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Abstract This study examines the stabilization of continuous-time Markovian jump systems, whose con-

troller is added in the diffusion section. Unlike the traditionally stochastic controllers, the proposed controller

is connected by a communication network. Not only the state but also the switching signal is sampled and

transmitted. Because the sampling of switching signals makes analyzing and synthesizing the system more

difficult, an auxiliary system approach is presented to handle these problems. Particularly, a novel system

with an exponential matrix characterizing the sampling effects is developed while the sampling rate is fully

considered in the given conditions. Moreover, more special situations of sampled controllers are considered.

Two numerical examples are offered to confirm the effectiveness and superiority of the methods proposed in

this study.
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1 Introduction

A network control system (NCS) is a type of decentralized control system. It connects sensors, actuators,
and controllers through a communication network. Compared with conventional control strategies, such
systems [1,2] can substantially improve the efficiency, flexibility, and reliability of integrated applications.
Moreover, they have the advantage of reducing installation and maintenance costs. Because of these ad-
vantages, NCSs have been rapidly developed in various fields, including remote control, air traffic control,
unmanned aerial vehicles, and successful applications in automatic high-speed systems. However, the
application of NCSs can have negative effects, and many results on these problems have been published,
e.g., [3–8].

Furthermore, increasingly more researchers have become interested in stochastic systems because they
can model many real-world systems. Many studies on stochastic systems have been published, such
as [9–11]. While considering problems, the stabilization or destabilization of these systems can be realized
by a stochastic controller. The designed controller is in the diffusion part and added as a Brownian noise
perturbation. Based on [12], proof has been obtained that, compared with the traditional controllers in
the drift section, this controller has advantages that can preserve the original state on average. When
the considered system has a Markov jump property, it is natural to model it as a stochastic Markovian
jump system (MJS). This special hybrid stochastic system has a wide range of applications, such as
power systems, manufacturing systems, and ecosystems. Research in this area is quite extensive, and
only a few references [13–17] are mentioned here. Widely investigating the existing references indicates
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that their methods can be primarily classified into mode-dependent and mode-independent methods.
In the former methods, the Markovian switching signal [18–21] should be exactly accessible, where the
quantities between controllers (or filters) and original system matrices should be identical. Furthermore,
the latter method [22, 23] has only one common mode and can remove the above ideal assumption.
However, this method totally ignores the mode information even if it is available. Thus, it is absolute
and will be conservative when the switching signal is obtained. To balance the above two methods, other
control methods, such as partially mode-dependent controller [24], partial information controller [25],
disordered or unmatched controller [26], scheduling controller [27], and quantity limited controller [28],
have been proposed. When the stochastic MJS is mentioned, the related stochastic problems about
controllers added as noise are more complicated and difficult, while the above-mentioned controllers are
not applicable. Presently, few results [29–32] are available, and the related problems have not been
completely studied.

Although the general cases of the stabilizing control of MJSs have been studied, some problems remain
to be considered. One of these problems is the accessibility in real time of the state information of
the designed controllers in the above references. This accessibility is not in accordance with NCSs in
which the controlled system is connected by a communication network. In other words, the related
transmitted data should be sampled before sending. When the considered system is referred to as a
stochastic system, including MJSs, the stabilization problem realized by a sampling controller is not
fully studied. The primary reason is that not only the system state but also the switching signal of a
controller should be sampled. When a Brownian perturbation exists in MJSs, the stabilization realized
by a discrete-time controller in the drift section was considered in [33]. Based on a similar method, the
stochastic stabilization of stochastic systems without any jumps was examined in [12]. Although they are
useful for addressing this problem, no sampling phenomenon occurs in switching signals. Very recently,
the control of switched systems was considered in [34], where not only the state but also the switching
signal was sampled. This approach handled the problem well for switched systems but not for MJSs. The
primary reason is that an MJS’s switching is determined by a Markov process, which has no minimum
dwell time. When an MJS with sampled properties is examined, only a few references are available. By
applying a time-scheduled Lyapunov functional approach, the stabilization of sampled-data MJSs was
considered in [35, 36]. On the basis of different event-triggered schemes, control problems were studied
in [37–39]. When the Markovian jump cyber-physical systems suffer randomly occurring injection attacks,
the finite-time sliding mode control problem was discussed in [40]. Investigating the references for MJSs
being sampled or under DoS attacks reveals that the switching signal of the abovementioned controller
is not sampled. When the switching and state signals of an MJS are simultaneously sampled, an obvious
but extremely difficult problem is that the sampled switching signal will be unmatched by the original
Markovian switching and even no longer a Markov process. This phenomenon is not easily depicted and
brings great harm to the considered system. Among the numerous references, very few of them were
concerned with the above problems, and no models are available from them. All of these observations
motivate the current research.

In this study, the stochastic stabilizing control of continuous-time MJSs is studied, where switching and
state signals are transmitted through networks and sampled. The main contributions of this paper are as
follows: (1) Unlike the stabilization on MJSs studied in [35–40], where only the state signal was sampled,
a stabilizing controller with sampled switching and state signals is proposed. The phenomenon with a
mismatch between original and sampled switching signals is very different from the above situations.
It leads to more difficulties in system analysis and synthesis. (2) A new auxiliary model having an
exponential matrix is introduced to overcome these difficulties and can characterize the sampling effects
well. Furthermore, the introduction of an exponential matrix brings other problems, and novel techniques
are required to address them. (3) The proposed method based on the auxiliary model is in contrast to
recent results [34]. The primary difference is that the proposed event-triggered transmission scheme is
very suitable for switched systems but not for MJSs because the latter switching belongs to the Markov
process. Furthermore, it differs from the method in [12,33], a robust estimation method whose sampling
interval should be very small and constant. And (4) according to the proposed methods, more special
applications are studied and enrich the results of MJSs. Not only the state but also the switching signal
is sampled, whose advantages are illustrated by numerical examples.

Notation. n-dimensional Euclidean real spaces are represented as Rn. The real matrices of q × n are
represented as R

q×n. (Ω,F ,P) is a complete probability space. Here, Ω is the sample space, F is the
σ-algebras of the subsets of the sample space, and P is the probability measure of F . The expectation is
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Figure 1 Diagram of system (1) closed by (3).

represented by an operator E [·]. The Euclidean vector norms or spectral norms of matrices are represented
as ‖ · ‖. The Kronecker product and the Kronecker sum are represented by ⊗ and ⊕, respectively. The
maximum eigenvalue of the symmetric matrix M is expressed as λmax(M), and the minimum eigenvalue is

expressed as λmin(M) and µM , λmax{
M+MT

2 }. A filtration{Ft; t ∈ R
+} satisfies the usual hypotheses,

that is, a right-continuous filtration augmented by all null sets in the P-completion of F .

2 Problem formulation

Consider a traditionally continuous time stochastic MJS defined on the complete probability space
(Ω,F ,P) and described as

dx(t) = Aη(t)x(t)dt+Bη(t)u(t)dω(t), (1)

where x(t) ∈ R
n is the system state vector, ω(t) is a one-dimensional Brownian motion, and u(t) ∈ R

m is
the control input. Matrices Aη(t) and Bη(t) are real constant matrices of appropriate dimensions, where
{η(t), t > 0} is considered a Markov chain of continuous time, and its values are obtained from the finite
set N , {1, 2, . . . , N}. The transition rate matrix Λ , (λij) ∈ R

N×N is described by

Pr{η(t+∆t) = j|η(t) = i} =

{

λij∆t+ o(∆t), if i 6= j,

1 + λii∆t+ o(∆t), if i = j,
(2)

where ∆t > 0, lim∆t→0(o(∆t)/∆t) = 0. When i 6= j, λij is considered the transfer rate, in which the mode
is i at time t. After the time interval ∆t, the mode jumps to j and another one λii = −

∑

j 6=i λij . It is
understood that conventional controllers are proposed for the above system, for example, u(t) = Kη(t)x(t)
and u(t) = Kx(t). Here, a controller with modal and state sampling is assumed to be

u(t) = Kη(tk)x(tk), t ∈ [tk, tk+1), (3)

where Kη(tk) is the control gain to be determined, tk is the moment of the k-th sampling and satisfies

0 = t0 < t1 < · · · < tk < · · ·. Letting h(t) = t − tk, it is calculated as h(t) ∈ [0, hk), ḣ(t) ≡ 1, and
h(tk) ≡ 0, ∀t ∈ [tk, tk+1). Moreover, it is defined that hk = tk+1 − tk and h̄ = supk∈N

{hk}, ∀k ∈ N is the
upper bound of the sampling interval. Unlike traditional Markov stabilization controllers, not only states
but also modalities are sampled in controller (3). In particular, switching signals that are sampled have
a noticeable negative impact on the system, and we will elaborate on this impact. In detail, because η(t)
is sampled as η(tk), so many combinations of switching signals occur in every interval [tk, tk+1). Thus,
it is unreasonable or impossible to individually analyze and synthesize them. Figure 1 schematizes the
changes in the system state and mode under the action of zero order holder (ZOH) after sampling.

The sampling of switching signal η(tk) causes considerable suffering, which makes directly analyzing
closed-loop system (1) difficult. To solve the above difficulties, a new additional variable is introduced,
written as Qi(t) = E [x(t)xT(t)1{η(t)=i}], where1η(t) = {

1, if η(t) = i,

0, otherwise.
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Then, one obtains

dQi(t) = E
[

dx(t)xT(t)1{η(t)=i} + x(t)dxT(t)1{η(t)=i} + x(t)xT(t)d1{η(t)=i} + dx(t)dxT(t)1{η(t)=i}

]

= E
[

Aη(t)x(t)x
T(t)1{η(t)=i}

]

dt+ E [x(t)xT(t)AT
η(t)1{η(t)=i}]dt+

N
∑

j=1

λjiQj(t)dt

+ E

[

Bη(t)Kη(tk)x(tk)x(tk)
TKT

η(tk)
BT

η(t)1{η(t)=i}

]

dt

= E
[

Aη(t)x(t)x
T(t)1{η(t)=i}

]

dt+ E [x(t)xT(t)AT
η(t)1{η(t)=i}]dt+

N
∑

j=1

λjiQj(t)dt

+Bi

{

N
∑

ℓ=1

E

[

Kη(tk)x(tk)x(tk)
TKT

η(tk)
1{η(t)=i}|1{η(tk)=ℓ}

]

pℓ

}

BT
i dt

= E
[

Aη(t)x(t)x
T(t)1{η(t)=i}

]

dt+ E [x(t)xT(t)AT
η(t)1{η(t)=i}]dt+

N
∑

j=1

λjiQj(t)dt

+Bi

[

N
∑

ℓ=1

pℓi(h(t))Kη(tk)x(tk)x(tk)
TKT

η(tk)
pℓ

]

BT
i dt

= E
[

Aη(t)x(t)x
T(t)1{η(t)=i}

]

dt+ E [x(t)xT(t)AT
η(t)1{η(t)=i}]dt+

N
∑

j=1

λjiQj(t)dt

+Bi

{

N
∑

ℓ=1

pℓi(h(t))E
[

Kη(tk)x(tk)x(tk)
TKT

η(tk)
1{η(tk)=ℓ}

]

}

BT
i dt

= AiQi(t)dt+Qi(t)A
T
i dt+

N
∑

j=1

λjiQj(t)dt +Bi

[

N
∑

ℓ=1

pℓi (h(t))KℓQℓ(tk)K
T
ℓ

]

BT
i dt

= χi (Q(t)) dt+ ϑi (Q(tk)) dt,
(4)

where χi(Q(t)) = AiQi(t) + Qi(t)A
T
i +

∑N
j=1 λjiQj(t), ϑi(Q(tk)) = Bi[

∑N
ℓ=1 pℓi(h(t))KℓQℓ(tk)K

T
ℓ ]B

T
i ,

pℓi(h(t)) indicates the probability of jumping from mode ℓ at time t to mode i after time h(t), and pℓ is
the probability that mode ℓ will occur. Its detailed computation will be given in Theorem 1.

Definition 1. Define the linear transformation operators ϕ, ϕ̂i, and ϕ̂ in the following way: for G =

[G1 · · · GN ] ∈ R
n×Nm with Gi = [Gi1 · · · Gim ] ∈ R

n×m and Gij ∈ R
n,

ϕ(Gi) :=









Gi1

...

Gim









∈ R
mn, ϕ̂i(G) := ϕ(Gi) ∈ R

mn, ϕ̂(G) :=









ϕ̂1(G)
...

ϕ̂N (G)









∈ R
Nmn.

Equivalently, one has

ϕ
(

Q̇i(t)
)

= ϕ̂i

(

Q̇(t)
)

= ϕ̂i (χ (Q(t))) + ϕ̂i (ϑ (Q(tk))) , (5)

where

ϑ (Q(tk)) =
[

ϑ1 (Q(tk)) ϑ2 (Q(tk)) · · · ϑN (Q(tk))
]

∈ R
n×Nn,

χ (Q(t)) =
[

χ1 (Q(t)) χ2 (Q(t)) · · · χN (Q(t))
]

∈ R
n×Nn,

Qi(t) =
[

q(i−1)n+1(t) q(i−1)n+2(t) · · · qin(t)
]

∈ R
n×n,

Q(t) =
[

Q1(t) Q2(t) · · · QN(t)
]

∈ R
n×Nn.

Then, one obtains
{

ϕ̂(Q̇(t)) = ϕ̂ (χ (Q(t))) + ϕ̂ (ϑ (Q(tk))) , t ∈ [tk, tk+1),

ϕ̂ (Q(tk)) = ϕ̂
(

Q(t−k )
)

.
(6)
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This expression can be simplified as

{

ϕ̂(Q̇(t)) = Aϕ̂ (Q(t)) +B(eΛ
Th(t) ⊗ Im2)K̃ϕ̂ (Q(tk)) , t ∈ [tk, tk+1),

ϕ̂ (Q(tk)) = ϕ̂
(

Q(t−k )
)

,
(7)

where
A = diag {A1 ⊕A1, A2 ⊕A2, . . . , AN ⊕AN}+ ΛT ⊗ In2 ,

B = diag {B1 ⊗ B1, B2 ⊗B2, . . . , BN ⊗BN} ,

K̃ = diag {K1 ⊗K1,K2 ⊗K2, . . . ,KN ⊗KN} ,

eΛh(t) =















p11(h(t)) p12(h(t)) · · · p1N (h(t))

p21(h(t)) p22(h(t)) · · · p2N (h(t))
...

...
. . .

...

pN1(h(t)) pN2(h(t)) · · · pNN (h(t))















.

Because of eQ(t) = ϕ̂ (Q(t))− ϕ̂ (Q(tk)), one can easily obtain

{

ϕ̂(Q̇(t)) = Āϕ̂ (Q(t)) +B[(eΛ
Th(t) + IN )⊗ Im2 ]K̃ϕ̂ (Q(t))−B(eΛ

Th(t) ⊗ Im2)K̃eQ(t), t ∈ [tk, tk+1),

ϕ̂ (Q(tk)) = ϕ̂
(

Q(t−k )
)

,
(8)

where Ā = A−BK̃.

Remark 1. Because of switching and state signals transmitted through networks, some unavoidable
difficulties are encountered. First, because of the switching signal sampled, a mismatch phenomenon
occurs between the original and sampled switching signals. Thus, many combinations of the original
and sampled switching signals having up to N × N cases will occur and obviously lead to very large
computational complexity. In particular, when the sampled switching signals are directly used to make
system analysis and synthesis, many possible conditions are required, largely reducing the solvable solution
set and even leading to no solution. Second, to solve the above-mentioned problems, a new model is
developed by applying an auxiliary system approach, as described in (7) and (8). An additional term,

namely eΛ
Th(t) ⊗ Im2 , is introduced, which can be considered a novelly delayed system. When this term

successfully describes the proposed problems, it also leads to larger difficulties and should be handled
carefully. For example, the direct correlations among the auxiliary system state, the sampled error, and
the upper bound of sampling intervals are not easily established. Third but not least, because the above
new delay term is used rather than the usual delayed state, the conservatism is difficult to further reduce
by applying a traditionally improved Lyapunov-Krasovsky function containing more delay information.
The main reason is that the common methods for reducing the conservatism of delayed systems cannot
be used to address the above exponential matrix directly and easily. Thus, more effects are needed to
study this type of system.

Definition 2. If {tk, k ∈ N} has a sampling lower bound h such that hk > h > 0, k ∈ N, then it is
considered a sample update sequence with a finite sampling rate property.

Definition 3. System (1) is said to be asymptotically mean square stable if there exist x0 ∈ R
n,

η0 ∈ N , and its general solution x(t, x0) satisfies

lim
t→∞

E
[

‖x(t, x0, η0)‖
2
]

= 0.

3 Main results

Theorem 1. A closed-loop control system is considered to be built from system (1) and control input
(3), where K̃ is considered to satisfy Ā = A − BK̃ and has negative real parts. This control system is
asymptotically mean square stable under any control update sequence with a finite sampling rate if given
scalars λ > 0 and ρ > 0, there exists a matrix P > 0 satisfying

ĀTP + PĀ < −λI, (9)
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− λ+ β1 (β2 + 1) + ρβ1β2 < 0, (10)

where β1 = 2‖PB‖‖K̃‖ and β2 = e‖Λ‖h̄. Furthermore, the sampling interval hk, ∀k ∈ N, should satisfy
hk 6 h̄, which is computed as

h̄ =
1

κ1

ρ

1 + ρ
, (11)

where κ1 = ‖A‖+ β2‖B‖‖K̃‖ when µA 6 0, and

h̄ =
1

µA

log

[(

µA

κ1

ρ

1 + ρ

)

+ 1

]

, (12)

when µA > 0.

Proof. The relevant Lyapunov function of (8) is described as

V (ϕ̂ (Q(t)) , t) = ϕ̂T (Q(t))Pϕ̂ (Q(t)) . (13)

Then, it is obvious that

α1‖ϕ̂ (Q(t)) ‖2 6 V (ϕ̂ (Q(t)) , t) 6 α2‖ϕ̂ (Q(t)) ‖2, (14)

where α1 and α2 are the minimum and maximum eigenvalues of matrix P , respectively. On the basis of
condition (9), one obtains

V̇ (ϕ̂ (Q(t)) , t) =
{

Āϕ̂ (Q(t)) +B
[(

eΛ
Th(t) + IN

)

⊗ Im2

]

K̃ϕ̂ (Q(t))−B
(

eΛ
Th(t) ⊗ Im2

)

K̃eQ(t)
}T

× Pϕ̂ (Q(t)) + ϕ̂T (Q(t))P
{

Āϕ̂ (Q(t)) +B
[(

eΛ
Th(t) + IN

)

⊗ Im2

]

K̃ϕ̂ (Q(t))

−B
(

eΛ
Th(t) ⊗ Im2

)

K̃eQ(t)
}

= ϕ̂T (Q(t))
(

PĀ
)⋆

ϕ̂ (Q(t)) + ϕ̂T (Q(t))
{

PB
[(

eΛ
Th(t) + IN

)

⊗ Im2

]

K̃
}⋆

ϕ̂ (Q(t))

− eTQ(t)
[

B
(

eΛ
Th(t) ⊗ Im2

)

K̃
]T

Pϕ̂ (Q(t))− ϕ̂T (Q(t))PB
(

eΛ
Th(t) ⊗ Im2

)

K̃eQ(t)

6 − λ‖ϕ̂ (Q(t)) ‖2 + β1 (β2 + 1) ‖ϕ̂ (Q(t)) ‖2 + β1β2‖ϕ̂ (Q(t)) ‖‖eQ(t)‖, t ∈ [tk, tk+1).
(15)

Furthermore,

V̇ (ϕ̂ (Q(t)) , t) 6 −λ‖ϕ̂ (Q(t)) ‖2 + β1 (β2 + 1) ‖ϕ̂ (Q(t)) ‖2 + β1β2‖ϕ̂ (Q(t)) ‖‖eQ(t)‖, t ∈ [tk, tk+1). (16)

However, by substituting eQ(t) = ϕ̂(Q(t))− ϕ̂(Q(tk)), this expression can be rewritten as







ėQ(t) = Aϕ̂ (Q(t)) +B
(

eΛ
Th(t) ⊗ Im2

)

K̃ϕ̂ (Q(tk)) , t ∈ [tk, tk+1),

eQ(tk) = 0,
(17)

which is equal to






ėQ(t) = Aϕ̂ (Q(tk)) +AeQ(t) +B
(

eΛ
Th(t) ⊗ Im2

)

K̃ϕ̂ (Q(tk)) , t ∈ [tk, tk+1),

eQ(tk) = 0.
(18)

Its solution is computed to be

eQ(t) = eA(t−tk)eQ(tk) +

∫ t

tk

eA(t−s)
[

A+B
(

eΛ
Th(t) ⊗ Im2

)

K̃
]

ϕ̂ (Q(tk)) ds

=

∫ t

tk

eA(t−s)
[

A+B
(

eΛ
Th(t) ⊗ Im2

)

K̃
]

ϕ̂ (Q(tk)) ds

6

∫ t

tk

eµA(t−s)
(

‖A‖+ β2‖B‖‖K̃‖
)

‖ϕ̂ (Q(tk)) ‖ds, t ∈ [tk, tk+1).

(19)
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Defining f(t− tk) =
∫ t

tk
eµA(t−s)ds and considering ϕ̂(Q(tk)) = ϕ̂(Q(t))− eQ(t), it is known that

‖eQ(t)‖ 6 κ1f(t− tk)‖eQ(t)‖+ κ1f(t− tk)‖ϕ̂ (Q(t)) ‖, t ∈ [tk, tk+1). (20)

Obviously, it can be concluded that f(t − tk) monotonically increases with t and f(0) = 0. For any
positive real h(t) such that

f(h(t)) 6
1

κ1

ρ

1 + ρ
, t ∈ [tk, tk+1), (21)

it can be known that

‖eQ(t)‖ 6
ρ

1 + ρ
‖eQ(t)‖+

ρ

1 + ρ
‖ϕ̂ (Q(t)) ‖, t ∈ [tk, tk+1). (22)

Then, one obtains that

‖eQ(t)‖ 6 ρ‖ϕ̂ (Q(t)) ‖, t ∈ [tk, tk+1). (23)

Considering conditions (16) and (23), one obtains

V̇ (ϕ̂ (Q(t)) , t) 6 − λ‖ϕ̂ (Q(t)) ‖2 + [β1 (β2 + 1) + ρβ1β2] ‖ϕ̂ (Q(t)) ‖2

6 − δ‖ϕ̂ (Q(t)) ‖2, t ∈ [tk, tk+1),
(24)

where δ = λ− [β1(β2 + 1) + ρβ1β2] > 0. Therefore, it can be concluded that

V̇ (ϕ̂ (Q(t)) , t) 6 −δ‖ϕ̂ (Q(t)) ‖2 6 −δ1V (ϕ̂ (Q(t)) , t), t ∈ [tk, tk+1), (25)

where δ1 = δ/α2. Thus, one can compute that

V (ϕ̂ (Q(t)) , t) 6 e−δ1(t−tk)V (ϕ̂ (Q(tk)) , t)

6 e−δ1(t−tk)V (ϕ̂
(

Q(t−k )
)

, t)

6 e−δ1(t−tk)e−δ1(tk−tk−1)V (ϕ̂ (Q(tk−1)) , t)

...

6 e−δ1tV (ϕ̂ (Q(0), t)) , t ∈ [0,∞).

(26)

Then, one obtains

‖ϕ̂ (Q(t)) ‖2 6
α2

α1
e−δ1t‖ϕ̂ (Q(0)) ‖2, t ∈ [0,∞), (27)

which indicates that

‖ϕ̂ (Q(t)) ‖ 6

√

α2

α1
e

−δ1
2 t‖ϕ̂ (Q(0)) ‖, t ∈ [0,∞). (28)

Because ϕ̂(Q(t)) is derived from the linear transformation of Q(t), limt→∞ ‖ϕ̂(Q(t))‖ = 0 obviously
indicates that limt→∞ ‖Q(t)‖ = 0. Because Qi(t) = E [x(t)xT(t)1{η(t)=i}], one knows that

lim
t→∞

E
[

‖x(t)‖2
]

= lim
t→∞

N
∑

i=1

tr
[

E
[

x(t)xT(t)1{η(t)=i}

]]

= lim
t→∞

N
∑

i=1

tr [Qi(t)]

6 lim
t→∞

n

N
∑

i=1

‖Qi(t)‖ = lim
t→∞

n‖Q(t)‖1 = 0.

Therefore, the asymptotic stability of system (8) guarantees the asymptotically mean square stability of
system (1). This completes the proof.

In Corollaries 1–7, more results of the special sampling situations of controller (3) are considered.
When only x(t) of traditional controller u(t) = Kx(t) experiences sampling, it will be

u(t) = Kx(tk), t ∈ [tk, tk+1). (29)
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In other words, controller (29) can be considered a mode-independent sampling controller. The resulting
auxiliary system is simplified as

ϕ̂
(

Q̇(t)
)

= Aϕ̂ (Q(t)) +BK̄
(

eΛ
Th(t) ⊗ Im2

)

ϕ̂ (Q(tk)) , t ∈ [tk, tk+1), (30)

where K̄ = diag{K ⊗K,K ⊗K, . . . ,K ⊗K}, and the other symbols are defined above. Then, one has
the following corollary.

Corollary 1. A closed-loop control system is considered to be built from system (1) and control input
(29), where K̄ is considered to satisfy Ã = A − BK̄ and has negative real parts. This control system is
asymptotically mean square stable under any control update sequence with a finite sampling rate if given
scalars λ > 0 and ρ > 0, there exists a matrix P > 0 satisfying

ÃTP + PÃ < −λI, (31)

− λ+ β̄1 (β2 + 1) + ρβ̄1β2 < 0, (32)

where β̄1 = 2‖PB‖‖K̄‖. Meanwhile, the upper sampling bound h̄ can be computed as

h̄ =
1

κ̄1

ρ

1 + ρ
, (33)

where κ̄1 = {‖A‖+ β2‖BK̄‖} when µA 6 0, and

h̄ =
1

µA

log

[(

µA

κ̄1

ρ

1 + ρ

)

+ 1

]

(34)

when µA > 0.

Proof. The proof is obtained similarly and omitted here. This completes the proof.

Remark 2. Note that Corollary 1 based on (29) is more conservative than Theorem 1 based on (3),
although their conditions have similar forms. In detail, the conditions presented in this corollary can be
obtained by specializing the parameters in this theorem when the parameter Ki in Theorem 1 is equal,
that is, K1 = · · · = KN = K. Thus, Corollary 1 is included in Theorem 1 as a special case with a
smaller solvable set. In other words, controller (3), in which not only the state but also the switching
signal is sampled, is better than controller (29), in which only the state is sampled. Consequently, more
choices about controller (3) can be achieved, while only one mode selection about controller (29) obviously
leads to more conservatism. Based on these facts and illustrations, the assertion can be made that the
sampling of the switching signal is necessary and advantageous compared with the mode-independent
sampled controller (29).

Second, when only switching signal η(t) in (3) undergoes sampling, it will be

u(t) = Kη(tk)x(t), t ∈ [tk, tk+1). (35)

The resulting auxiliary system is simplified to be

ϕ̂
(

Q̇(t)
)

= Aϕ̂ (Q(t)) +B
(

eΛ
Th(t) ⊗ Im2

)

K̃ϕ̂ (Q(t)) , t ∈ [tk, tk+1), (36)

where the same symbols are defined above. Then, one will have the following corollary.

Corollary 2. A closed-loop control system is considered to be built from system (1) and control
input (35), where K̃ is considered to satisfy Ā and have negative real parts. This control system is
asymptotically mean square stable under any control update sequence with a finite sampling rate if given
scalars λ > 0 and ρ > 0, there exists a matrix P > 0 satisfying conditions (9) and

− λ+ β1 (β2 + 1) 6 0, (37)

where the bound h̄ can be selected to be a positive parameter satisfying condition (37).
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Third, when only x(t) in (3) undergoes sampling, it will be

u(t) = Kη(t)x(tk), t ∈ [tk, tk+1). (38)

This expression can be simplified as







ϕ̂(Q̇(t)) = Aϕ̂ (Q(t)) +BK̃
(

eΛ
Th(t) ⊗ Im2

)

ϕ̂ (Q(tk)) , t ∈ [tk, tk+1),

ϕ̂ (Q(tk)) = ϕ̂
(

Q(t−k )
)

.
(39)

Then, a corollary can be established.

Corollary 3. A closed-loop control system is considered to be built from system (1) and control
input (38), where K̃ is considered to satisfy Ā and have negative real parts. This control system is
asymptotically mean square stable under any control update sequence with a finite sampling rate if given
scalars λ > 0 and ρ > 0, there exists a matrix P > 0 satisfying conditions (9) and

− λ+ β̃1 (β2 + 1) + ρβ̃1β2 < 0, (40)

where β̃1 = 2‖PBK̃‖, while the upper bound h̄ is computed by

h̄ =
1

κ̃1

ρ

1 + ρ
, (41)

where κ̃1 = {‖A‖+ β2‖BK̃‖} when µA 6 0, and

h̄ =
1

µA

log

[(

µA

κ̃1

ρ

1 + ρ

)

+ 1

]

(42)

when µA > 0.

Remark 3. On basis of the formulas for sampled controllers (35) and (38), Corollaries 2 and 3 can be
considered less conservative than Theorem 1 closed by controller (3). The detailed reasons are given as
follows: First, only the switching signal in controller (35) or only the system state signal in controller (38)
is sampled, while both signals are sampled in controller (3). In other words, because the sampled signal is
only an estimate of the original signal, it is natural that the effects based on controllers (35) and (38) are
better than controller (3). Second, based on the given conditions, it can be concluded that Corollaries 2
and 3 are less conservative. In detail, compared with the conditions of Corollary 2, it is obvious that
more constraints, such as positive term ρβ1β2, (11) and (12) with more parameter restrictions κ1, and
µA > 0 or µA 6 0, are included in Theorem 1. The more conditions there are, the more conservative the
results will be. However, investigating the conditions given in Corollary 3 and Theorem 1 reveals that
they only differ in the computations of parameters β1, β̃1, κ1, and κ̃1. Particularly, the differences deeply
depend on the computations of ‖PB‖‖K̃‖ and ‖PBK̃‖. Obviously, ‖PBK̃‖ is better than ‖PB‖‖K̃‖ in
terms of leading to less conservatism. Third, the superiorities of Corollaries 2 and 3 over Theorem 1 in
terms of less conservatism will be shown using a numerical example.

Particularly, some traditional controllers for MJSs are considered by using the main methods in this
paper. A mode-dependent controller is presented as follows:

u(t) = Kη(t)x(t), t ∈ [0,∞), (43)

whose auxiliary system is

ϕ̂
(

Q̇(t)
)

= Aϕ̂ (Q(t)) +BK̃ϕ̂ (Q(t)) . (44)

Then, the following corollary can be obtained.

Corollary 4. A closed-loop control system is considered to be built from system (1) and control input
(43), and it is asymptotically mean square stable if given a scalar λ > 0, there exists a matrix P > 0
satisfying

ÂTP + PÂ < −λI, (45)

where Â = A+BK̃.
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Alternatively, a mode-independent controller is expressed as

u(t) = Kx(t), t ∈ [0,∞), (46)

whose auxiliary system is

ϕ̂
(

Q̇(t)
)

= Aϕ̂ (Q(t)) +BK̄ϕ̂ (Q(t)) . (47)

Similarly, one has the following corollary.

Corollary 5. A closed-loop control system is considered to be built from system (1) and control input
(46), and it is asymptotically mean square stable if given a scalar λ > 0, there exists a matrix P > 0
satisfying

ǍTP + PǍ < −λI, (48)

where Ǎ = A+BK̄.

Remark 4. It can be claimed that Corollary 2 based on controller (35) is better than Corollary 5 based
on controller (46) in terms of having less conservatism. The phenomenon is similar to the comparisons
between controllers (3) and (29), which is also illustrated in Remark 2. The main reasons are summarized
as follows: On the one hand, more selections of control gain are provided in the former controller, although
its switching is sampled. In other words, when all the control gains of (35) are selected to be a common
one, it will be reduced to controller (46); on the other hand, the superiority of controller (35) over
controller (46) will be demonstrated using a numerical example.

Remark 5. Based on the explanations in the above remarks, except for Remark 1, it can be concluded
that mode-dependent controller (43) without any sampling has less conservatism than sampled controllers
(3), (35), and (38), where switching and/or state signals are sampled. Similarly, mode-independent
controller (46) without sampling is also less conservative than mode-independent but sampled controller
(29). Although controllers (43) and (46) have less conservatism than the abovementioned controllers,
they have smaller application scopes. In detail, the variables in such traditionally mode-dependent and
mode-independent controllers should be assumed to be available online. This availability is obviously
impossible when such signals are transmitted through communication networks. Thus, all the proposed
problems in this paper are meaningful, and which of them to be used should be considered in actual
situations.

Last but not least, another special situation of a scalar system is proposed as

dx(t) = aη(t)x(t)dt+ ση(tk)x(tk)dω(t), (49)

where aη(t) and ση(tk) are scalars. Similar to system (5), one obtains that

dqi(t) = 2aiqi(t)dt+
N
∑

j=1

λjiqj(t)dt+
N
∑

ℓ=1

pℓi (h(t)) σ
2
ℓ q(tk)dt, (50)

where qi(t) is defined similar to Qi(t) but referred to as scalar x(t) instead of vector x(t). It is rewritten
as

q̇(t) = aq(t) + eΛ
Th(t)σq(tk), t ∈ [tk, tk+1), (51)

where

q(t) =
[

q1(t) · · · qN (t)
]T

, a = diag {2a1, . . . , 2aN}+ ΛT, σ = diag
{

σ2
1 , . . . , σ

2
N

}

.

Because eq(t) = q(t)− q(tk), it is equal to

q̇(t) = āq(t) +
(

eΛ
Th(t) + IN

)

σq(t) − eΛ
Th(t)σeq(t), t ∈ [tk, tk+1), (52)

where ā = a+ ΛT − σ. Then, one has the following corollary.

Corollary 6. Consider the control system (49), where all eigenvalues of ā have negative real parts.
This control system is asymptotically mean square stable under any control update sequence with a finite
sampling rate if given scalars λ > 0 and ρ > 0, there exists a matrix P > 0 satisfying

āTP + P ā < −λI, (53)
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− λ+ β̂1 (β2 + 1) + ρβ̂1β2 < 0, (54)

where β̂1 = 2‖P‖‖σ‖. At the same time, the upper bound h̄ of sampling is calculated as

h̄ =
1

κ̂1

ρ

1 + ρ
, (55)

where κ̂1 = ‖a‖+ β2‖σ‖ when µa 6 0, and

h̄ =
1

µa

log

[(

µa

κ̂1

ρ

1 + ρ

)

+ 1

]

(56)

when µa > 0.

Proof. The proof is similar to the proof of Theorem 1 and is omitted here. This completes the proof.
Furthermore, when the sampling interval of system (49) is constant, it can be studied by introducing

the following system:

dx(t) = aη(t)x(t)dt + ση(δt)x(δt)dω(t), (57)

where δt = [ t
τ
]τ is the integer part of t/τ , and τ is the constant sampling range. Notably, when there

is no jump in system (57), it will be reduced to the one considered in [12]. In detail, the stability was
considered in terms of almost certain exponential stability. Based on the key idea of this reference and
exploiting improved and novel techniques, similar results are obtained as follows.

Corollary 7. Considering control system (57), it can be almost surely exponentially stable for any τ
satisfying τ ∈ (0, τ̄) that

lim supt→∞

1

t
log (|x(t)|) < 0 a.s.,

if given a constant ε > 0, there exists ri > 0 satisfying

2riai + σ2
ℓ +

N
∑

j=1

λijrj < 0, ∀i, ℓ ∈ N . (58)

Meanwhile, the upper bound τ̄ is the unique root of the following equation:

ᾱ1

ᾱ2
ε+ 4Gτ̄

[

e(4ᾱ1+3γ2)(τ̄+ log(4/ε)
β ) − 1

]

= 1, (59)

where ᾱ1 = maxi∈N {|ai|}, ᾱ2 = mini∈N {|ai|}, Gτ̄ = 4γ2(ᾱ1 τ̄
2+γ2τ̄)

2ᾱ1+γ2 , γ = maxℓ∈N {|σℓ|}, β = − ς
ᾱ2

, and

ς = maxi,ℓ∈N {2riai + σ2
ℓ +

∑N
j=1 λijrj}.

Proof. The proof is similar to the one given in [12] and is omitted here. This completes the proof.

Remark 6. Although Corollaries 6 and 7 are proposed for studying system (49) under constant sam-
pling, they are obtained by applying different techniques. The former corollary is based on the auxiliary
system approach and fully considers the sampling error, while the latter corollary is established using
a robust estimation method [12, 33]. As mentioned in Section 1, parameter τ should be very small and
constant. In this situation, the larger the value of τ is, the better the performance and the less the
conservatism. In Section 4, some numerical examples will be used to compare such corollaries, which will
demonstrate our methods better.

Remark 7. Similar to the corollaries proposed above, some extensions of special controllers for (49)
can be easily and directly presented and are omitted.

4 Numerical example

Example 1. Consider a system of form (1) whose matrices are described as

A1 =

[

−2 0.1

0.1 0

]

, A2 =

[

0 + δ 0.1

3.1 −2

]

, B1 =

[

0.1

0.2

]

, B2 =

[

0.2

0.1

]

,
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Figure 2 (Color online) Simulations of signals η(t), δ(t), and η(tk).

where δ > 0 is assumed to be a disturbance and will be used for comparisons. Obviously, there are two
modes, that is, η(t) ∈ N = {1, 2}, whose transition rate matrix is given as

Π =

[

−2 2

3 −3

]

.

Without losing generality, it is assumed that the gains of controller (3) are given as follows: K1 =

[−1.5 0.6 ] and K2 = [ 0.8 −0.8 ]. Without losing generality, letting λ = 0.4, it can be computed from

Theorem 1 with δ = 0 that P = diag{P1, P2}, where P1 and P2 are computed to be

P1 =













0.1658 0.0054 0.0054 −0.0036

0.0054 0.2235 0.0019 0.0136

0.0054 0.0019 0.2235 0.0136

−0.0036 0.0136 0.0136 0.4025













, P2 =













0.2840 0.0080 0.0080 −0.0015

0.0080 0.1854 0.0015 0.0067

0.0080 0.0015 0.1854 0.0067

−0.0015 0.0067 0.0067 0.1737













.

Furthermore, the upper bound h̄ of sampling interval hk, ∀k ∈ N, is computed as h̄ = 0.0718. Particularly,
for the simulations of the original switching signal η(t), its sampled signal η(tk), and its ZOH signal δ(t),

denoted by δ(t), are given in Figure 2. Moreover, under the initial condition x0 = [−1 1 ]T and applying

the above-designed controller, one has the curves of the closed-loop system shown in Figure 3. On the
basis of this simulation, although the switching and state signals experience sampling phenomena, the
usefulness of the presented controller is nonetheless apparent. Next, the main results, such as theorems
and corollaries, will be compared. First, comparisons between Theorem 1 and Corollary 1 will be made,
where parameter λ in this corollary is selected to be λ = 0.4. Meanwhile, without losing generality,

the gain of controller (29) is selected to be K = [−1.5 0.6 ], which is similar to mode-independent

situations [22,23]. Then, the upper sampling bounds of Theorem 1 and Corollary 1 are given in Table 1.
To illustrate the comparisons vividly, the correlations between disturbance δ and maximum allowable h̄
are simulated in Figure 4(a). On the basis of these comparisons and simulations, Theorem 1 is found to be
better than Corollary 1, where the theorem could suffer a larger sampling bound for the same disturbance.
In other words, the strategy based on Theorem 1 could reduce the burden of the communication network
because a larger sampling interval could be borne.

Under identical controller gains K1 and K2, similar comparisons and simulations between Theorem 1
and Corollary 2 are made in Table 2 and Figure 4(b). At the same time, more comparisons between
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Figure 3 (Color online) State response of the closed-loop system by controller (3).

Table 1 Comparisons of the h̄ of Theorem 1 and Corollary 1 along with δ

δ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Theorem 1 0.0718 0.0706 0.0704 0.0694 0.0686 0.0654 0.0643 0.0528 0.0335 0.0281 0.0177 –

Corollary 1 0.0531 0.0510 0.0485 0.0462 0.0440 0.0417 0.0394 0.0352 0.0312 – – –

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
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Figure 4 (Color online) Comparison simulations of (a) Theorem 1 and Corollary 1; (b) Theorem 1 and Corollary 2; (c) Theorem 1

and Corollary 3; (d) Corollary 2 and Corollary 5.

Theorem 1 and Corollary 3 and the corresponding simulations are provided in Table 3 and Figure 4(c),
respectively. These comparisons are shown to support the statements presented in Remark 3 very well.

Next, more comparisons between Corollary 2 and Corollary 5 will be made, where the control gain in

the latter corollary is given asK = [−1.5 0.6 ]. Then, similar comparisons and simulations of the δ of such
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Table 2 Comparisons of the h̄ of Theorem 1 and Corollary 2 along with δ

δ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Theorem 1 0.0718 0.0706 0.0704 0.0694 0.0686 0.0654 0.0643 0.0528 0.0335 0.0281 0.0177 –

Corollary 2 0.3741 0.3594 0.3576 0.3459 0.3449 0.3330 0.3317 0.1566 0.0588 0.0504 0.0390 –

Table 3 Comparisons of the h̄ of Theorem 1 and Corollary 3 along with δ

δ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Theorem 1 0.0718 0.0706 0.0704 0.0694 0.0686 0.0654 0.0643 0.0528 0.0335 0.0281 0.0177 –

Corollary 3 0.0838 0.0837 0.0836 0.0824 0.0821 0.0819 0.0773 0.0691 0.0711 0.0607 0.0343 –

Table 4 Comparisons on δmax of Corollary 2 and Corollary 5 along with λ

λ

0.4 0.6 0.8 1.0 1.1 1.2 1.4 1.6 1.8 1.9

Corollary 2 1.015 0.934 0.853 0.771 0.730 0.689 0.606 0.522 0.434 0

Corollary 5 0.954 0.873 0.791 0.709 0.667 0.626 0.541 0.453 0 0
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Figure 5 (Color online) Simulation of the closed-loop system

by controller (43).

Figure 6 (Color online) Simulation of controller (43) experi-

encing the sampling effect.

corollaries are obtained in Table 4 and Figure 4(d), respectively, where δmax is the maximum allowable
value of δ. On the basis of these comparisons, Corollary 2 is better than Corollary 5 in terms of having
less conservatism, in which the former corollary can bear a larger disturbance. The main reason is that
more controllers based on Corollary 2 can be designed, although there exists a sampling phenomenon.

Finally, explanations and simulations about Corollaries 4 and 5 will be given. Without losing generality,
only Corollary 4 is mentioned here, while Corollary 5 could be addressed similarly and is omitted. Based
on the illustrations in Remark 5, it is known that controller (43) based on Corollary 4 is less conservative,
but its assumption about switching and state signals is ideal. Thus, the information should be exactly
available in real time. Moreover, this constraint is sometimes difficult or impossible to satisfy. In other
words, when the above assumption about controller (43) is not satisfied, the ideal controller (43), whose
phenomenon is illustrated as follows, will be disabled. Without losing generality, the gains of controller

(43) similar to those in [18–21] are selected as K1 = [ 0.8 −0.6 ] and K2 = [ 0.8 −2 ], where λ = 0.4. On

the basis of Corollary 4, the resulting system is known to be stable, and the state simulations are given
in Figure 5. However, when the above controller experiences the above sampling effect illustrated in
Figure 2, the closed-loop system will be unstable, and the stabilizing effect is demonstrated in Figure 6.
Obviously, it is unstable and shows the statements in Remark 5.

Example 2. Consider a scalar system (49) with three modes, η(t) ∈ N = {1, 2, 3}, whose parameters
are given as (Mode 1) a1 = 0.1, σ1 = −0.08; (Mode 2) a2 = 0.2, σ2 = 0.05; and (Mode 3) a3 = −3,
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Table 5 Maximum allowable bounds of sampling under different σ3 values

σ3

0.09 0.11 0.13 0.15 0.17 0.19 0.21 0.23 0.25 0.27

h̄ 0.09473 0.08919 0.08299 0.07592 0.06803 0.05942 0.04991 0.03959 0.02793 0.01581

τ̄ 0.03149 0.02502 0.02018 0.01634 0.01317 0.01052 0.00830 0.00646 0.00498 0.00380
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Figure 7 (Color online) Comparison simulations of Corollaries 6 and 7.

σ3 = 0.09. Its transition rate matrix is given as

Π =









−5 3 2

0 −5 5

1 1 −2









.

Without losing generality, letting ρ = 8.92 and λ = 0.4, it can be computed from Corollary 6 that
P1 = 1.1728, P2 = 0.9488, and P3 = 0.8503, where the upper bound of sampling is h̄ = 0.09473.
Meanwhile, based on Corollary 7, one obtains r1 = 1.6736, r2 = 1.3500, and r3 = 0.7120, where the upper
bound is τ̄ = 0.03149. Obviously, the former upper bound is larger than the latter upper bound. Then,
it can be said that our methods are less conservative than the ones based on [12]. To further demonstrate
the superiority of our methods, more comparisons are made as follows. On the basis of the conditions
presented in Corollaries 6 and 7, upper bounds h̄ and τ̄ are known to be affected by maxη(t)∈N {|ση(t)|}.
Therefore, more comparisons between such corollaries can be obtained by only changing the value of
σ3 given in Table 5, whose correlations between h̄ and τ̄ under identical conditions can be established.
Moreover, to illustrate the comparisons vividly, some simulations are given in Figure 7. On the basis of
these comparisons and simulations, the methods proposed in this paper are seen to have advantages over
the method in [12], in which larger sampling bounds are allowed. In other words, by allowing a larger
sampling interval, the performance and efficiency of communication networks can be improved.

5 Conclusion

In this study, the stabilizing control problem of continuous time MJSs in which not only the state but
also the switching signal is sampled was investigated by applying an auxiliary system approach. A new
model having an exponential matrix was proposed to characterize the sampling effects and overcome
the difficulties coming from sampled signals. Sufficient conditions were given to depend deeply on the
sampling rate. More special extensions were separately considered, where comparisons were made to
illustrate the advantages of the methods in this paper. Finally, more difficult problems still need to be
studied. First, when there is a time delay in system (1), the problems will be very complicated and
difficult. The main reason is that delay brings large negative effects when a Markovian switching signal
suffers sampling. Second, the conservatism must be reduced because enlarged inequalities and techniques
are introduced. Third but not least, only asymptotical mean square stability was studied here. When
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other stability concepts are mentioned, whether the auxiliary system approach is suitable should be
revisited.
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