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Abstract This paper proposes a low-floor bit-mapping (LFBM) scheme for bit-interleaved coded modula-

tion (BICM) systems to meet more stringent quality of service requirements of 5G and beyond. For high-

efficiency transmissions, we consider the 5G low-density parity-check codes with high-order 2m-quadrature

amplitude modulations (QAMs). The proposed LFBM scheme overcomes plenty of trapping sets induced by

the bit interleaver, which focuses on the waterfall performance too aggressively. When the high-order QAM

is used, the row-column interleaver specified by the 5G standard is such a bit interleaver. The LFBM scheme

only optimizes the rule of mapping an m-bit tuple output by the row-column interleaver to a modulation

symbol, rather than the entire bit interleaver. Therefore, the optimized bit mapper is actually an m-bit per-

mutation module concatenated with the original bit interleaver employed in the current 5G BICM systems.

The simulation results confirm that the LFBM scheme can lower the error floor of the 5G BICM system by

approximately two orders of magnitude, while with negligible performance loss in the waterfall region.
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high-order modulation
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1 Introduction

Low-density parity-check (LDPC) codes [1] have been extensively investigated due to their capacity-
approaching performance and high-throughput implementation. In the past twenty years, protograph-
based LDPC codes [2, 3] have attracted considerable attentions due to their structured construction.
Based on a small protograph, the lifting [4] operation can give a larger Tanner graph, which entirely
defines an LDPC code. Moreover, protograph-based raptor-like (PBRL) LDPC codes [4] have been
adopted into the 5G new radio (NR) standard [5] as the channel coding scheme. As the advantages
of PBRL codes, 5G LDPC codes have a rate-compatible structure and support many lifting factors
(i.e., various code lengths). Thus, a wide range of blocklengths and coding rates can be achieved by 5G
systems, which gives flexible choices for different channel conditions. Further, the 5G LDPC code is one of
the most powerful error-correction codes, particularly in the waterfall region. However, when designing
5G LDPC codes or other PBRL LDPC codes, their waterfall performances are the most important
evaluation criterion. Therefore, these LDPC codes may not perform very well in the error-floor region,
i.e., the high signal-to-noise ratio (SNR) region. Poor error-floor performance will limit the applications of
these LDPC codes in many high-reliability applications in 5G and beyond, such as industrial automation
systems and vehicle-to-everything (V2X) communications [6–8]. For instance, the reliability requirement
for industrial automation systems may be higher than 99.9999999% [7]. It is widely recognized that
the error floor of LDPC codes under message-passing decoding is mainly caused by trapping sets [9].
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Richardson [9] proposed the concept of the trapping set, in which a trapping set is defined as a set of
incorrect variable nodes (VNs) and the associated unsatisfied check nodes (CNs). He also presented a
semi-analytical methodology to estimate the error floors with the assumption of binary phase-shift keying
(BPSK) transmission over the binary-input additive white Gaussian noise (BIAWGN) channel.

There is extensive literature on the error floors of LDPC codes with the assumption of the BIAWGN
channel [9–15]. However, bit-interleaved coded modulation (BICM) is a more pragmatic approach to
achieve high spectrum efficiency by high-order modulations [16, 17]. Our previous work corroborated
that the error-floor problem is also significant for LDPC coded BICM systems [18]. In a BICM system,
code bits usually need to be interleaved before modulation. A specially designed interleaver can utilize
the unequal mutual information (MI) [19] of the label positions and the code structure to further improve
the error-rate performance [20]. In most existing literature [20–22], the decoding threshold is of prime
importance in the design of a bit interleaver. However, we observed that the high-order modulation with a
threshold-optimized interleaving scheme usually raises the error floor of an LDPC code. For example, the
5G LDPC codes with the largest lifting factor 384 in general have error floors lower than the frame error
rate (FER) of 10−8 in the BICM systems without bit interleaving (the BPSK can also be included into
the BICM systems without bit interleaving), but the bit interleaving scheme specified in the 5G standard
will raise the error floor to about the FER of 10−5–10−6. In this paper, we are interested in these error
floors induced by bit interleaving. Generally, evaluating the error floors for long 5G LDPC codes (e.g.,
more than 10000 bits) with a high-order modulation by the Monte Carlo simulation is difficult. This is
one of the reasons why rare literature focuses on the error floors of such long LDPC codes, further, with
the BICM, which is more complicated than the BIAWGN channel. Thanks to the multi-thread C++
simulation and the field programmable gate array (FPGA) assisted simulation, we can evaluate the error
floor of LDPC coded BICM systems and find numerous abnormal trapping sets that never appear in the
case of the BIAWGN channel. It is demonstrated that short cycles play an important role in a trapping
set that is dominant in the BIAWGN channel [10, 13, 14]. Nonetheless, these abnormal trapping sets do
not contain any short cycles and are inferred to be induced by the interleaving scheme. By analysing the
structures of these abnormal trapping sets, we ascertain their common weakness, which is caused by the
joint effect of the 5G LDPC structure and the threshold-optimized interleaving scheme.

In order to overcome the aforementioned common weakness, we propose a low-floor bit-mapping
(LFBM) scheme for the 5G LDPC codes constructed from the base graph 1 (BG1). The 5G LDPC
codes constructed from the base graph 2 (BG2) have many poor structures [23] so that their error floors
are relatively high, particularly for long codes. In general, the long BG2 LDPC codes have error floors
at the FER of 10−4–10−5 [24], which is unsatisfactory for ultra-reliable communications. Also, since this
paper focuses on the error floors induced by interleaving schemes rather than the code itself, only the BG1
LDPC codes are considered. Moreover, the BG1 supports longer and higher-rate LDPC codes, which are
more widely used in 5G communication systems (see Subsections 6.2.2 and 7.2.2 in [5]). The fundamental
principles and the benefits of the proposed LFBM scheme are briefly summarized as follows.

• We find that the abnormal trapping sets induced by the interleaving are essentially caused by map-
ping all the core parity-check bits (corresponding to the double-diagonal part of the parity-check matrix)
to less reliable signal label positions. The proposed LFBM scheme preferentially protects the core parity
check bits by more reliable signal label positions and then optimizes the interleaving pattern for the
remaining code bits based on the decoding threshold.

• The row-column interleaver specified by the 5G standard [5] usually raises the error floor. The
proposed LFBM scheme can be attached to this row-column interleaver to lower the error floor. In other
words, the LFBM scheme only changes the rule of mapping an m-bit tuple (output by the row-column
interleaver) to a modulation symbol, which can be seen as a permutation for m bits. Therefore, the
LFBM scheme can be easily implemented for 5G BICM systems to achieve enhanced performance.

• The proposed LFBM scheme in general lowers the error floor of a 5G LDPC coded BICM system
by two orders of magnitude, and the performance loss in the waterfall region does not exceed 0.3 dB. (In
most cases, the waterfall-performance loss is less than 0.1 dB.)

The rest of this paper is organized as follows. Section 2 reviews the protograph-based LDPC codes,
the BICM, and the extrinsic information transfer analysis. Section 3 analyses the so-called abnormal
trapping sets and proposes an LFBM scheme to overcome these trapping sets. Additionally, the section
discusses the extra complexity caused by the LFBM. Section 4 exhibits some simulation results, including
the decoding thresholds and the improvement of the error floor. Section 5 concludes the paper.
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Figure 1 (Color online) The base matrix of the 5G LDPC codes constructed from the BG1.

2 Preliminaries

2.1 Protograph-based LDPC codes and 5G LDPC codes

A protograph-based LDPC code [2–4] is constructed from a small bipartite graph that connects a set of
J CNs {C0, C1, . . . , CJ−1} to a set of K VNs {V 0, V 1, . . . , V K−1}. The protograph can be represented
by its base bi-adjacency matrix B. In a base matrix, each row or column corresponds to a CN or VN
in the protograph, respectively. Then, a larger graph (the Tanner graph of an LDPC code) can be
obtained by the lifting operation. After lifting, an LDPC code is completely defined by the Tanner graph
G = (V , C, E), where V , C, and E are the VN, CN, and edge sets, respectively. When the lifting factor
is Z, each entry in a base matrix corresponds to a Z × Z circulant permutation matrix. Thus, a base
matrix can be seen as a block matrix and then its rows and columns are also called block rows and block
columns, respectively. 5G LDPC codes are constructed from two protographs (BG1 and BG2), which
have rate-compatible structures.

A 5G LDPC code is also a type of PBRL LDPC code. For example, the base matrix B of the BG1
is shown in Figure 1. 5G LDPC codes have two punctured VNs corresponding to two leftmost columns
of the base matrix. In the protograph of 5G LDPC codes, the VNs can be divided into three types: the
information VNs, the core parity VNs, and the extension parity VNs [25]. In Figure 1, the information
VNs are further separated into the punctured and transmitted parts. Given the number of transmitted
bits n, the number of information bits k, and the selection of the base graph B (1 or 2), an (n, k,B) 5G
LDPC code can be obtained from the lowest-rate mother code by puncturing [5]. Note that puncturing
the degree-1 VNs is equivalent to directly removing the related columns and rows from the parity-check
matrix. To simplify the presentation, we only consider the 5G LDPC codes without shortening, which is
commonly used for rate matching. And, the chosen codes only puncture the leftmost two block columns
and some degree-1 block columns (i.e., n is divisible by Z). By the way, all the proposed techniques
and provided results can be easily generalized to the 5G LDPC codes with arbitrary puncturing and
shortening. With the above assumptions, an (n, k,B) 5G LDPC code can be alternatively specified by
(R,Z,B), where R = k

n is the code rate and Z is the lifting factor. To clearly show the code rate, we will
say an (R,Z,B) 5G LDPC code in the following.

2.2 Bit interleaved coded modulation in the 5G-NR systems

After encoding and puncturing, the transmitted code bits v = (v0, v1, . . . , vn−1) are sent to an bit
interleaver. When the high-order quadrature amplitude modulation (QAM) is applied for the 5G-NR
systems, a row-column interleaver will be attached. In the 5G standard [5], a row-write column-read
interleaver with m rows is matched to the 2m-QAM, which is denoted by the mode-m row-column
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interleaver in this paper. Assume that the interleaving pattern is π = {π0, π1, . . . , πn−1}, thus the
interleaved sequence is v′ = {v′0, v′1, . . . , v′n−1}, where v′i = vπi . Each m bits in one column of the
interleaver will be mapped to a modulation symbol x = {x0, x1, . . . , xm−1} in the constellation X , where
{xi}m−1

i=0 are m label positions or bit-levels of a modulation symbol. For a Gray-mapping QAM, we
assume that

IB(x
0) = IB(x

1) > IB(x
2) = IB(x

3) > · · · > IB(x
m−2) = IB(x

m−1), (1)

where IB(x
i) = I(xi;Y ) is the MI between the bit-level xi and the underlying random variable Y of the

received signal, which is also called the bit-level MI (BMI) of the bit-level xi in this paper. Actually, the
bit-levels of the QAM constellations defined in the 5G standard [26] satisfy the inequation (1).

In general, the interleaved bits are divided into m bits each and then directly mapped to a modulation
symbol. For instance, one can arbitrarily choose that the most significant bit of a modulation symbol
corresponds to the leftmost or rightmost position of the m bits (b0, b1, . . . , bm−1) (e.g., bi → xi for
0 6 i < m), which is called natural mapping in this paper. While, we can also add a bit mapping function
Φ(·) after bit interleaving, which maps m bits (b0, b1, . . . , bm−1) to a modulation symbol according to a
specially designed rule such as bj → xi. Note that Φ(·) is equivalent to performing an extra interleaving
for the m-tuples before the natural mapping. The interleaving pattern of the bit mapper is named
the bit-mapping pattern. In most literature, the bit mapper is ignored because its role can be entirely
replaced by an equivalent bit interleaver with the natural mapping. Assume that the bit-mapping pattern
is β = {β0, β1, . . . , βm−1}, which indicates that bβi → xi for m bits (b0, b1, . . . , bm−1). The combination
of the bit interleaver and the bit mapper gives an equivalent bit interleaver with the interleaving pattern
Π = {Π0,Π1, . . . ,Πn−1}, where Πi = πm⌊i/m⌋+βi mod m

. Π is referred to as the underlying interleaving
pattern. The two equivalent transmitter models are shown in Figure 2.

In this paper, we separate the bit interleaver and the bit mapper into two independent modules. In the
later section, we only optimize the bit mapper to improve error-floor performance and the row-column
interleaver defined in the 5G standard is still kept, which only brings negligible extra hardware complexity.
For example, the bit interleaving for a 5G BICM system employing the 256-QAM is shown in Figure 3.
Two bit mapping schemes are included in this figure: the often-used natural mapping and the proposed
designed mapping. Since no bit-mapping schemes are specifically defined in the 5G standard, the natural
mapping will be applied in general for 5G BICM systems. Note that when n mod m 6= 0, (m ⌈n/m⌉−n)
zero bits need to be filled. However, this zero-filling operation has no essential influence, so we can assume
n mod m = 0 for simplicity.

The decoding threshold is usually the key quantity to be optimized in designing an interleaving scheme,
such as the variable degree matched mapping (VDMM) [20] and its generalized versions [21, 22]. Due
to the protograph structure (especially the column weight distribution) of 5G LDPC codes, the mode-m
row-column interleaver defined in the 5G standard naturally becomes a VDMM-like interleaving scheme.
Therefore, the mode-m row-column interleaver usually further improves the waterfall performance when
high-order modulations are applied. However, these threshold-optimized interleaving schemes may incur
high error floors, since the trade-off between the waterfall and error-floor performances is a well-known
fact. For comparison, we also consider the transmission scheme without bit interleaving1), denoted by the
mode-1 interleaving scheme (using a 1-row interleaver). Figure 4 is used as an example to show the gain
of the waterfall performance and the degradation of the error-floor performance caused by the mode-m
interleaving. In Figure 4, we can clearly see that for the 64- and 256-QAM, the mode-m interleaving gives
remarkable gain in the waterfall region but induces much higher error floors. While, for the relatively
low-order 16-QAM, both the gain of the waterfall performance and the degradation of the error-floor
performance are not significant. This can be easily understand, because a higher-order modulation has
more diversity (shown as (1)) for the bit-levels, which implies that the interleaving can more significantly
affect the performance.

2.3 Protograph-based extrinsic information transfer analysis

The extrinsic information transfer analysis for protograph-based LDPC codes (PEXIT) was proposed
in [27] to analyze the decoding threshold, and this method has been extended to design the LDPC codes
for coded modulation systems [22]. In [28], a more detailed PEXIT method for the BICM system with the
bit-metric decoding was presented, in which the hypothesis of surrogate bit-channels is used. The PEXIT

1) For LDPC codes, no bit interleaving can also be seen as a random interleaving scheme.
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Figure 2 (Color online) Two equivalent models of the transmitter in a BICM system.
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Figure 5 (Color online) Comparison of the weights of the

error patterns for the mode-1 and the mode-8 interleaving

schemes. The error patterns are collected at FER = 10−6 and

the (22/33, 384, 1) 5G LDPC coded 256-QAM is used.

method used here is similar to that used in [22]. First, let J(σ) denote the MI between a binary random

variable X , with Pr{X = σ2

2 } = Pr{X = −σ2

2 } = 1
2 , and a Gaussian random variable Y ∼ N (X, σ2). For

a BIAWGN channel, the log-likelihood ratios (LLRs) can be modeled as independent Gaussian random

variables L ∼ N (±σ2

2 , σ2). Therefore, J(σ) represents the capacity of a BIAWGN channel with the
parameter σ, and it is given by [29]

J(σ) = 1−
∫ +∞

−∞

1√
2πσ2

e−
(y−σ2/2)2

2σ2 · log2
(

1 + e−y
)

dy. (2)

To construct m surrogate bit-channels, we should guarantee that the capacity of each bit-channel equals
the BMI of the corresponding bit-level. Therefore, the surrogate BIAWGN bit-channels can be con-
structed with

J(σi
L) = IB

(

xi
)

, 0 6 i < m, (3)
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where σi
L is the equivalent variance of the LLRs, L ∼ N (± (σi

L)2

2 , (σi
L)

2), at the bit-level i.
Specifically, a VN V j of a protograph may be mapped to different bit-levels, so we calculate the ratios

λij for each V j , where λij denotes the ratio of the bits belonging to V j mapped to bit-level i. We initialize

the MI Ijch between the channel observation (or LLR) and the code bit for each VN V j as

Ijch =

m−1
∑

i=0

λijJ
(

σi
L

)

, 0 6 j < K. (4)

The remaining steps are the same as those in [22]. Then, we simply use the function Ψ(Π) to denote the
PEXIT process for calculating the decoding threshold T , where Π is the underlying interleaving pattern
(i.e., combination of the interleaving patterns of the bit interleaver and mapper). The decoding threshold
of an LDPC coded BICM system with a specific interleaving pattern Ψ(Π) is computed as T = Ψ(Π).

2.4 Simulation settings

Since the non-converged iterative decoding will produce decoding failures that are not trapping sets (they
can be corrected if we continue the iterative decoding), we should guarantee that the maximum number
of iterations is enough. Thus, all the simulation results about error floors are done by a 6-bit quantized
layered min-sum algorithm (MSA) [30] decoder with a maximum number of iterations 30. The scaling
factor is set to 0.75 and the saturation ratio of the quantized values is adaptively adjusted for different
codes and channels. In addition, a floating-point sum-product algorithm (SPA) decoder is used to verify
the decoding thresholds of various interleaving schemes. This is because the PEXIT method is based on
the SPA.

3 Lowering the error floor of 5G LDPC coded BICM systems

3.1 Error floors induced by interleaving: a class of abnormal trapping sets

Recall that an LDPC code is defined by its Tanner graph G = (V , C, E), where V , C, and E are the VN,
CN, and edge sets, respectively. For a subset T ⊂ V , let Γ(T ) denote the set of neighbors of T in C.
Using T and Γ(T ), the included subgraph of T , denoted by G(T ), is defined as G(T ) = (T ,Γ(T ), E ′),
where E ′ ⊂ E is the subset containing edges connecting T and Γ(T ). The subset of Γ(T ) with odd degree
is denoted by Γo(T ). Likewise, the subset of Γ(T ) with even degree is denoted by Γe(T ). Then, several
concepts about trapping sets is defined as follows.

Definition 1. T is an (a, b) trapping set if |T | = a and |Γo(T )| = b. a is the size of the trapping set,
and b is usually referred to as the number of unsatisfied CNs.

Definition 2. An (a, b) trapping set is called an elementary trapping set if all the CNs in Γ(T ) have
degree of 1 or 2.

Definition 3. An (a, b) trapping set is called an absorbing set if all the VNs in T are connected to
more CNs in Γe(T ) than to CNs in Γo(T ).

Extensive literature shows that, for an LDPC coded BPSK or quadrature phase shift keying (QPSK)
system, elementary trapping sets and absorbing sets play an important role in the error-floor per-
formance [10–12]. In fact, in an overwhelmingly large number of cases, the dominant trapping sets
satisfy both the definitions of elementary trapping and absorbing sets. Moreover, it has been demon-
strated that, for the BPSK and QPSK cases, most dominant trapping sets contain at least one short cycle
and these trapping sets can be found by some search algorithms starting from a short cycle [10, 13, 14].
However, a quite different phenomenon is observed for the high-order modulation system. We observed
that the high-order modulation system with a threshold-optimized2) interleaving scheme suffers from
high error floors and most error patterns are not dominant trapping sets in the BPSK or QPSK system.
These special trapping sets, which do not contain any short cycles, are referred to as abnormal trapping
sets. We find that abnormal trapping sets will appear when applying the mode-m or other threshold-
optimized interleaving scheme. On the contrary, when mode-1 or random interleaving is applied, the

2) We find that the mode-m row-column interleaving adopted in the 5G standard is a near threshold-optimized interleaving

scheme for 5G LDPC codes expanded from the BG1.
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dominant trapping sets become similar to those that appear in the BPSK system, which include several
short cycles.

We first give a high-level comparison, for mode-1 and mode-m, in terms of the weight of error patterns.
In Figure 4, we can see that the (22/33, 384, 1) 5G LDPC code has an error floor below the FER of 10−5

when 256-QAM and mode-8 interleaving are applied, while mode-1 does not have an obvious error floor
until the FER of 10−8. Thus, we collected 1000 error patterns for each interleaving mode at the FER of
10−6 to compare the weight of the error patterns occurred in the two interleaving modes. In Figure 5, all
error patterns are classified according to their weights and the error rate of each weight is calculated by
Wi

1000 ·10−6, where Wi is the number of the occurrences of the wight-i error patterns within 1000 collected
error patterns. We can see that there is a significant difference in the error patterns between the two types
of interleaving. The mode-8 interleaving has a huge number of low-weight errors, which are in general
harmful to the error-floor performance [31]. In contrast, the weight distribution of the error patterns in
mode-1 is more random. Therefore, we can state that the high error floor of mode-8 is induced3) by the
weakness of the interleaving.

Further, we proceed to explore the characteristics of the trapping sets induced by the threshold-
optimized interleaving. Among the collected 1000 error patterns for mode-8, more than 800 non-
isomorphic trapping sets are found. Most of these trapping sets are abnormal trapping sets, which
do not contain any cycles and are not absorbing sets. The quasi-normal hypergraphs [14] of four (5, 4)
abnormal trapping sets collected in the simulation are shown in Figure 6, where each circle represents
a VN and each degree-one or two CN is replaced by a single edge. It is easy to verify every abnormal
trapping set in the figure is not an absorbing set since at least one VN is connected to equal or more CNs
in Γo(T ) than to CNs in Γe(T ).

Since more than 800 non-isomorphic trapping sets are found in a total of 1000 decoding failures (which
implies that the number of dominant non-isomorphism trapping sets is prohibitively large), conquering a
few specific trapping sets can hardly improve the error-floor performance. Thus, we need to find out the
weakness that is owned in common by these trapping sets. Since a trapping set of a quasi-cyclic LDPC
(QC-LDPC) code has at least Z − 1 isomorphisms, using the block columns and rows can simplify the
representation of such a trapping set. To do so, we count the occurrences of each block column within
the collected 1000 error patterns, as shown in Figure 7. One can see that the 23–26, 28, 31, 34-th block
columns have a significantly higher probability to be in error, where the 23–26-th block columns are the
core parity VNs and the other three block columns are the extension parity VNs. Further, one can find
that the three extension parity VNs are connected to the four core parity VNs in the Tanner graph. The
Tanner graph involving these VNs is shown in Figure 8. It implies that the errors located at the extension
parity VNs are probably propagated from the core parity VNs. On the other hand, the core parity VNs
have larger degrees than the extension ones, thus correcting the core parity VNs preferentially is more
profitable than correcting the extension parity VNs (which can propagate more correct messages and
restrain more error propagations). So far, we have found that the common weakness of all trapping sets
induced by the threshold-optimized interleaving is the unreliable core parity VNs. Therefore, we propose
a LFBM scheme in the next subsection, which protects the core parity VNs first and then optimizes the
decoding threshold.

3.2 An LFBM scheme

We propose an LFBM scheme for 5G LDPC coded BICM with 2m-QAM to improve the error-floor
performance while keeping good waterfall performance. In the proposed LFBM scheme, the mode-m row-
column interleaver is still applied, which means that we only optimize β and π is fixed. We do not jointly

3) Here we only say “induced” rather than “caused”, since the causes of the error floor are more complicated, which are related

to the code structure, the channel, and the interleaving scheme.
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optimize the bit interleaver and the bit mapper due to the following two reasons. First, we observed that
the mode-m row-column interleaver has already given a good waterfall performance. Second, considering
the ease of implementation, adding an optimized mapper only brings negligible additional hardware
complexity. Therefore, the proposed LFBM scheme can be easily and flexibly implemented to the existing
5G BICM systems to achieve enhanced performance.

Consider the 2m-QAM with the mode-m row-column interleaver. Then, all the transmitted VNs in
the protograph4) (excluding the punctured and shortened VNs) are divided into m VN groups. Let
Sv and V denote the transmitted-VN set and the VN group, respectively. Therefore, we have Sv =
{V0,V1, . . . ,Vm−1} for the mode-m row-column interlever. For a practical implementation, the code
bits corresponding to Vi, 0 6 i < m, are filled into the i-th row (also labeled from 0 to m − 1) of the
interleaver. Generally, V0 is on the information side and Vm−1 is on the extension parity side.

First, we represent the operation of mapping a VN group to a bit-level as an event, denoted by Vj → xi,
0 6 i, j < m. After the mode-m row-column interleaving, all VNs have been divided into m VN groups.

4) In the following, we describe the proposed LFBM scheme from the perspective of a protograph. In other words, puncturing

and shortening operations should be taken in the protograph. However, in some special scenarios, a 5G LDPC code may be

punctured and shortened only with a part of bits corresponding to a VN in the protograph. For these scenarios, we can change the

concept of “VNs in the protograph” to “VNs in the expanded Tanner graph” (i.e., code bits). Then, the proposed LFBM scheme

can also be applied.
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With an abuse of notation, we alternatively represent the interleaving pattern Π as

Π =
⋃

06i<m

Vβi → xi, (5)

where m VN groups V are determined by the row-column interleaver and Vβi → xi is the operation of
the bit mapper with the bit-mapping pattern β = {β0, . . . , βm−1}. Although the LFBM will change the
underlying interleaving pattern Π, the design method presented in this section only affects β.

In the proposed LFBM scheme, Sv is divided into three subsects Sc, Se, and Sr as follows. Sc denotes
the set of VN groups, which mainly includes core parity VNs (may also include some information VNs
and extension parity VNs). Se denotes the set of VN groups, which entirely consists of extension parity
VNs. Sr denotes the remaining subset as Sr = Sv\(Sc ∪ Se). We use |S| to represent the size of a set,
i.e., the number of entries in the set. Recall that the m bit-levels {x0, x1, . . . , xm−1} are rearranged in
decreasing order in terms of the corresponding BMI. Thus, x0 is the most protected (i.e., reliable) position
and xm−1 is the least protected one.

The LFBM scheme can be described as a three-stage bit-mapping process. In the first stage, we map
the VN groups Vi ∈ Se to the bit-levels with the lowest BMIs, denoted by

Φ1(Se) =
⋃

Vi∈Se

Vi → xi. (6)

The second stage is to search for the combinations (i.e., possible selections) of the VN groups in
the Sc and map them to some more protected bit-levels. The total number of the combinations is

Ncom =
∑|Sc|

i=1

(

|Sc|
i

)

. Then, {St}Ncom

t=1 is used to denote the set of all possible combinations of VN groups
in the Sc. Note that for 5G LDPC codes, Ncom is quite small since |Sc| is usually small. After selecting
a combination St, we will map these VN groups in St to the bit-levels {x0, x2, ..., x2(|St|−1)}, which are
chosen from the most reliable position. It is important that we select the bit-levels at intervals5) in this
stage, since the performance will degrade rapidly at the waterfall region if too many strongly protected
bit-levels are selected. If there are more than one VN groups in St (usually |St| = 1, 2), we use a simple
mapping rule like the VDMM [20], which in general improves the waterfall performance for protograph
LDPC codes. In this way, we map the VN group with greater average degree to the bit-levels with higher
BMI. Therefore, we can reorder the VN groups in St and give a reordered set S ′

t as follows:

S
′
t = {Vκ0 ,Vκ1 , . . . ,Vκ|St|−1

}, (7)

where
Deg(Vκ0) > Deg(Vκ1) > · · · > Deg(Vκ|St|−1

), (8)

and Deg(V) is the average degree (i.e., column weight) of the VN group V.
Then, we can represent the mapping operation of the second stage as a function Φ2(·):

Φ2(S
′
t ) =

⋃

06j<|St|

Vκj → x2j . (9)

There may exist a conflict that the bit-level selected in the second stage has already been chosen in the first
stage. If the conflict appears, we can randomly choose another achievable bit-level instead. Fortunately,
we numerically verify that this conflict will never occur if the puncturing satisfying the assumption given
in Subsection 2.1 is performed. The explanation for this is given in Appendix A.

Since St is a subsect of Sc, the VN groups Vi ∈ Sc\St have not been mapped to some specific bit-levels.
Thus, these VN groups should be added to the remaining set Sr, so we update Sr as

Sr ⇐ Sr ∪ (Sc\St) . (10)

The final stage is to map the remaining VN groups Vi ∈ Sr to the remaining bit-levels Br, where

Br = {xi}m−1
i=0 \

(

{x2i}|St|−1
i=0 ∪ {xi}m−1

i=m−|Se|

)

. (11)

5) For 16-QAM, since there are only two pairs of equivalent bit-levels {x0, x1} and {x2, x3}, it is allowed to map the two VN

groups (if have two) in St to the two consecutive bit-levels x0 and x1 if the error floor is not satisfactory when using the interval

mapping rule. The only exception breaking the interval mapping rule in our examples is the (22/44, 192, 1) 5G LDPC code with

16-QAM.
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In this stage, the PEXIT method is used to search for the best decoding threshold T . If the combination
St is chosen in the second stage, a total of Nt mapping patterns will be searched in the third stage, where

Nt =
(m− |St| − |Se|)!

2(m−2|St|−2⌈|Se|/2⌉)/2
. (12)

It is obvious that the search range is relatively small since m/2 real component bit-levels and m/2
imaginary component bit-levels in the 2m-QAM with the Gray labeling are equivalent. Combining the
mapping functions Φ1 and Φ2, and a possible mapping Sr → Br in this stage, an underlying interleaving
pattern Π′ is given as

Π′ = Φ1(Se) ∪ Φ2(S
′
t ) ∪ (Sr → Br) . (13)

By searching over all possible Π′, the third-stage bit-mapping function Φ3(Sr) outputs the Π′ with the
best decoding threshold, thus can be written as

Φ3(Sr) = arg min
Sr→Br

Ψ(Π′). (14)

So far, we know that once a St is chosen from Sc, the β as well as Π can be completely determined by
Φ1(·), Φ2(·), and Φ3(·). Then, the Monte Carlo simulation with the specific β is required to evaluate the
performance. If the waterfall or error-floor performance is not satisfactory, we will choose another St and
repeat the above process. In the worst case, we need to exhaustively try all possible St and the maximum

number of simulations is
∑|Sc|

i=1

(

|Sc|
i

)

= 2|Sc| − 1. In the next subsection, it is demonstrated that 2|Sc| − 1
is in general less than or equal to three. If we directly use the Monte Carlo simulation to optimize the bit-
mapping pattern, we require m!

2m/2 (the denominator is due to the equivalence of bit-levels) simulations
for verifying the error floor, which is infeasible for m > 6. The LFBM scheme is described in Algo-
rithm 1. In addition, an example of how to optimize the LFBM scheme is shown in Example 1.

Algorithm 1 LFBM scheme

1: Initialize the VN-group sets Se, Sc, and Sr;

2: Map the VN groups Vi ∈ Se using Φ1(Se);

3: Set t = 1;

4: while t 6 Ncom do

5: Choose a subset St ⊆ Sc and its reordered set S
′
t ;

6: Map the VN groups Vi ∈ S
′
t using Φ2(S

′
t );

7: Update the remaining VN-group set Sr ⇐ Sr ∪ (Sc\St);

8: Map the VN groups Vi ∈ Sr using Φ3(Sr);

9: Perform the Monte Carlo simulation with Π = Φ1(Se) ∪ Φ2(S
′
t ) ∪ Φ3(Sr) to evaluate the performance;

10: if both the error-floor and waterfall performances are satisfactory then

11: Break;

12: else

13: t ⇐ t + 1;

14: end if

15: end while

Example 1. In this example, we show the detailed process of the LFBM scheme for the (22/33, 384, 1)
5G LDPC code with 256-QAM, where the mode-8 row-column interleaver is applied. For this code, we
have Sc = {V4,V5}, Se = {V6,V7}, and |Sc| = |Se| = 2. In the first bit-mapping stage, Φ1(Se) =
{V6 → x6} ∪ {V7 → x7}. In the second bit-mapping stage, {V4}, {V5} and {V4,V5} are the only
Ncom = 3 combinations (actually, Ncom is quite small for 5G LDPC codes). Here we assume that
St = {V4,V5} is chosen, then, the reordered set S ′

t = St due to Deg(V4) = 5.3 and Deg(V5) = 2.7.
Then, Φ2(S

′
t ) = {V4 → x0} ∪ {V5 → x2}. In the third bit-mapping stage, the remaining VN-group and

bit-level sets are Sr = {V0,V1,V2,V3} and Br = {x1, x3, x4, x5}, respectively. Then, we use Φ3(Sr) to
map these remaining VN groups Sr to the remaining bit-levels Br, leading to the best decoding threshold.

3.3 Complexity discussion

The complexity of the proposed scheme can be divided into two aspects: the complexities of the hard-
ware implementation and bit-mapping optimization process. Note that the bit-mapping optimization
presented in the last subsection is done offline and the optimized bit-mapping patterns will be stored
in both the transmitter and the receiver. Given a bit-mapping pattern, its implementation is an m-bit
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permutation circuit, which takes negligible hardware resources. Thus, the major complexity for the hard-
ware implementation is the storage for all bit-mapping patterns. It is clear that each bit-mapping pattern
needs ⌈log2 m⌉m bits to be stored in look up tables. In the 5G standard, a total of 51 lifting factors are
defined. Each lifting factor specifies the lowest-rate 5G LDPC code and the higher-rate codes can be
realized by puncturing. Assuming that we adopt the puncturing method introduced in Subsection 2.1,
then there are 43 different code rates for the BG1. Thus, 51 × 43 = 2193 LDPC codes are given and
the storage requirement for the bit-mapping patterns is 2193⌈log2 m⌉m bits for each modulation scheme,
which is quite small for today’s FPGAs or application specific integrated circuits (ASICs). Moreover, we
can use the same bit-mapping pattern for a code rate with any lifting factor to reduce the storage require-
ment, since the LDPC’s performance is closely related to the protograph. This implies that the storage
requirement can be reduced by a factor of 51 (the number of Z). In this way, the storage requirement is
only 43⌈log2 m⌉m bits for each modulation scheme.

Then, let us discuss the complexity of the optimization process specified by Algorithm 1. Recall
that this complexity will not reflect into the implementation. In Algorithm 1, the complexity is mainly
determined by two parts: the PEXIT search in the third stage (line 8) and the Monte Carlo simulation
to verify the performance (line 9).

The complexity of the PEXIT search is determined by the number of possible bit-mapping patterns
searched by (13), since we need to exhaustively compute the decoding thresholds of these bit-mapping
patterns. Since there are equivalent bit-levels in QAMs, the number Nβ of distinct bit-mapping patterns
(which can lead to different decoding thresholds) can be further reduced. (e.g., V → x0 and V → x1 are
equivalent) By summing over all possible St, we have

Nβ =

Ncom
∑

t=1

(m− |St| − |Se|)!
2(m−2|St|−2⌈|Se|/2⌉)/2

=

|Sc|
∑

i=1

(|Sc|
i

)

· (m− i− |Se|)!
2(m−2i−2⌈|Se|/2⌉)/2

. (15)

Note that |Sc| and |Se| are given, respectively, by (A1) and (A2), and ni, nc, ne and υ are defined in
Appendix A. Since ni − υ⌊ni/υ⌋ < υ, we can write that

|Sc| 6 ⌈(υ + nc) /υ⌉ = 1 + ⌈nc/υ⌉, (16)

where 6 is due to the ceil function. It is easy to find υ > (ni + nc)/m, hence, |Sc| is upper bounded by

|Sc| 6 1 + ⌈ncm/(ni + nc)⌉. (17)

In (17), ni and nc are two constants which are determined by the base graph, and m is influenced by
the modulation scheme. For the BG1, we have ni = 20 and nc = 4. Using (17), one can verify that
|Sc| 6 1 +

⌈

m
6

⌉

. In practice, we only need to consider the cases where m is an even number. Thus, we
know that |Sc| ∈ {1, 2} for m 6 6 and |Sc| ∈ {1, 2, 3} for 8 6 m 6 12. Consequently, the value of Nβ in
(15) will be relatively small since it is the sum over all possible combinations in Sc. For example, when
we search for the best decoding threshold for the (22/33, 384, 1) code with 256-QAM, we have |Sc| = 2,
so at most Nβ = 72 bit-mapping patterns need to be considered in the PEXIT stage in Algorithm 1.

Moreover, the complexity of the Monte Carlo simulation needs to be evaluated. Although multi-
thread programming or FPGA-assisted simulations can speed up the Monte Carlo simulation, we still
hope that the times to perform the simulation is very limited. We know that the worst case requires
∑|Sc|

i=1

(

|Sc|
i

)

= 2|Sc| − 1 simulations. Fortunately, since |Sc| is very small, 2|Sc| − 1 will also be a small
value. In an overwhelmingly large number of cases, we have |Sc| 6 2, thus the maximum number of
Monte Carlo simulations required to evaluate the error floor is only three.

4 Numerical results

In this section, we give some simulation results, including decoding thresholds and FER performance.
Recall that the LFBM mapper is always concatenated with a mode-m row-column interleaver. In the
following, we will use “mode-m & LFBM” to represent the proposed interleaving scheme, or only say
“LFBM scheme” for simplicity.
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Table 1 Thresholds calculated by the PEXIT method

Scheme β (22/33, 384, 1) T (22/33, 384, 1) (dB) β (22/30, 384, 1) T (22/30, 384, 1) (dB)

Mode-1 Random 10.685 Random 11.782

Mode-8(5G) {0,1,2,3,4,5,6,7} 10.512 {0,1,2,3,4,5,6,7} 11.635

E-PEXIT {0,1,4,3,2,5,6,7} 10.471 {0,1,4,3,2,5,6,7} 11.633

LFBM {5,2,0,3,4,1,6,7} 10.545 {5,2,6,1,4,3,7,0} 11.733

Table 2 Bit-mapping patterns for the codes used in the simulations

Code rate β 16-QAM β 64-QAM β 256-QAM

22/30 {2,0,1,3} {4,1,0,3,2,5} {5,2,6,1,4,3,7,0}

22/33 {2,0,1,3} {3,1,4,0,2,5} {5,2,0,3,4,1,6,7}

22/38 {2,0,1,3} {3,0,1,2,4,5} {4,3,2,5,0,1,6,7}

22/44 {1,2,0,3} {3,0,1,2,4,5} {2,4,0,3,1,5,6,7}

4.1 Comparison of the decoding thresholds

We first present some numerical results of the decoding thresholds of several interleaving schemes, which
are computed by the PEXIT method. The (22/33, 384, 1) and (22/30, 384, 1) 5G LDPC codes are used
in this subsection, and the 256-QAM with Gray labeling is applied. The bit interleaving schemes used
for comparison are listed as follows:

• The mode-1 interleaver, i.e., no bit interleaving, which may have the best error-floor performance
while with poor waterfall performance.

• The mode-8 interleaver with a natural mapper, which is used in 5G BICM systems.

• The mode-8 interleaver with the proposed LFBM mapper, which gives a good trade-off between the
waterfall and error-floor performances.

• The mode-8 interleaver with a threshold-optimized mapper, which is carried out by the exhaustive
search of the bit-mapping patterns to find the threshold-optimized pattern. We use the shorthand notation
“E-PEXIT” to denote this bit interleaving scheme.

The decoding thresholds calculated by the PEXIT method are shown in Table 1. Also included in
Table 1 are the corresponding interleaving patterns. In the given interleaving patterns in Table 1, the
sets St in the LFBM schemes for (22/33, 384, 1) and (22/30, 384, 1) 5G LDPC codes are {V5} and
{V5,V6}, respectively. Clearly, the E-PEXIT scheme outperforms the other schemes in terms of the
decoding threshold. We can see that the mode-8 scheme used in 5G-NR also has a good decoding
threshold close to that of the E-PEXIT scheme. For the proposed LFBM scheme, its decoding threshold
is slightly poorer than the mode-8 scheme, but the LFBM scheme significantly improves the error-floor
performance. Moreover, the mode-1 scheme without bit interleaving has the poorest decoding threshold
in this example.

In addition, we use a floating-point SPA decoder to verify the waterfall performances of the aforemen-
tioned four interleaving schemes. This is because the PEXIT method is based on the SPA decoding.
The FER performances of (22/33, 384, 1) and (22/30, 384, 1) 5G LDPC codes employing these four inter-
leaving schemes are shown in Figure 9. It can be seen that the LFBM scheme outperforms the mode-1
scheme in the waterfall region for both codes. Both the E-PEXIT and mode-8 schemes incur high error
floors although their waterfall performances are better than the LFBM scheme.

4.2 Comparison of the error-floor performance

In most communication systems employing LDPC codes for forward error correction, the MSA is used
to simplify the implementation of a hardware decoder. Also, the error-rate performance (especially the
error floor) under the MSA decoding is slightly different from the SPA decoding. Therefore, we realized
a 6-bit quantized layered MSA decoder using the multi-thread C++ programming to evaluate the FER
performances for sereval 5G LDPC codes with different modulation and interleaving schemes. In our
experiments, the (22/30, 384, 1), (22/33, 384, 1), (22/38, 384, 1), and (22/44, 384, 1) 5G LDPC codes with
the largest Z are combined with the 256-QAM and the (22/30, 192, 1), (22/33, 192, 1), (22/38, 192, 1),
and (22/44, 192, 1) 5G LDPC codes are employed in the 64-QAM and 16-QAM BICM systems. For each
combination of a code and a modulation order, the FER performances of the mode-m (5G), the mode-1
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(no interleaving), and the mode-m & LFBM schemes are evaluated. All optimized bit-mapping patterns
for the LFBM scheme are given in Table 2.

The FER performances for the 256-QAM, the 64-QAM, and the 16-QAM BICM systems are shown
in Figures 10–12, respectively. As mentioned in Preliminaries section, for 64-QAM and 256-QAM, the
mode-m interleaving significantly improves the waterfall performance over the mode-1 interleaving but
raises the error floor. In Figures 10 and 11, we can see that the LFBM scheme lowers the error floor
by two orders of magnitude for most cases and the degradation of the waterfall performance does not
exceed 0.3 dB. Particularly, for the (22/33, 384, 1) and (22/44, 384, 1) codes used for 256-QAM, the LFBM
scheme even has the same waterfall performance as the mode-8. More interestingly, one can also see the
trade-off between the waterfall and the error floor in these two figures. For those LFBM schemes having
better error-floor performance than the mode-1’s (e.g., (22/30, 384, 1) and (22/38, 384, 1)), they cause a
relatively obvious degradation of the waterfall performance. In contrast, the LFBM schemes that do not
degrade the waterfall performance have, in general, a worse error-floor performance than the mode-1’s.
For the 16-QAM shown in Figure 12, although the gap between the mode-1 and the mode-4 becomes
smaller, our proposed LFBM scheme still lowers the error floor by 1–3 orders of magnitude for all the
selected codes. Moreover, the (22/44, 192, 1) has a very high error floor (its FER curve has a reduced
slope at FER ≈ 10−1), thus it looks like that the mode-4 even performs worse than the mode-1 in the
waterfall region. However, by connecting the proposed LFBM with the mode-4, one can see that the
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mode-4 & LFBM outperforms the mode-1 and the mode-4 everywhere.

5 Conclusion

In this paper, we propose an LFBM scheme to improve the error-floor performance for high-efficiency
LDPC coded BICM in 5G and beyond systems. The proposed scheme only optimizes the bit mapper
while it renders the mode-m row-column interleaver unchanged, which leads to an easy implementation
on hardware. From the simulation results, we can see that the LFBM scheme further improves the
error-floor performance of LDPC coded BICM systems and also gives good waterfall performance. The
improvement of the error-floor performance renders the 5G LDPC codes feasible for future ultra-reliable
communications. Moreover, the proposed scheme can also be applied to other PBRL LDPC codes with
a base matrix similar to that of 5G LDPC codes.
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Figure A1 (Color online) All possible values of f(ne) for the LDPC codes constructed from the BG1 with the 16-, 64-, 256-, and

1024-QAM.

Appendix A

As mentioned in Subsection 3.2, some conflicted bit-levels may be chosen in the two bit-mapping steps Φ1(·) and Φ2(·). We now

give an explanation to show the confliction can be completely avoided if the puncturing only performs at the block-column level.

Given a Z, we can get the lowest-rate parity-check matrix of the 5G LDPC codes and then the higher-rate codes can be obtained

by puncturing some degree-1 parity-check bits. Moreover, we know that puncturing degree-1 parity-check bits is equivalent to the

removal of the corresponding columns and rows of the parity-check matrix. Thus, these higher-rate 5G LDPC codes can be seen as

defined by a modified parity-check matrix with the removal of some columns and rows. We assume that the number of punctured

degree-1 parity-check bits is a multiple of Z, which implies that the block property is still hold for the modified parity-check

matrix. In this case, we can also obtain a modified protograph from the base graph by removing some CNs and VNs. Then, let

ni, nc, and ne denote, respectively, the number of transmitted information VNs, core parity VNs, and extension parity VNs in

this modified protograph. For BG1, we have ni = 20, nc = 4, and ne ∈ {0, 1, . . . , 42}. The number of VNs in a VN group V is

υ = (ni + nc + ne)/m. The numbers of core parity VN groups and extension parity VN groups can be computed, respectively, as

|Sc| = ⌈(ni − υ⌊ni/υ⌋ + nc) /υ⌉, (A1)

|Se| = ⌊ne/υ⌋. (A2)

Recall that x0, x1, . . . , xm−1 are arranged in descending order in terms of the reliability. According to (6) and (9), we know that

the most protected bit-level chosen in Φ1(·) is xm−|Se| and the least protected bit-level chosen in Φ2(·) is x2(|Sc|−1). Therefore,

no conflicted bit-levels will be selected provided that 2 (|Sc| − 1) < m − |Se|, which is also equivalent to the condition that
1
m (2 (|Sc| − 1) + |Se|) < 1. Since ni and nc are constants for a given base graph, we can define a function with respect to ne to

describe the above condition. So let f(ne) = 1
m (2 (|Sc| − 1) + |Se|). Since the values of ne are limited in the set {0, 1, . . . , 42},

we can compute f(ne) exhaustively. By substituting ni, nc, m, and ne into f(ne), we numerically verify that the inequality

f(ne) < 1 is hold, which indicates that the conflict will never happen under the supposed puncturing method. For 16-, 64-, 256-,

and 1024-QAM, all possible values of f(ne) are given in Figure A1.
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