properties in

Case 1 and Case 2.

Case 1 : The digraph G contains a spanning tree with the leader as its root.

First, let aξi
denotes

∫ t
0
HT

i Hi ds and ȧξi
denotes ∥Hi∥2. From the definition of ξ̃i, we have that

˙̃
ξi = Siξ̃i − (aξi + ȧξi)Hi. (B3)
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From H = (LG(t) ⊗ I3)ξ̃ and (B3), one obtains that

Ḣ=(L̇G(t)⊗In)ξ̃+{S−LG(t)(Aξ+Ȧξ)⊗I3}H, (B4)

where S = block diag{S1, S2, . . . , SN}, Ȧξ =diag(ȧξi), Aξ =diag(aξi). According to Assumption 3, L̇G(t) = L̇(t) + Ġ(t) must be

bounded. S is bounded because of Assumption 2.

Consider the following Lyapunov function

VH =

N∑
i=1

(ȧξi + 2aξi)ai(t)H
T
i Hi +

N∑
i=1

(aξi − αH)
2
, (B5)

where ai(t) is defined in (E2), αH is a constant that will be designed later. We can derive the derivative of VH as

V̇H = 2H
T
(ȦξQ(t)⊗I3)H + H

T
[(Ȧξ + 2Aξ)Q̇i(t)⊗I3]H

+ 4H
T{(Ȧξ + Aξ)Q(t)⊗I3}{(L̇G(t)⊗I3)ξ̃

+ [S − LG(t)(Aξ + Ȧξ)⊗I3]H}

+ 2H
T
[(Aξ − αHIN )⊗I3]H.

(B6)

Considering Lemma 1, Lemma 2 and the inequality of matrix norm ( ∥A + B∥ ⩽ ∥A∥ + ∥B∥, where A,B ∈ Rm×n), we have that

∥P (t)∥ ⩽ 2∥Q(t)∥∥LG(t)∥. So we can further obtain

V̇H ⩽ − 2λ0H
T
[(Ȧξ + Aξ)

2⊗I3]H + λ1H
T
(Ȧξ⊗I3)H

+λ3H
T
[(Ȧξ+Aξ)⊗I3]H+λ2H

T
[(Ȧξ+2Aξ)⊗I3]H

+4H
T
[(Ȧξ+Aξ)Q(t)L̇G(t)⊗I3]ξ̃+2H

T
(Aξ⊗I3)H

− 2αHH
T
H,

(B7)

where λ0 = min∀t⩾0σmin (P (t)), λ1 = max∀t⩾0 2∥Q(t)∥F , λ2 = max∀t⩾0 ∥Q̇(t)∥F , and λ3 = maxi,∀t⩾0 2∥Si∥Fλ1. Note that

λi (i = 0, 1, 2, 3) are positive and bounded constants. Considering Young inequality, and performing identity transformation on

part of inequality, we can obtain

λ1H
T
(Ȧξ⊗I3)H =

√
2
√
λ0√

λ0

√
2
λ1H

T
(Ȧξ⊗I3)H

⩽
λ2
1

λ0

H
T
H +

λ0

4
H

T
(Ȧ

2
ξ⊗I3)H.

(B8)

Similarly, one has

λ2H
T
[(Ȧξ+2Aξ)⊗I3]H⩽

4λ2
2

λ0

H
T
H+

λ0

4
H

T
(A

2
ξ⊗I3)H

+
λ0

4
H

T
(Ȧ

2
ξ⊗I3)H+

λ2
2

λ0

H
T
H, (B9)

λ3H
T
[(Ȧξ+Aξ)⊗I3]H ⩽

λ0

4
H

T
((Ȧξ+Aξ)

2⊗I3)H

+
λ2
3

λ0

H
T
H, (B10)

2H
T
(Aξ⊗I3)H ⩽

λ0

4
H

T
(A

2
ξ⊗I3)H+

4

λ0

H
T
H. (B11)

As for 4HT[(Ȧξ + Aξ)Q(t)L̇G(t)⊗I3]ξ̃, notice that (Ȧξ+A)2⩽2(Ȧ2
ξ + A2), and ∥ξ̃∥⩽ ∥H∥

σmin(LG(t)⊗I3)
, we can obtain that

4H
T
[(Ȧξ+Aξ)Q(t)L̇G(t)⊗I3]ξ̃⩽

λ0

4
H

T
[(Ȧ

2
ξ+A

2
ξ)⊗I3]H

+
2λ2

4H
TH

λ0σ2
min(LG(t)⊗I3)

,

(B12)

with λ4 = max∀t⩾0 4∥Q(t)L̇G(t)∥F . Then, we recombine the inequality by extracting common factors

V̇H ⩽− 2λ0H
T
[(Ȧξ+Aξ)

2⊗I3]H+
λ0

4
H

T
[(Ȧξ+Aξ)

2⊗I3]H

+
3

4
λ0H

T
[(Ȧ

2
ξ+A

2
ξ)⊗I3]H+λsumH

T
H−2αHH

T
H,

(B13)

where λsum = (4 + λ2
1 + 5λ2

2 + λ2
3 +

λ2
4

σ2
min

(LG(t)⊗I3)
)/λ0. Because of the boundedness of λi, Q(t) and L̇G(t), obviously λsum

is bounded. Then we can chose the constant αH satisfying αH ⩾ 1
2λsum and define a certain constant λL0 which satisfies

0 < λL0 < λ0. Finally, (B13) changes into

V̇H ⩽ −λL0H
T
[(Ȧξ + Aξ)

2⊗I3]H, (B14)
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which illustrates that all the variables in ξi including Hi, aξi and ȧξi are bounded.

To prove the convergence of the leader angular state, we solve (B14) as

VH(t) − VH(0) ⩽ −
∫ t

0

λL0H
T
[(Ȧξ + Aξ)

2⊗I3]Hdτ

⩽ −
∫ t

0

λL0H
T
(Aξ⊗I3)Hdτ.

(B15)

By combining (B5), (B15) is changed to

aminaξminH
T
H ⩽ −λL0aξmin

∫ t

0

H
T
Hdτ + VH(0), (B16)

with amin = min∀t⩾0{ai(t)∥i = 1, . . . , N} and aξmin =min∀t⩾0{aξi(t)∥i=1, . . . , N}. This means that
∫ t
0
HTHdτ is bounded.

According to Barbalat’s Lemma, we can get that HTH converges to zero. Therefore, by (B1), the leader angular observer globally

converges to the defined angular state ω0.

Case 2 :

The CLFs cause some edges of the communication network topology G(t) to be disconnected at some time instants, so that the

communication network topology G(t) does not contain a spanning tree. It is easy to get that H(t) = −
(
LG(t) ⊗ I3

)
ξ̃(t) = 0 and

V̇H = 0 if LG(t) = 0, which meets the goal of the first step that H(t) → 0 when t → ∞. Therefore, the case that the graph G loses

all its edges at some time instants will not be considered in the following analysis.

First, we divide the communication network topology G(t) into some connected subgraphs, where the no-leader subgraphs contain

zero in-degree nodes. Without loss of generality, suppose that the directed graph G(t) is divided into c connected subgraphs Ḡk,

where any two subgraphs are disconnected, and there exist m (1 ⩽ m ⩽ N) zero in-degree nodes. Let N̄0 denote the set of all zero

in-degree nodes, and N̄k denote the set of non-zero in-degree nodes in connected subgraph Ḡk (k = 1, . . . , c). Then, we reorder the

labels of all followers as follows

N̄0 =
{
1, . . . , N̄0

}
,

N̄1 =
{
N̄0 + 1, . . . , N̄0 + N̄1

}
, . . . ,

N̄c =
{
N − N̄c + 1, . . . , N

}
,

with N̄k being the cardinality of N̄k (k = 0, 1, . . . , c). Then, LG(t) can be rewritten as

LG(t) =


0 0 0 0

Lr1(t) LḠ1
(t) 0 0

.

.

. 0
. . . 0

Lrc(t) 0 0 LḠc
(t)

 , (B17)

where LḠk
(t) denotes the Laplacian matrix of the kth connected subgraph except the rows of zero in-degree nodes, and Lrk(t)

(k = 1, . . . , c) are non-zero matrices with appropriate dimensions. Then, ∀i ∈ N̄k(k = 0, 1, . . . , c), denote the concatenated errors

of ξ̃i and Hi as Xk and Yk, respectively. In light of the definition of Hi, we have Hi (i ∈ N̄0) of the zero in-degree nodes are zero

vectors, that is Y0 = 0, and those of the non-zero in-degree nodes satisfy that Yk(t) = −
(
Lrk(t)⊗ I3

)
X0(t)−

(
LḠk

(t)⊗ I3
)
Xk(t),

k = 1, . . . , c. Since the initial graph G contains a spanning tree, without loss of generality, suppose that G(t) changes at t = t1,

that is for t ∈ [t0, t1), LG(t) is a nonsingular M-matrix, and when t = t1, the graph G(t) changes to Case 2 from Case 1, LG(t)

is shown as (B17). According to V̇H ⩽ 0 in the analysis of Case 1 and Ẋ0 = 0 at Case 2, it is easy to get that X0 is bounded

at Case 2. Moreover, under Assumption 5, though some edges will be disconnected after experiencing CLFs, based on the above

Laplacian matrix (B17), LḠk
(t) is still a nonsingular M-matrix (k = 1, . . . , c). Then, we have

∥Xk∥ ⩽
∥Yk∥ + ∥(Lrk(t) ⊗ I3)X0∥

σmin

(
LḠk

(t) ⊗ I3
) , k = 1, . . . , c. (B18)

In light of the definitions of Xk and Yk, k = 0, 1, . . . , c, we have Ẏ0 = 0, and

Ẏk = −
(
LḠk

(t)(AξḠk
+ ȦξḠk

) ⊗ I3
)
Yk

+
(
L̇rk(t) ⊗ I3

)
X0 +

(
L̇Ḡk

(t) ⊗ I3
)
Xk,

(B19)

where k = 1, . . . , c, AξḠk
represent the block diagonal matrices of aξi for i ∈ N̄k.

To simplify the analysis process, here we consider a new Lyapunov function as follow

VH2
=

N∑
i=1

(2aξi + ȧξi)H
T
i Hi +

N∑
i=1

(aξi − αH)
2
, (B20)

where αH > 0 will be determined later.

The time derivative of VH2
is calculated as follow

V̇H2
=4

N∑
i=1

(aξi + ȧξi)H
T
i Ḣi + 2

N∑
i=1

ȧξiH
T
i Hi + 2

N∑
i=1

(aξi − αH)ȧξi. (B21)
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Then, in light of the definitions of Yk with Y0 = Ẏ0 = 0, we have

V̇H2
=

c∑
k=1

(
4Y

T
k

(
(AξḠk

+ ȦξḠk
) ⊗ I3

)
Ẏk + 2Y

T
k (ȦξḠk

⊗ I3)Yk

+ 2Y
T
k (AξḠk

⊗ I3)Yk − 2αHY
T
k Yk

)
.

(B22)

Substituting (B19) into (B22) results that

V̇H2
=

c∑
k=1

(
− 4Y

T
k

(
(AξḠk

+ ȦξḠk
)LḠk

(t)(AξḠk
+ ȦξḠk

) ⊗ I3
)
Yk

+ 4Y
T
k

(
(AξḠk

+ ȦξḠk
)L̇rk(t) ⊗ I3

)
X0

+ 4Y
T
k

(
(AξḠk

+ ȦξḠk
)L̇Ḡk

(t) ⊗ I3
)
Xk

+ 2Y
T
k

(
(AξḠk

+ ȦξḠk
) ⊗ I3

)
Yk − 2αHY

T
k Yk

)
.

(B23)

Denote that σ̄2k = min∀t⩾t1

{
σmin

(
LḠk

(t) ⊗ I3
)}

, σ̄3k = max∀t⩾t1

{∥∥∥L̇Ḡk
(t)

∥∥∥}, σ̄4k = max∀t⩾t1

{∥∥∥L̇rk(t)
∥∥∥}, based on the

Young inequality, one has

V̇H2
⩽

c∑
k=1

(
− 4σ̄2kY

T
k

(
(AξḠk

+ ȦξḠk
)
2 ⊗ I3

)
Yk

+ 4σ̄4k

∥∥∥Y T
k

(
(AξḠk

+ ȦξḠk
) ⊗ I3

)∥∥∥ ∥X0∥

+ 4σ̄3k

∥∥∥Y T
k

(
(AξḠk

+ ȦξḠk
) ⊗ I3

)∥∥∥ ∥Xk∥

+ 2
∥∥∥Y T

k

(
(AξḠk

+ ȦξḠk
) ⊗ I3

)∥∥∥ ∥Yk∥ − 2αHY
T
k Yk

)
.

(B24)

Furthermore, according to the inequality (B18) and Young inequality, and denoting that σ̄5k = max∀t⩾t1
{∥Lrk(t)∥}, we have

V̇H2
⩽

c∑
k=1

(
− 4σ̄2kY

T
k

(
(AξḠk

+ ȦξḠk
)
2 ⊗ I3

)
Yk

+ 4σ̄4k

∥∥∥Y T
k

(
(AξḠk

+ ȦξḠk
) ⊗ I3

)∥∥∥ ∥X0∥

+
4σ̄3k

σ̄2k

∥∥∥Y T
k

(
(AξḠk

+ ȦξḠk
) ⊗ I3

)∥∥∥ ∥Yk∥

+
4σ̄3kσ̄5k

σ̄2k

∥∥∥Y T
k

(
(AξḠk

+ ȦξḠk
) ⊗ I3

)∥∥∥ ∥X0∥

+ 2
∥∥∥Y T

k

(
(AξḠk

+ ȦξḠk
) ⊗ I3

)∥∥∥ ∥Yk∥ − 2αHY
T
k Yk

)
⩽

c∑
k=1

(
− 2σ̄2kY

T
k

(
(AξḠk

+ ȦξḠk
)
2 ⊗ I3

)
Yk

+ 4σ̄4k

∥∥∥Y T
k

(
(AξḠk

+ ȦξḠk
) ⊗ I3

)∥∥∥ ∥X0∥

+
4σ̄3kσ̄5k

σ̄2k

∥∥∥Y T
k

(
(AξḠk

+ ȦξḠk
) ⊗ I3

)∥∥∥ ∥X0∥

+
4σ̄2

3k

σ̄3
2k

Y
T
k Yk +

1

σ̄2k

Y
T
k Yk − 2αHY

T
k Yk

)
.

(B25)

Then, choosing an enough large αH as αH >
2σ̄2

3k
σ̄3
2k

+ 1
2σ̄2k

, we have

V̇H2
⩽

c∑
k=1

∥∥∥Y T
k

(
(AξḠk

+ ȦξḠk
) ⊗ I3

)∥∥∥
×

(
− 2σ̄2k

∥∥∥((AξḠk
+ ȦξḠk

) ⊗ I3
)
Yk

∥∥∥ + β1

)
⩽

c∑
k=1

∥∥∥Y T
k

(
(AξḠk

+ ȦξḠk
) ⊗ I3

)∥∥∥
×

(
β1 − β2

∥∥∥((AξḠk
+ ȦξḠk

) ⊗ I3
)
Yk

∥∥∥
1

)
,

(B26)

where the inequality ∥Yk∥ ⩽ ∥Yk∥1 ⩽
√

3N̄k ∥Yk∥ has been used, and β1 = max
k=1,...,c

{(
4σ̄3kσ̄5k

σ̄2k
+ 4σ̄4k

)
∥X0∥

}
, and β2 =

min
k=1,...,c

{
2σ̄2k√
3N̄k

}
. Then, we have

V̇H2
⩽

c∑
k=1

∥∥∥Y T
k

(
(AξḠk

+ ȦξḠk
) ⊗ I3

)∥∥∥
×

(
β1 − β2

∑
i∈N̄k

(aξi + ȧξi) ∥Hi∥1

)
.

(B27)
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Furthermore, we will prove that ∀i ∈ N̄k (k = 1, . . . , c), aξi+ ȧξi are bounded, and ∥Hi∥1 → 0 as t → ∞. By contradiction, assume

that there is an agent i such that aξi + ȧξi → ∞ and ∥Hi∥1 ̸= 0 as t → ∞, that is there exists a sequence {Tj} (j = 1, 2, 3, . . . ) of

time-values, Tj → ∞ as j → ∞, such that ∥Hi(Tj)∥1 > Hmin, with Hmin being an arbitrary positive constant. Then, according to

the definition of aξi, we know that aξi is strictly monotonically increasing over time if and only if ∥Hi∥1 ̸= 0. Then, since β1 and

β2 are positive and bounded, there must be a time instant T∗ > T1 such that for Tj > T∗, β2(aξi + ȧξi)Hmin > cβ1. However,

according to (B27), one has V̇H2
(Tj) ⩽ 0, ∀Tj > T∗. Based on the Lyapunov function (B20), this implies that Hi, aξi and ȧξi are

bounded. Since aξi =
∫ t
0
HT

i Hidτ is bounded, by Barbalat’s Lemma, one can obtain that Hi converges to zero, which contradicts

with aξi+ ȧξi → ∞ and ∥Hi∥1 ̸= 0 as t → ∞. Thus, we can get that ∀i ∈ N̄k (k = 1, . . . , c), aξi+ ȧξi are bounded, and ∥Hi∥1 → 0

as t → ∞. Moreover, together with Hi = 0, i ∈ N̄0, one has

lim
t→∞

H(t) = lim
t→∞

(
LG(t) ⊗ I3

)
ξ̃(t) = 0.

At the second step, we will prove that ξ̃(t) = 0 when t → ∞. According to the definition of ξi, we have

lim
t→∞

(
LG(t + T0) ⊗ I3

)
ξ̃(t) = 0. (B28)

Denote that t = tik and t + T0 = tik+j , j = 0, 1, . . . , (ik+1 − 1 − ik), in light of (B28), one has

lim
k→∞

(
LG(tik+j) ⊗ I3

)
ξ̃(tik ) = 0. (B29)

Let Jk =
∑ik+1−1

q=ik

(
LG(tq) ⊗ I3

)
. From (B29), one has

lim
k→∞

Jk ξ̃(tik ) = 0. (B30)

Based on the Assumption 5, it is obvious that ∀k = 1, 2, 3, . . ., Jk is nonsingular, then we have

lim
k→∞

ξ̃(tik ) = 0, (B31)

that is lim
t→∞

ξi(t) → ω0, i ∈ N . This complete the proof of the convergence of leader angular velocity observers.

Then, we are ready to analysis the leader attitude observers. First, let aηi denotes
∫ t
0
ΓT
i Γi ds and ȧηi denotes ∥Γi∥2, from the

definition of η̃i, we have that

˙̃ηi =
1

2
η̃i⊙q(ω0) − (aηi + ȧηi)Γi +

1

2
ηi⊙q(ξ̃i). (B32)

To obtain a compact form of (B32), define a matrix operator M(·) : R3 → R4×4, such that for each ξi = col(ξi1, ξi2, ξi3) ∈ R3

M(ξi) =


0 ξi3 −ξi2 ξi1

−ξi3 0 ξi1 ξi2

ξi2 −ξi1 0 ξi3

−ξi1 −ξi2 −ξi3 0

 , (B33)

then the system (B32) is equivalent to

˙̃ηi =
1

2
M(ω0)η̃i − (aηi + ȧηi)Γi +

1

2
M(ξ̃i)ηi. (B34)

According to lim
t→∞

ξi(t) → ω0, we can have after a long enough time, (B34) can be regarded as

lim
t→∞

˙̃ηi =
1

2
M(ω0)η̃i − (aηi + ȧηi)Γi. (B35)

It is obvious that the dynamic of (B35) is the same as (B3). Thus, we can obtain the convergence of ηi by the same analysis step

of ξi.

This completes the proof.

Remark 1. Notice that, as for S0 observers, we do not use the adaptive method, because S0 is a constant matrix and its dynamic

accords with the first order integral model. We chose a simple observer to reduce the computational burden for each agent without

losing performance.

Remark 2. The S0 observer is another form of [5], whose proof can be extracted from the main result of Theorem 3.1 in [5].

Due to the limited space, the detailed proof is omitted. Because Si(t) converges to zero in a finite time, by using the certainty

equivalence principle, Si(t) replaces the S0(t) required for observers in [4], so the proposed observers can be called fully distributed

observers.

Appendix C Proof of Theorem 2
Proof. We define the distributed forms of attitude and angular velocity errors between each follower and leader as follows:

ϵi = q
−1
0 ⊙ qi, (C1a)

ω̌i = ωi − C(ϵi)ω0, i = i, . . . , N, (C1b)
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with ϵi = col(ϵ̂i, ϵ̄i) ∈ Qu and ω̌i ∈ R3, whose kinematics and dynamics are described by

ϵ̇i =
1

2
ϵi ⊙ q(ω̌i), (C2a)

ji ˙̌ωi = −ω
×
i jiωi + ji(ω̌

×
i C(ϵi)ω0 − C(ϵi)ω̇0) + τi, (C2b)

where τi is the control protocol. Theorem 1 enables us to use certainty equivalence principle to analysis the control torque τi.

First, let ξi and ηi substitute for the error signals ϵi and ω̌i between each agent and leader as defined in (C2). Referring to the

error signals form of [1, 2]:

ϕi = η
∗
i ⊙ qi, (C3a)

ω̃i = ωi − C(ϕi)ξi, i = 1, . . . , N, (C3b)

where ϕi = col(ϕ̂i, ϕ̄i) ∈ Qu and ω̃i ∈ R3. We will construct a control torque τi depending on ϕi and ω̃i for each agent. The

set of τi (i = 1, . . . , N), together with the observers, forms the overall distributed control laws. First, we derive (C3) as following

equations:

ϕ̇i =
1

2
ϕi ⊙ q(ω̃i) + ϕoi, (C4a)

ji ˙̃ωi = −ω
×
i jiωi + ji(ω̃

×
i C(ϕi)ξi − C(ϕi)Siξi) + joi + τi, (C4b)

where ϕoi ∈ Qu and joi ∈ R3 are given by

ϕoi =
1

2
(ϕ

T
i ϕi − 1)q(ξi) ⊙ ϕi − (aηi + ȧηi)Γ

∗
i ⊙ qi, (C5a)

joi = ji(−C(ϕi)(ȧξi + aξi)Hi + Coiξi), (C5b)

with Coi = 2ϕ̄iϕ̄oiI3 − 2ϕ̂T
i ϕ̂oiI3 + 2ϕ̂iϕ̂

T
oi + 2ϕ̂oiϕ̂

T
i − 2ϕ̄oiϕ̂

×
i − 2ϕ̄iϕ̂

×
oi.

As in [1,2], we introduce a temporary variable to analyze the system (C4). The variable xi is defined as follows, xi = ω̃i+ki1ϕ̂i,

where ki1 is a nonnegative constant. Then we have

˙̂
ϕi =

1

2
(ϕ̂

×
i + ϕ̄iI3)(xi − ki1ϕ̂i) + ϕ̂oi, (C6a)

˙̄ϕi = −
1

2
ϕ̂
T
i (xi − ki1ϕ̂i) + ϕ̄oi, (C6b)

jiẋi = −ω
×
i jiωi + ji((xi − ki1ϕ̂i)

×
C(ϕi)ξi − C(ϕi)Siξi)

+
1

2
ki1ji(ϕ̂

×
i +ϕ̄iI3)(xi − ki1ϕ̂i)+j

′
oi + τi,

(C6c)

where j
′
oi = joi + ki1jiϕ̂oi.

Now we are ready to give the control torque for each agent i=1,. . ., N as following form

τi = ω
×
i jiωi − ji((xi − ki1ϕ̂i)

×
C(ϕi)ξi − C(ϕi)Siξi)

−
1

2
ki1ji(ϕ̂

×
i + ϕ̄iI3)(xi − ki1ϕ̂i) − ki2xi,

(C7)

where ki2 is a positive constant.

By the definition of ϕi and ϵi, for each follower i = 1, . . . , N , we have

ϕi − ϵi = (ηi − q0)
∗ ⊙ qi. (C8)

By Theorem 1, lim
t→∞

(ηi(t) − q0(t)) = 0. Thus

lim
t→∞

(ϕi(t) − ϵi(t)) = 0. (C9)

With the control torque (C7), system (C6c) becomes

jiẋi = −ki2xi + j
′
oi i = 1, . . . , N. (C10)

Since lim
t→∞

j
′
oi = 0 and ji is positive define, systems (C10) are strictly stable linear systems when t → ∞. Therefore, we obtain

that lim
t→∞

xi(t) = 0, i = 1, . . . , N . Then, using the Lemma 4.1 of [1], we can obtain that

lim
t→∞

ϵ̂i = lim
t→∞

ϕ̂i = 0. (C11)

Consequently, the adaptive leader-following attitude consensus of MRBS with resilience to CLFs under time-varying network is

achieved. Furthermore, by the definition of xi, we can obtain

lim
t→∞

ω̃i(t) = 0. (C12)

Combining (C1) and (C3), we have

ω̌i = ω̃i + C(ϕi)(ξi − ω0) + (C(ϕi) − C(ϵi))ω0. (C13)

Thus, by Theorem 1 and (C13),

lim
t→∞

ω̌i(t) = 0, (C14)

which completes the proof.
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Remark 3. Theorem 2 uses the certainty equivalence principle and pseudo-linear representation of MRBSs to transform the

attitude control problem of MRBSs into the design of stable conventional linear systems (C10). The observer convergence obtained

by Theorem 1 ensures that the nonlinear term of the system (C10) converges to zero as time tends to infinity. Note that Theorem

1 of [6] may not hold under CLFs, so we cannot obtain observer convergence under general switched systems.

Appendix D Simulation Examples

Figure D1 Communication topology

The simulated MRBSs have four followers and a leader subject to a time-varying digraph G(t). Consider a leader-following

network that has the communication topology shown in Fig. D1. Under the Assumption 5, we consider the digraph G(t) in accord

with a jointly connected condition that is denoted by a piecewise function. Note that changes in function at the segmentation point

can be considered failures caused by CLFs. Next, we design the corrupted weight δ as the following form

δ = sin(t + 0.1 + 2 ∗ cos(t + 0.2) + sin(cos(t + 0.3))).

Moreover, we design the communication weights aij(t) as piecewise functions which have the following forms

a01(t) =



1 + δ, if sT0 ⩽ t ⩽ (s +
1

4
)T0,

0, if (s +
1

4
)T0 ⩽ t ⩽ (s +

1

2
)T0,

0, if (s +
1

2
)T0 ⩽ t ⩽ (s +

3

4
)T0,

0, if (s +
3

4
)T0 ⩽ t ⩽ (s + 1)T0,

a02(t) =



0, if sT0 ⩽ t ⩽ (s +
1

4
)T0,

1 + δ, if (s +
1

4
)T0 ⩽ t ⩽ (s +

1

2
)T0,

0, if (s +
1

2
)T0 ⩽ t ⩽ (s +

3

4
)T0,

0, if (s +
3

4
)T0 ⩽ t ⩽ (s + 1)T0,

a23(t) =



0, if sT0 ⩽ t ⩽ (s +
1

4
)T0,

1 + δ, if (s +
1

4
)T0 ⩽ t ⩽ (s +

1

2
)T0,

0, if (s +
1

2
)T0 ⩽ t ⩽ (s +

3

4
)T0,

0, if (s +
3

4
)T0 ⩽ t ⩽ (s + 1)T0,

a14(t) =



0, if sT0 ⩽ t ⩽ (s +
1

4
)T0,

0, if (s +
1

4
)T0 ⩽ t ⩽ (s +

1

2
)T0,

1 + δ, if (s +
1

2
)T0 ⩽ t ⩽ (s +

3

4
)T0,

0, if (s +
3

4
)T0 ⩽ t ⩽ (s + 1)T0,



Sci China Inf Sci 8

a34(t) =



0, if sT0 ⩽ t ⩽ (s +
1

4
)T0,

0, if (s +
1

4
)T0 ⩽ t ⩽ (s +

1

2
)T0,

0, if (s +
1

2
)T0 ⩽ t ⩽ (s +

3

4
)T0,

1 + δ, if (s +
3

4
)T0 ⩽ t ⩽ (s + 1)T0,

where T0 = 0.2 and s = 0, 1, 2, . . .. According to Remark 1 in [3], we can obtain that δ can describe capacity constraints, and

transmission noises. Furthermore, we assume that aij(t) can be zero over a certain period of time. In practice, this condition could

be referred to as packet dropout. The dynamics of the four followers described by

q̇i =
1

2
qi ⊙ q(ωi), (D1a)

jiω̇i = −ω
×
i jiωi + τi, i = 1, ..., N, (D1b)

with the inertial matrices are given by Jm = diag{m, 2m,m + 2},m = 1, 2, 3, 4. We define the matrix S0 as

S0 =


0 1 0

−1 0 0

0 0 0

 . (D2)

Then we choose α = β = 10, ki1 = ki2 = 20. All initial adaptive parameter values are designed as aξi(0) = aηi(0) = 1 to satisfy

the requirement in Theorem 1. The initial attitudes are set to q0(0) = [1, 0, 0, 0]T, q1(0) = [0, 1, 0, 0]T, q2(0) = [0, 0, 1, 0]T, q4(0) =

[1/2,
√
3/2, 0, 0]T to satisfy the requirement that q0(t) ∈ Qu (∥q0∥ = 1). The initial angular velocity of the leader is set to

ω0(0)= [1, 2, 3]T. Other parameters randomly generated initial conditions. The estimation errors of ξi, ηi, i = 1, 2, 3, 4 obtained

by observers are shown in Fig. D2. Furthermore, Fig. D3 shows consensus errors of attitude and angular velocities, respectively.

Adaptive parameter trajectories are shown in Fig. D4. For attitude and angular velocities, it is observed that the leader-following

consensus has satisfactory resilience to CLFs.

Figure D2 Estimate errors of followers.
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Figure D3 (a) Consensus of attitudes; (b) Consensus of angular velocities.

Figure D4 Trajectories of adaptive parameters.

Appendix E Proof of Lemmas

Lemma 1. If the digraph G contains a spanning tree with the leader as its root at time t, then there exists a positive definition

diagonal matrix Q(t) such that Q(t)LG(t) + LT
G(t)Q(t) = P (t), where P (t) is positive-definite, and LG(t) = L(t) + G(t).

Proof. Lemma 1 can be extracted from the results of the structural analysis of the directed graph with CLFs in [4].

Lemma 2. If Assumptions 1-5 hold, Lemma 1 is satisfied by a positive definition diagonal matrix Q(t). In the meanwhile, Q(t)

and its derivative are bounded.

Proof. Because the digrpah G contains a spanning tree with leader as its root, LG(t) must be a nonsingular M-matrix. This

implies that (LT
G(t))

−1
exists and is positive. Then we choose Q(t) to be

Q(t) = diag(a1(t), . . . , aN (t)), (E1)

and we choose its diagonal elements as

a(t) = [a1(t), . . . , aN (t)]
T

= (L
T
G(t))

−1
1N . (E2)

According to the definition of Q(t), it satisfies that Q(t)LG(t) + LT
G(t)Q(t) = P (t), where P (t) is positive-definite. We can

further obtain that det(LT
G(t)) is nonzero and bounded due to the boundedness of LG(t) which is given by Assumption 3 and that

(LT
G(t))

−1
exists. This implies that

∥(LT
G(t))

−1∥
F

= ∥
adj(LT

G(t))

det(LT
G(t))

∥F , (E3)

which shows that all elements of Q(t) are bounded. Then we take the derivative of (E2),

ȧ(t) = −(L
T
G(t))

−1 d(LT
G(t))

dt
(L

T
G(t))

−1
1nN . (E4)



Sci China Inf Sci 10

From Assumption 3, we can obtain that all the elements of
d(LT

G(t))

dt are bounded due to the boundedness of δaij(t) and δgi (t). This

further implies that ȧ(t) is bounded, which completes the proof.
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