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Appendix A The Method Description

Appendix A.1 Task Space
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Figure A1 (a-d) Various fundamental interaction behavior on graphical user interface (GUI): (a) navigating through menu, (b)

crossing the boundary of a graphical object. (c) lassoing icons which are arranged at regular intervals. (d) lassoing randomly

arranged icons. (e-h) Various trajectory-based tasks: (e) Steering task, (f) Goal-Crossing task, (g) Steering through obstacles with

regular intervals (Steering-Crossing task), (h) Steering through random obstacles (Randomized Steering task).

As shown in Figure A1, when interacting with the objects on graphical user interface (GUI), users often implicitly perform

various trajectory-based interactions, such as navigating through menus (Figure A1 a), entering the boundary of a button (Figure

A1 b) and lassoing regularly arranged icons (Figure A1 c). Based on these fundamental interactions on GUI, researchers explored

three typical trajectory-based tasks: the Steering task [1], the Goal Crossing task [1, 2], and the Steering-Crossing task [3]. The

Steering task (Figure A1 e) needs users to navigate from one end of a tunnel to the other without touching the boundaries of the

tunnel. Thus it is a task with continuous path constraints. The Goal Crossing task (Figure A1 f) asks users to stroke through two

targets at a certain distance successively. It has only two discrete constraints at the beginning and the end of the movement, we

consider it a task with discrete constraints. The Steering-Crossing task is a combination of the above two tasks, it requires users

to navigate through obstacles at regular intervals (Figure A1 g). So it can be viewed as a task with interval constraints. Besides,

considering interactions with irregularly arranged objects on GUI (Figure A1 d), we further introduce one randomized task (i.e.,

randomized steering task Figure A1 h).

The task space in this paper is the area in which the previously mentioned task is performed by the user. The cursor controlled

by users is represented by Particle. The goal is a destination to which the cursor is heading. The model has two types of goals:

Final Goal and Temporary Goal. The Final Goal is the final target area of the trajectory-based tasks. The Temporary Goal is

a goal in a Visual Field (which will be specified later) that represents a local destination toward which the cursor tends to move.

Obstacle refers to boundaries in the task space. Visual Field is a fan-shaped area centered on the cursor and faces the cursor’s

moving direction. The Visual Field generates a Temporary Goal based on the geometry of the local boundaries, which directs the

local movement of the Particle.

* Corresponding author (email: huangjin@iscas.ac.cn)
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Appendix A.2 Artificial Potential Field

APF consists of two parts, one is the Attractive Potential and the other is the Repulsive Potential. The Attractive Potential is a

potential that is centered on a Goal and drives the Particle moves towards the Goal. The Attractive Potential from the center of

the Goal to the Particle can be written as:

Uatt(t) =
1

2
kρ

2
goal(p) =

1

2
k(pt − pgoal)

2
, (A1)

where ρgoal(p) = ∥p − pgoal∥ is the Euclidean distance between the Particle and the center of the Goal, pt = (x(t), y(t))T is

the Particle’s position at current time t, and k is a positive scaling factor of Attractive Potential. Eq. A1 shows that Uatt(t)

monotonically increases with the current distance towards the center of the Goal. The attractive force Fatt(t) in current Attractive

Potential can be obtained by calculating the partial derivative:

Fatt(t) = −∇Uatt(t) = −
1

2
− ∇ρ

2
goal(p) = −k(pt − pgoal). (A2)

Attractive Potential describes the desire of the Particle to move towards the center of the Goal. The farther away from the

center of the Goal, the more eager the Particle is to move towards it. As shown in Eq. (A2), Fatt(t) converges linearly toward

zero as the Particle approaches the Goal.

Repulsive Potential generates high potential at the center of an Obstacle that can repel the Particle from the Obstacle. The

Repulsive Potential can be written as follows:

Urep(t) =

0 , ρ(p) > ρ0

1
2η

(
1

ρ(p)
− 1

ρ0

)
, ρ(p) ⩽ ρ0

(A3)

Where η is a positive constant of the Repulsive Potential, ρ(p) = ∥p − p(p)∥ denotes the minimal distance from the Particle to

one certain point on Obstacle. ρ0 is a positive constant denoting the influence range of the Repulsive Potential.

In practice, we found that Particle may stop approaching to the Goal when there are Obstacles nearby. To address this problem,

we adopt a modified Repulsive Potential introduced by [4], which generates forces in two directions: one from the Particle to the

Obstacle, the other from the Particle the Goal. The modified Repulsive Potential takes the following form:

Frep(t) =
∂Urep(t)

∂np

+
∂Urep(t)

∂ngoal

=

{
0 , ρ(p) > ρ0

∥Frepp(t)∥np + ∥Frepg(t)∥ngoal , ρ(p) ⩽ ρ0

(A4)

where np is the direction vector from the Particle to the Obstacle, ngoal is the direction vector from the Particle to the Goal.

In these two directions, Frep(t) is divided into two sub-force: Freep(t) and Frepg(t). The two forces are calculated by the following

formulae:

∥Frepp(t)∥ = η(
1

ρ(p)
−

1

ρ0

)
ρ2
goal(p)

ρ2(p)
(A5)

∥Frepg(t)∥ = η(
1

ρ(p)
−

1

ρ0

)
2
ρ(p) (A6)

Where η is a positive constant of the Repulsive Potential, ρ(p) = ∥p − p(p)∥ denotes the minimal distance from the Particle to

one certain point on Obstacle. ρ0 is a positive constant denoting the influence range of the Repulsive Potential.

Appendix A.3 Modified Artificial Potential Field Model

Following the basic mechanism of Artificial Potential Field (APF), our model describes the movement of the particle in trajectory-

based tasks with Attractive Potential and Repulsive Potential. The state of the particle X at time t can be expressed as follows:

X(t) = [F (t), v(t), x(t), y(t)], (A7)

where F (t) is the combined force of the particle, F (t) consists of two parts, one is the force generated by the whole potentials

FU (t), another is the perturbing force Fper(t) which perpendicular to the moving direction of the particle. v(t) is the speed of the

particle which can be calculated by the combined force F (t) using Newton’s second law. (x(t), y(t)) is the position of the particle.

The framework of our model is shown in Fig. A2. The framework is divided into two parts: Task Space Modeling and Movement

Status Update. In the Task Space Modeling, attractive and repulsive potential fields are used to build the overall distribution of

potentials caused by boundaries, non-target objects, and the Final Goal in the Task Space (Fig. A2 (a)). The potentials in the

Task Space produce forces FU (t) that cause the particle to move (Fig. A2 (b)). Then we introduce an uncertainty model (the

perturbing force Fper(t)) to account for the uncertainty in human behavior. Given the resultant force from force analysis, Newton’s

second law is used to calculate the Particle’s movement status in a specific time delta (Fig. A2 (c)). Finally, as the Particle

moves in the Task Space, it changes the potential fields in the space, causing the model to send feedback (the updated state of the

particle X(t + 1)) to the Task Space, update the potential fields, and repeat the loop. Our model can calculate the movement of

the Particle until it reaches the Final Goal by iterating the above process.

In the following sections, we introduce the parts of Task Space Modeling and Movement Status Update respectively.

Appendix A.3.1 Task Space Modeling
This section describes how we use the Attractive Potential and Repulsive Potential to model the potentials in the Task Space.

According to different purposes of movement simulation, we divide the potentials of the Task Space into three parts: potentials in

overall task space, potentials in the space near the Particle, and potentials in the space near the Final Goal.
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Figure A2 Framework of Modified Artificial Potential Field Model

Potentials in the Overall Task Space To model the potentials in the overall task space, we first place an Attractive

Potential UGatt (calculated by Eq.A1) at the location of the Final Goal to drive the Particle to the target area of the task. We

then rasterize the boundaries (obstacles) of the task and attach a repulsive potential to each of the rasterized “obstacle gird” in

the task space. This will result in numerous repulsive potentials and significantly reduce the simulation efficiency. To simplify the

calculation, inspired by the work of Kala [5], we use six sources of potentials along the moving direction of the Particle to describe

Repulsive Potential UOrep (calculated by Eq.A8) generated by Obstacle around the Particle. These six sources of potentials

include one in the front of the Particle (i.e., forward potential) and one in the back (i.e., backward potential), four on the left and

right sides of the Particle (i.e., diagonal and side potential). Then, the combined of Repulsive Potential generated by Obstacle

UOrep can be represented by:

UOrep = UOrep(pfro) + UOrep(pback) + UOrep(pdiat)

+ UOrep(pdiab) + UOrep(ptop) + UOrep(pbot).
(A8)

Each source of potential is calculated according to Eq.A4.

Potentials Near the Particle Instead of moving optimally to the target area, users’ movements can be influenced by

the layout of a specific local space within a certain distance. Users, for example, tend to move toward the farthest visible destination

in front of them. We use the Visual Field to simulate this phenomenon. The Visual Field is defined as an area that can be seen

from a Particle. It is commonly used in robot path planning [6, 7], where the robot must first locate a Temporary Goal within a

visual Field, and then safely avoid obstacles by constantly updating the Temporary Goal. Because of its working principle, this

method is highly adaptable, making the model suitable for a variety of scenarios.
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Figure A3 A simple diagram illustrating how to use the visual field to navigate a curved tunnel.



Sci China Inf Sci 4

As shown in Figure A3, the Visual Field is a fan-shaped area with the Particle as the center and the Particle’s movement

direction as the central axis. The center angle θ and radius ρ determine the range of Visual Field. When there is an Obstacle

O in Visual Field, the Particle will select a point on Obstacle, which is farthest from the Particle as the Temporary Goal. As

the Final Goal, we attach a Attractive Potential UTatt (calculated by Eq. A1) at the Temporary Goal, so it generates attractive

force to help the particle move to the edge of Obstacle. Figure A3 shows how the Visual Field helps the Particle in navigating

through a curved tunnel. In a curved tunnel, the tunnel boundary is viewed as an obstacle. The Temporary Goal always causes

the Particle to move to the farthest Obstacle, causing it to bypass the tunnel. We set the center angle θ as 60◦ and radius ρ as

350 px (53.67mm).

Attractive Potential

Repulsive Potential

Center Center

Center

Repulsive Potential 

Endpoint Endpoint

Midpoint

Figure A4 The potentials near a strip-like goal.

Potentials Near the Final Goal In previous APF studies, the goal was usually regarded as a point-like object, so the

particle’s movement usually ended when it came into contact with an adjacent area of the goal. However, strip-like goals [1] are

more common in trajectory-based tasks, which result in completely different user behavior relative to point-like goals. To finish

the task, users must control the cursor to cross (but not reach) the center of the strip-like goal. This movement is referred to as

the ”goal-crossing” behavior in crossing user interfaces [2]. To approximate the goal-crossing behavior, we added two Repulsive

Potential UGrep (calculated refer to Eq. A4) at the two endpoints of the strip-like goal, as well as an Attractive Potential at the

goal’s midpoint as shown in Figure A4. In this way, the Particle will avoid touching the two endpoints of the strip-like goal and

try to pass through the middle of the goal.

Appendix A.3.2 Movement Status Update
This section describes how we update and adjust the movement of the Particle based on the forces generated by the potentials in

the Task Space. First, an uncertainty model is used to adjust the resultant force to approximate the uncertainty in the human

musculoskeletal system; next, a force analysis is performed to calculate the resultant force on the Particle; and finally, a preferred

speed model is employed to limit the maximum moving speed of the Particle.

Uncertainty Model Through the above calculation of force generated by the whole potential field, we can obtain the status

of the Particle in a specified time and iterate the simulation process to obtain a unique trajectory until the Particle reaches the

end. However, the unique trajectory determined by the above process is quite different from actual human behavior in performing

HCI tasks which contains uncertainty in movement, speed, or decision-making. In this section, we introduce a perturbing force to

the APF model to account for the uncertainty in human behavior.

According to neuroscience research, the uncertainty of human behavior is caused by control signal noise in the human body.

The noise in the control signal causes force perturbation in the musculoskeletal system, which finally leads to uncertain hand

movement [8]. Specifically, evidence [8–10] shows that the variability in the force produced is linearly related to the amount of force

produced. As the user uses more force to achieve a faster cursor movement speed, the uncertainty of hand movement increases with

increased acceleration and speed [11].

As a result, we introduced a perturbing force (Fper(t)) to approximate the uncertainty of hand movement. The perturbing force

is a force perpendicular to the moving direction of the hand, and the perturbing force follows a Gaussian distribution (Nper) with

a mean value of 0 and a standard deviation (SD) of σ. The SD of σ of the perturbing force is linearly related to particle’s current

speed (v(t)) as follows:

σ = av(t) + b. (A9)

Force Analysis The overall potential can be obtained by calculating the sum of attractive and repulsive potentials. Then

we can get the force FU (t) generated by the whole potentials by calculating the partial derivative:

FU (t) = −▽U(t) = −▽Uatt(t) + ▽Urep(t)

= −▽UTatt − (1 −
ρG−goal(p)

ρG−goal(p0)
)▽UGatt + ▽UOrep + ▽UGrep,

(A10)

where ρG−goal(p0) is the distance between Particle’s initial position and Final Goal, ρG−goal(p) is the distance between Particle’s

current position and Final Goal. Figure A5 shows an example of the combined force of Particle generated by the whole potentials

in steering task.

As shown in Figure A5, an Attractive Potential Field (UGatt) located at the center of the Final Goal generates Attractive

Force to drive the Particle to the target area. The six sources of potentials along the moving direction of the Particle describe

the Repulsive Potential Field (UOrep) generated by the boundaries of the tunnel in the Task Space. Another Attractive Potential

Field (UTatt) is placed at a Temporary Goal within the V isualF ield, generating attractive force to lead the Particle move to the
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Figure A5 An example of the force of the particle generated by the whole potentials.

Temporary Goal. The two Repulsive Potential Field (UGrep) placed at the two endpoints of the Final Goal generate repulsive

forces to ensure that the Particle cross through the center of the goal. Each potential produces a force at the Particle.

Finally, by adding the uncertainty adjustment to Eq. A10, we can obtain the final combined force F (t) on the Particle:

F (t) = FU (t) + Fper(t) = FU (t) + Npernv, Nper ∼ N(0, σ), (A11)

where vector nv denotes the normal direction of the present movement. The combined force of these forces finally determines the

exact movement of the Particle.

Preferred Speed Model According to Newton’s second law and Eq. A11, the Particle’s speed at next frame (v(t + 1))

can be calculated as follows:

v(t + 1) = v(t) +
F (t)

m
△ t, (A12)

where F (t) is combined force calculated by Eq. A11, v(t) is the current speed of the Particle

Different from simple physical simulation without any restrictions, simulation of human movement should consider its inherent

behavior pattern. More relevant to the trajectory-based tasks in this paper, users tend to reduce the acceleration and speed of their

hands to improve accuracy in narrower spaces according to the speed-accuracy trade-off principle [12]. As a result, we developed a

Preferred Speed Model to control the maximum moving speed of the Particle according to the width of the tunnel. The preferred

speed (Vpref ) of the Particle is determined by as follows:

Vpref = cW + d, (A13)

where c and d are two constants, W is the width of the tunnel. Eq. A12 is finally defined as follow:

v(t + 1) = min(v(t) +
F (t)

m
△ t, Vpref ), (A14)

where F (t) is combined force calculated by Eq. A11, v(t) is the speed at time t, △t is the time difference between the current and

next states. Finally, the position of the Particle in the next frame pt+1 = (xt+1, yt+1)
T can be calculated as follow:

pt+1 = pt + v(t + 1) △ t, (A15)

where pt = (x(t), y(t))T is the Particle’s position at current time t, v(t+ 1) is the Particle’s speed calculated by Eq. A14. In this

way, we can gradually update the position of the Particle until the Particle reaches the target area.

In the next two sections, we evaluated our model in four different trajectory-based tasks including a Steering task, a Goal-

Crossing task, a Steering-Crossing task and a Randomized Steering task.

Appendix B Study 1: Modeling Evaluation in Steering Task
We begin by evaluating the Steering task because it is a standard trajectory-based task, and thus we can use the data from this

study to estimate model parameters for subsequent evaluations.

Appendix B.1 Task Description

As shown in Figure B1, the Steering task requires participants to control a cursor to pass through a straight tunnel with boundaries

on top and bottom. The participants must navigate the cursor from one side of the tunnel to the other without touching the

boundaries of the tunnel or lifting their hands off the screen.

Appendix B.2 Participants and Apparatus

All the experiments in this paper were conducted on a Dell M4800 laptop computer with an Inter Core i7 4810 MQ CPU at 2.8

GHz. The computer was connected to a Wacom pen display with a stylus as input. The pen display is a direct interactive screen

that can only be operated by the stylus. The pen display is 294 mm × 165 mm (13.3 inches) in size and 1920 × 1080 px in

resolution. Each pixel on the screen is 0.153 mm wide. The stylus is 15.4 cm in length and 10 g in weight. The system ran with a

sampling frequency of 100 Hz. The pen display was positioned on a table in “stand” mode (40◦ angle). The experiment programs

in this study were developed using Unity 3D with C# code. We recruited 12 right-handed participants (8 males and 4 females,

with an average age of 26.83) in this study. All of them were familiar with computer and stylus use, and all of them had normal

or corrected-to-normal vision.
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A = 540 px

W=138 px

A = 980 px

W = 46 px

(a) (b)

Figure B1 Layout of the interface used for Steering Task

Appendix B.3 Procedure and Design

We tested the combinations of five goals’ width (W ) and three goals’ length (A): A = 540, 760, 980 px ; W = 46, 69, 92, 115, 138

px. All the movement directions were from left to right. The total number of recorded trials was 15 conditions × 15 repeats × 12

participants = 2700 trials. For all the trials in the Steering task, and the following the Goal-Crossing task, the Steering-Crossing

task, and Randomized Steering task, once the participants failed to complete a trial, they had to do it again. We only analyzed

successful trials in this study.

Appendix B.4 Parameter-Setting

The following set of parameters needs to be optimized in our model [k, η, Nper, Vpref ]. We used a genetic algorithm with a

population size of 50 to optimize the parameters k and η. To produce better simulations, the parameters k and η for each task

are optimized individually. To estimate parameters Nper in the Movement Uncertainty Model (Eq. A9), we performed a linear

regression analysis between instantaneous speed and corresponding SD σ of the perturbing force. The parameters of the Vpref

in the preferred speed model (Eq. A13) was obtained by performing a linear regression analysis between tunnel widths and the

average speed of the particle in each tunnel.

Appendix B.4.1 Parameters of APF
There are two parameters k and η needed to be optimized for APF. To optimize the parameters k and η, we used a cost function

J, which is defined as the Mean Absolute Error (MAE) between the actual trajectories and simulated trajectories:

J = MAEmean =

∑n
i=1(∥Pactu(i) − Psim(i)∥)

n
, n = 1, 2...100, (B1)

where ∥Pactu(i) − Psim(i)∥ is the Euclidean distance between sampling points of the actual and simulated trajectories, n is the

number of MT% sampling points. We used a genetic algorithm with a population size of 50 to optimize the parameters k and η.

The final estimated parameters k, η in Study 1 are shown in Table B1.

Appendix B.4.2 Parameters of Perturbing Force
We used the collected data in Steering task to estimate parameters a and b in the Movement Uncertainty Model (Eq. A9). To

do so, we need actual data of instantaneous speed Vt and corresponding SD of the perturbing force σ. To obtain such data, we

resampled the 2700 trials, converting each trajectory to 100 MT% sampling points. The MT% sampling points were obtained by

interpolating the original trajectory data at the time from 1 to 100% of the total movement time. Then we calculated instantaneous

speed (Vi) of each sampling point as:

Vi =
∥Pi+1 − Pi−1∥
ti+1 − ti−1

, (i = 2, 3, ..., 99), (B2)

where ∥Pi+1 − Pi−1∥ is the distance between the previous sampling point and the next sampling point.

To estimate the SD σ of the perturbing force in a certain instantaneous speed, we need enough perturbing force data in a specified

speed condition to estimate the SD of the force data. Because we can not obtain the actual perturbing force from participants, we

used the second derivative of small displacement perpendicular to the moving direction to approximate the perturbing force (Fper):

Fper = ma = m
d2s

dt2
, (B3)

where ds is a small displacement, m is the quality of the Particle. Because m is a constant, the perturbing force (Fper) is

proportional to the second derivative of the displacement ds, thus can be directly obtained by calculating ds. The small displacement

ds is calculated by getting the deviation between actual position Pi+1 and desired position Pd(i+1) at time ti+1 in the axis

perpendicular to the moving direction.

ds =

−−−−−−−−→
Pi+1Pd(i+1) · npv∥∥∥−−−−−−−−→Pi+1Pd(i+1)

∥∥∥ , (B4)

where
−−−−−−−−→
Pi+1Pd(i+1) is a vector from Pi+1 to Pd(i+1), npv is the normal vector of the current moving direction,

∥∥∥−−−−−−−−→Pi+1Pd(i+1)

∥∥∥ is

the norm of vector
−−−−−−−−→
Pi+1Pd(i+1). The desired position Pd(i+1) is given by multiplying the instantaneous speed Vi of the sampling

point at time ti by the time internal:

Pd(i+1) = Vi(ti+1 − ti), (i = 2, 3, ..., 99). (B5)

Through the above steps, we obtained 232055 data of (InstantaneousSpeed, PerturbingForce). We then binned the data with

an instantaneous speed interval of 10 px/s. This process yielded a dataset that includes 251 instantaneous speed conditions, each

of which contains a number of perturbing force data (range from 81 to 1848). By calculating the SD of the perturbing forces for

each instantaneous speed condition, we obtained 251 pairs of σ × V data. Finally, we fit Eq. A9 with the σ × V data and got a

R2 of 0.8772 as shown in Figure B2 (a). The final estimated parameter Nper is shown in Table B1.
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Figure B2 Fitting function of empirical models ((a)Npert, (b)Vpref )

Table B1 Parameter-Setting estimated in Steering Task

Parameters Value Methods of Computation Ref.

k 9.5 Genetic Algorithm [4,13]

η 2.5× 103 Genetic Algorithm [4,13]

Nper Nper = 1.4204V + 713.46 Eq.(A9)(B2)(B3)(B4)(B5) [10,11]

Vpref Vpref = 34.019W − 762.86 Eq.(A13) [12]

Table B2 The MAE between simulated and actual movement time in Steering Task (MAE)[ms]

W = 46 px W = 69 px W = 92 px W = 115 px W = 138 px Average

A = 540 px 31.00 49.27 6.12 28.44 24.71 27.91

A = 760 px 48.65 0.66 12.52 22.52 35.80 24.03

A = 980 px 168.20 24.26 50.02 18.42 30.98 58.38

Average 82.62 24.73 22.89 23.13 30.50 36.77

Appendix B.4.3 Parameters of the Preferred Speed Model

We used the collected data in Steering task to estimate parameters of the preferred speed model (Eq. A13). We performed a linear

regression analysis between tunnel widths and the average speed of the particle in each tunnel. The average speed of the particle is

calculated by dividing the tunnel’s length by the time it takes to pass through it. The fitted model Vpref that reflects the relation

between the preferred speed and different tunnel widths is illustrated in Figure B2 (b). The final estimated parameter Vpref is

shown in Table B1.

Appendix B.5 Results

We simulated the trajectories for the Steering task using the optimized parameters in Table B1. The first status of the actual

data is used as the initial status of our model, and the model then updates the particle’s movement status frame by frame until

the particle encounters obstacles or successfully crosses the goal. The update interval was empirically set to 40 ms. We simulated

2700 trajectories and then tested our model by comparing the simulated data to the actual data in terms of movement time, mean

trajectory, and movement uncertainty.

Appendix B.5.1 Movement Time

Since our model can simulate the whole movement, we can easily obtain simulated movement time of the model from its simulation.

We used mean absolute error (MAE) between simulated movement time and actual movement time to evaluate the model’s predictive

power for movement time. As shown in Table B2, the MAE of movement time for Steering task is 36.77 ms, accounting for 6.92%

of the total movement time. The minimum value of the offset occurs when W = 69 px and A = 760 px with an average offset of

0.66 ms (0.12 %), while the maximum offset obtained when W = 46 px and A = 980 px with an average offset of 168.20 ms (14.73

%). Our model shows the best movement time fitting when A and W are at a moderate level.

By comparing the goodness of fits of our model (R2 = 0.952) and Steering Law (R2 = 0.962), we found that our model is

competitive with Steering Law in movement time prediction.
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Table B3 The MAE between simulated and actual mean trajectories in Steering Task (MAE)[px]

W = 46 px W = 69 px W = 92 px W = 115 px W = 138 px Average

A = 540 px 7.96 20.30 22.93 19.60 25.80 19.32

A = 760 px 33.28 28.46 26.56 35.99 39.68 32.79

A = 980 px 63.82 43.64 45.11 59.74 74.29 57.32

Average 35.02 30.80 31.53 38.44 46.59 36.48

Table B4 The MAE of movement variability between simulated and actual trajectories in Steering Task (MAEMV )[px]

W = 46 px W = 69 px W = 92 px W = 115 px W = 138 px Average

A = 540 px 2.32 3.23 3.60 2.38 3.41 2.99

A = 760 px 2.58 4.41 3.81 3.56 5.73 4.02

A = 980 px 1.37 3.71 2.52 5.10 6.38 3.81

Average 2.09 3.78 3.31 3.68 5.17 3.61

Appendix B.5.2 Mean Trajectory

We used mean absolute error (MAE, Eq. B1) between simulated mean trajectory and actual mean trajectory to evaluate the

performance of our model in predicting mean movement trajectory. The MAE in each A × W condition can be seen in Table B3.

The average MAE is 36.48 px (5.59 mm), accounting for 4.93 % of the total length of actual trajectories. The minimum value of

the offset occurs when W = 46 px and A = 540 px with an average offset of 7.96 px (1.56 %). And the maximum offset is obtained

when W = 138 px and A = 980 px with an average offset of 74.29 px (8.07 %). These results indicate that the proposed model can

well predict the mean movement trajectory in the Steering task.

Appendix B.5.3 Movement Uncertainty

Movement Variability (MV ) is obtained by calculating the distance between the sample point and the horizontal axis [14–16], and

is used to describe the extent to which the sample points lie in a straight line along the axis. In this paper, considering different

types of scenarios, we used the mean trajectory instead of the axis as a reference and calculated MV by computing the Euclidean

distance of each sampling point between the mean trajectory and the trajectories (actual and simulated). And then, we use the

MAE of movement variability (MAEMV ) between the actual (MVactu) and simulated trajectories (MVsim) as a criterion for

evaluating movement uncertainty.

MAEMV = |MVactu − MVsim|

= |
1

m

m∑
i=1

∑n
i=1(|Pactu(i) − Pactu(i)|)

n

−
1

m

m∑
i=1

∑n
i=1(|Psim(i) − P sim(i)|)

n
|, n = 1, 2...100,m = 1, 2...m,

(B6)

where |MVactu − MVsim| is the absolute error between the MV of sampling points of the actual and simulated trajectories.

Pactu(i) and Psim(i) are the position of the sampling points on the actual and simulated trajectories, respectively. Pactu(i) and

P sim(i) are the position of the sampling points on the actual and simulated mean trajectories, respectively. |Pactu(i) − Pactu(i)|
and |Psim(i) − P sim(i)| are the Euclidean distance between the mean trajectory and the trajectories (actual and simulated),

respectively. n is the number of MT% sampling points. m is the number of trajectories.

Figure B3 shows mean trajectories for all W × A conditions and trajectory variabilities in these conditions. The absolute error

of movement variability (MAEMV ) between the actual (MVactu) and simulated (MVsim) trajectories is 3.61 px (0.62 mm), the

movement variability of the actual trajectories is 8.13 px (1.40 mm), the movement variability of the simulated trajectories is 11.74

px (2.02 mm). The MAEMV in each A × W conditions can be seen in Table B4.

Appendix B.5.4 Repeated K-fold Cross-validation

To test the generalization ability of our model, we performed repeated k-fold cross-validation (k = 2, repeated times N = 10)

for movement time prediction and mean trajectory prediction. The process of the validation is as follows: 1) Shuffle the dataset

randomly; 2) Split the dataset into 2 groups; 3) For each unique group: i) Take the group as a hold out or test dataset; ii) Take

the remaining groups as a training dataset; iii) Fit the model on the training set and evaluate it on the test set; iv) Retain the

evaluation scores or both movement time prediction and mean trajectory simulation (will be described below) and discard the

model; 4) Summarize the performance of the model using the sample of model evaluation scores.

For movement time prediction, the evaluation score is the MAE between simulated movement time and actual movement time,

and the average MAE is 64.66 ms (SD = 2.51). For mean trajectory prediction, the evaluation score is the MAE between simulated

mean trajectory and actual mean trajectory (Eq. B1), and the average MAE is 37.66 px (SD = 0.68). These results indicate that

our model is generalizable across the conditions.
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Figure B3 Actual (black) and simulated (red) mean trajectories and trajectory variabilities for the 15 W × A conditions in

Steering Task. Solid lines represent the mean trajectories while the trajectory variabilities are plotted as dashed lines. The

trajectory variabilities were determined by 95% CI of the trajectories.

Appendix C Study 2: Model Evaluation in Goal-Crossing, Steering-Crossing and Ran-
domized Steering Tasks

In this section, we examined our model’s performance in the Goal Crossing, Steering-Crossing, and Randomized Steering tasks.

Appendix C.1 Goal Crossing Task

Appendix C.1.1 Task Description
Goal Crossing tasks (Figure C1) require users to cross two goals in a certain distance. Participants start the task by crossing the

left goal and complete it by crossing the right goal. Compared to Steering tasks, Goal crossing tasks have no tunnel boundaries.

Since there is no risk of errors caused by touching boundaries, users tend to move the input device faster when performing Goal

Crossing tasks.

A=540 px

W=138 px

A=980 px

W=46 px

(a) (b)

Figure C1 Layout of the interface used for Goal Crossing Task

Appendix C.1.2 Experiment Design
The apparatus in Study 2 was the same as Study 1. We recruited 20 right-handed participants (10 males and 10 females, with an

average age of 23.35) in Study 2. All of the participants were familiar with using the computer and stylus. All of them had normal

or corrected-to-normal vision. None of them took part in Study 1.

We tested the combinations of five values of goals’ width (W ) and three values of goals’ distance (A): A = 540, 760, 980 px ;

W = 46, 69, 92, 115, 138 px. The total number of recorded trials was 3 widths × 5 distance × 15 repeats × 20 participants =

4500 trials. We used the same parameters of the movement uncertainty model and preferred speed model in Study 1, while the

parameters (Eq. B1) of APF were optimized with newly collected data in this task ([k = 26, η = 3 × 104]). We simulated 4500

trajectories using our model, and evaluated our model by comparing the simulated data with the actual data in terms of movement

time, mean trajectory and movement uncertainty. Measures of model performances in movement time prediction, mean trajectory

and movement uncertainty simulations are the same as Study 1.

Appendix C.1.3 Movement Time
As shown in Table C1, the average MAE of movement time is 17.20 ms, accounting for 5.65% of the total movement time. Simulation

results show that the minimum value of the offset occurs when W = 69 px and A = 760 px with an average offset of 0.55 ms (0.12

%). The maximum offset is obtained when W = 92 px and A = 540 px with an average offset of 44.80 ms (19.70 %). Our model

fits the movement time data (R2= 0.954) slightly better than Fitts’ Law (R2= 0.948).

Appendix C.1.4 Mean Trajectory
As shown in Table C2, The average MAE of mean trajectory is 68.28 px (10.16mm), accounting for 9.60 % of the total length.

The minimum value of the offset occurs when W = 69 px and A = 540 px with an average offset of 30.76 px (6.53 %), while the

maximum offset is obtained when W = 138 px and A = 980 px with an average offset of 110.02 px (12.32 %).
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Table C1 The MAE between simulated and actual movement time in Goal Crossing Task (MAE)[ms]

W = 46 px W = 69 px W = 92 px W = 115 px W = 138 px Average

A = 540 px 10.41 9.59 44.80 7.61 16.90 17.86

A = 760 px 9.61 0.55 5.69 6.94 42.48 13.05

A = 980 px 44.46 5.72 6.32 25.24 21.63 20.69

Average 21.49 5.29 18.94 13.26 27.02 17.20

Table C2 The MAE between simulated and actual mean trajectories in Goal Crossing Task (MAE)[px]

W = 46 px W = 69 px W = 92 px W = 115 px W = 138 px Average

A = 540 px 34.04 30.76 38.60 39.97 42.45 37.16

A = 760 px 62.77 65.16 61.65 60.06 75.83 65.09

A = 980 px 105.95 111.28 97.00 88.64 110.02 102.58

Average 67.59 69.07 65.75 62.89 76.10 68.28

Table C3 The MAE of movement variability between simulated and actual trajectories in Goal-Crossing Task (MAEMV )[px]

W = 46 px W = 69 px W = 92 px W = 115 px W = 138 px Average

A = 540 px 14.57 9.68 8.11 5.34 5.38 8.61

A = 760 px 26.56 24.01 16.78 14.45 18.49 20.06

A = 980 px 41.03 39.60 29.57 23.66 29.78 32.73

Average 27.38 24.43 18.15 14.48 17.89 20.47

Appendix C.1.5 Movement Uncertainty
The mean absolute error (MAE) of movement variability (MAEMV ) between the actual (MVactu) and simulated (MVsim) trajec-

tories in this task is 20.47 px (3.52 mm), the movement variability of the actual trajectories is 40.41 px (6.95 mm), the movement

variability of the simulated trajectories is 19.95 px (3.43 mm).The MAEMV in each A × W conditions can be seen in Table C3.

Figure C2 shows mean trajectories for all W × A conditions and trajectory variabilities in these conditions.

Appendix C.1.6 Repeated K-fold Cross-validation
Similar to Study 1, we performed repeated k-fold cross-validation (k = 2, repeated times N = 10) for movement time prediction and

mean trajectory simulation. For movement time prediction, the average MAE is 36.12 ms (SD = 1.46). For trajectory simulation,

the average MAE is 73.44 px (SD = 0.39).

Appendix C.2 Steering-Crossing Task

Appendix C.2.1 Task Description
Steering-Crossing tasks require users to steer through multiple constrained path segments. Such motions can be used to lasso

objects in illustration or presentation software. In the work of [3], researchers found that user performance varies by path segment

width (W ), segment size (S), segment interval (I), and the layout of the segments. Generally, users behave similarly to the

Steering tasks when passing through the obstacles, and more like Crossing tasks when passing through the interval. Furthermore,

the Steering-Crossing task is relatively easy to expand upon, which means that it can be used to simulate different interaction

scenarios by changing the settings of the interval and the size of obstacles.

We evaluated our model in the Steering-Crossing Task with 3 typical settings: 1) Task 3 (a) (Figure C3 (a)): 3 path segments

and 2 intervals with S = 390 px and I = 293 px; 2) Task 3 (b) (Figure C3 (b)): 2 path segments and 3 intervals with S = 390

px and I = 293 px ; 3) Task 3 (c) (Figure C3 (c)): 40 path segments and 39 intervals with S = 32 px and I = 13 px. The path

segment width was fixed at W = 46 px.

We did not discuss the impact of width (W ) in this study because it has been extensively examined in previous work [3].

Meanwhile, evidence suggests that the size of the segment interval (I) influences the navigating strategy (i.e., Goal-Crossing

strategy or Steering strategy) used to complete the task. To evaluate the effectiveness of our model for simulating different motion

processes, we designed scenarios with large I (Figure C3 (a) and (b)) and small I (Figure C3 (c)) at a specific W . Besides, as

segment sizes (S) generally do not have significant effects on the motion process [3], we only tested whether our model can handle

different segment layouts (Figure C3 (a) and (b)).

Appendix C.2.2 Experiment Design
The recorded data for this task were 3 settings × 15 repeats × 20 participants = 900 trials. We used the same parameters of the

movement uncertainty model and preferred speed model in Study 1, while the parameters (Eq. B1) of APF were optimized with

newly collected data in this task ([k = 1, η = 6×104]). We simulated 900 trajectories using our model. We also evaluated our model

by comparing the simulated data with the actual data in terms of movement time, mean trajectory and movement uncertainty.
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Figure C2 Actual (black) and simulated (red) mean trajectories and trajectory variabilities for the 15 W × A conditions in

Goal Crossing Task. Solid lines represent the mean trajectories while the trajectory variabilities are plotted as dashed lines. The

trajectory variabilities were determined by 95% CI of the trajectories.
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···

···

N = 40

Figure C3 Layout of the interface used for Steering-Crossing Task

Table C4 The MAE of movement time and mean trajectory between simulated and actual in Steering-Crossing Task

Task3(a) Task3(b) Task3(c) Average

Movement Time (MAE)[ms] 75.38 129.32 55.07 86.59

Mean Trajectories (MAE)[px] 61.28 128.03 207.39 132.23

Movement variability MAEMV [px] 2.88 2.46 3.29 2.88

Measures of model performances in movement time prediction, mean trajectory and movement uncertainty simulations are the

same as Study 1.

Appendix C.2.3 Movement Time

As shown in the first row of Table C4, the average MAE of the movement time for Steering-Crossing task is 86.59 ms, accounting

for 4.42% of the total movement time. Among the three conditions, we obtained the best time fitting in the third condition with

an average offset of 55.07 ms (2.53 %).

We compared our model with Steering Law, Crossing Law [1], and the model introduced by Shota Yamanaka [3] in movement

time prediction. The Shota Yamanaka’s model gained the highest R2 with a value approaching 1, followed by our model with a

comparable R2 value of 0.969. The Steering Law and Crossing Law had a relatively low fit in the Steering-Crossing task. The

reason for the high R2 of the Shota Yamanaka’s model is that, by combining Steering Law and Fitts’ Law, the Shota Yamanaka’s

model [3] introduced additional ID and parameters, which helps the model to obtain high fits when there are less experimental

conditions in the experiment.

Appendix C.2.4 Mean Trajectory

As shown in the second row of Table C4, the MAE of mean trajectory is 132.23 px (20.28 mm), accounting for 7.64 % of the overall

length of the trajectory. Unlike the results of time fitting, the MAE of mean trajectory of the third condition is the largest (207.39

px, 31.81 mm), accounting for 11.75 % of the total length of the actual mean trajectory.

Appendix C.2.5 Movement Uncertainty

As shown in the third row of Table C4, the mean absolute error (MAE) of movement variability (MAEMV ) between the actual

(MVactu) and simulated (MVsim) trajectories in this task is 2.88 px (0.57 mm), the movement variability of the actual trajectories

is 5.13 px (0.85 mm), the movement variability of the simulated trajectories is 8.01 px (1.42 mm). Figure C4 shows mean trajectories

for the 3 settings in Figure C3 and trajectory variabilities in these conditions.
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Figure C4 Simulation results of movement uncertainty in Steering-Crossing Task.

Appendix C.2.6 Repeated K-fold Cross-validation

Similar to Study 1, we performed repeated k-fold cross-validation (k = 2, repeated times N = 10) for movement time prediction and

mean trajectory simulation. For movement time prediction, the average MAE is 141.91 ms (SD = 3.02). For trajectory simulation,

the average MAE is 202.74 px (SD = 1.11).

Appendix C.3 Randomized Steering Task

Appendix C.3.1 Task Description

I1 = 175 px I1 = 175 px

S1 = 200 px

S1 = 200 px S2 = 150 px

S3 = 100 px
I1 = 175 px

I3 = 100 px

I2 = 375 px

W = 46 px

Figure C5 Layout of the interface used for Randomized Steering Task

We created a scenario with randomly arranged obstacles to test our model’s ability in dealing with complicated trajectory-based

tasks. This task is similar to lassoing haphazardly organized icons on a user interface. In this task, we set up three different

Interval (I1 = 175px, I2 = 375px, I1 = 100px), three different Obstacle Size (S1 = 200px, S2 = 150px, S3 = 100px) and one Width

(W = 46px). Overall, the straight line distance from the start bar to the end bar is 1650 px, and the narrowest tunnel on the path

has a straight line width of 46 px. The specific task settings are shown in Figure C5.

The final obstacle on the right splits the path to the final destination into two paths: one goes above the obstacle, while the

other goes below it. We intentionally designed this type of path to test if our model can simulate user behavior for route choice.

Appendix C.3.2 Experiment Design

20 participants repeated the task 15 times, resulting 300 trials in all. We used the same parameters of the movement uncertainty

model and preferred speed model in Study 1, while the parameters (Eq. B1) of APF were optimized with newly collected data

in this task ([k = 35, η = 9 × 106]). We simulated 300 trajectories using our model and evaluated our model by comparing the

simulated data with the actual data using the same methods as previous tasks.

Appendix C.3.3 Movement Time

Unexpectedly, when circumventing the final obstacle near the goal, participants tended to choose one path randomly, as shown in

Figure C6. This may be mainly because the cost of the two routes to the goal is similar. This uncertain choice of route splits

the actual trajectory data into two clusters: upper trajectories and lower trajectories. Therefore, we analyzed the two clusters of

trajectories respectively.

As shown in Table C5, the MAE of movement time for upper and lower trajectories is 245.33 ms and 273.93 ms respectively,

accounting for 8.75 % and 9.77% of the total time cost. There is no previous HCI model which can predict the movement time for

this task, thus we do not conduct horizontal comparison between models.

Appendix C.3.4 Mean Trajectory

Simulated upper and lower mean trajectories are shown by red and yellow solid lines in Figure C6. The MAE of the mean trajectory

for upper and lower trajectories is 241.11 px (36.97 mm) and 295.75 px (45.35 mm) respectively, accounting for 9.58 % and 11.30

% of the overall length of the actual mean trajectories.
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Figure C6 Simulation results in Randomized Steering Task

Table C5 The MAE between simulated and actual mean trajectories in Randomized Steering Task

Upper Trials in Randomized Steering Task Lower Trials in Randomized Steering Task

Movement Time (MAE)[ms] 245.33 273.93

Mean Trajectories (MAE)[px] 241.11 295.75

Movement Variability (MAEMV )[px] 122.32 83.49

Appendix C.3.5 Movement Uncertainty
The mean absolute error (MAE) of movement variability (MAEMV ) for upper and lower trajectories between the actual (MVactu)

and simulated (MVsim) trajectories in this task is 122.32 px (21.04 mm) and 83.49 px (14.36 mm), respectively. The movement

variability for upper and lower trajectories of the actual trajectories is 296.07 px (50.92 mm) and 231.84 px (39.87 mm), respectively.

The movement variability for upper and lower trajectories of the simulated trajectories is 173.75 px (29.88 mm) and 148.35 px

(25.51 mm), respectively. The simulated upper and lower trajectories are represented by dark blue and light blue lines in Figure

C6. As shown in Figure C6, the simulated trajectories have a similar pattern of movement uncertainty compared with the actual

trajectories. Also, the movement uncertainty is larger in relatively open spaces (e.g., the beginning and ending spaces of the task)

while it becomes smaller in narrow tunnels (e.g., the second column of obstacles on the right). Meanwhile, our model successfully

simulates the uncertainty of human behavior in choosing the way to the final goal. As the actual data, the simulated data also

split into two clusters of trajectories and both finally reach the ending area of the task.

We also found that the simulated trajectories have generally smaller uncertainty compared to the actual data. The smaller

vibration amplitude of simulated trajectories could be due to the relatively large η for Repulsive Potential in this task. A larger

η could limit vibration of the trajectory in a smaller range.

Appendix C.3.6 Repeated K-fold Cross-validation
Similar to Study 1, we performed repeated k-fold cross-validation (k = 2, repeated times N = 10) for movement time prediction and

mean trajectory simulation. For movement time prediction, the average MAE is 323.11 ms (SD = 2.25). For trajectory simulation,

the average MAE is 365.19 px (SD = 1.90).
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