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Abstract This paper investigates the attitude control for flexible spacecraft subject to actuator faults and

limited onboard communication resources. The control torque quantization scheme is considered between

the controller and actuator to reduce the communication burden on the spacecraft. An integral sliding mode

control method is designed to stabilize the closed-loop attitude control system and ensure the near-optimal

performance of the sliding motion. First, an iterative learning observer scheme is employed to reconstruct

the actuator faults and the unknown nonlinear flexible dynamics. Second, an integral sliding surface is

combined with the backstepping control method to resolve the time-varying characterization of the closed

system. Third, a combination of the adaptive dynamic programming technique and the adaptive single critic

neural network approximation is employed to examine the optimal control policy. Finally, the efficacy of the

proposed spacecraft attitude control method is demonstrated via a simulation.
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1 Introduction

The attitude control system is crucial for conducting advanced aerospace projects [1, 2] such as surface
navigation and positioning, rendezvous, and earth surveillance, all of which are expected to be carried
out with a high degree of precision and reliability [3, 4]. However, the actuators may suffer from several
physical constraints such as component faults, input saturation, and dead zone as a result of being sub-
jected to a severe working environment [5,6] that deteriorates the control performance and causes system
instability. Therefore, spacecraft attitude control issues with faults and other actuator constraints have
been extensively investigated over the past decade. In [7], a novel and effective periodic event-triggered
adaptive control was proposed with new adaptive update laws for the robust attitude stabilization of
a rigid spacecraft. In [8], a practical event-triggered sliding mode control was effectively designed for
the attitude stabilization of a rigid spacecraft. Furthermore, it was validated that both the attitude
quaternion and angular velocity can be ultimately bounded in the presence of external disturbances and
model uncertainties. In [9], an extended state observer-based feed-forward compensation controller has
proven to be effective in compensating for the external disturbances. In [10], the author reconstructed
the actuator faults using a disturbance observer and proposed an active fault-tolerant control method.
Yang et al. [11, 12] proposed a novel adaptive, resilient sliding mode control scheme to resist false data
injection attacks in actuator channels. Ref. [13–16] detailed relevant fault-tolerant control (FTC) results
for spacecraft.
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The plug-and-play spacecraft has attracted considerable research interest in recent years. It employs a
novel architectural design concept wherein data exchange and power transfer take place via wireless tech-
nology [17]. Event-triggered and signal quantization communication mechanisms are effective solutions
that can be implemented to reduce the data transmission burden between the controller and actuator
module. Some pioneering studies regarding event-triggered control were published in [7, 18–20]. Fur-
thermore, signal quantization techniques in spacecraft are discussed in [21, 22]. In practice, the on-orbit
plug-and-play spacecraft is always equipped with limited fuel or electrical energy reserves owing to its
cost. Hence, one of the most crucial and challenging problems faced by the plug-and-play spacecraft
is the development of optimal control policies for attitude control systems with negligible energy costs,
where unknown time-varying actuator faults and control torque quantization are simultaneously taken
into consideration. Our current research is motivated by the need to close this gap by creating a novel
and efficient digital attitude control design approach. Nevertheless, such a research challenge is still open
and difficult for spacecraft research at this time.

In summary, this paper examines the optimal control problem for plug-and-play flexible spacecraft with
an emphasis on time-varying actuator faults, unknown external disturbances, and rigid-flexible nonlinear
dynamics. First, a hysteresis-type quantizer with a remarkable precision and a low communication rate is
utilized for data transmission between the controller and actuator side. Second, a complex adaptive de-
sign iterative learning observer (ILO) is developed to estimate the unknown disturbance vector. Following
the estimation, an integral-type sliding mode control law is designed to stabilize the closed-loop attitude
control systems and subsequently resolve the optimal control policy for the designed sliding motion dy-
namics via the adaptive dynamic programming (ADP) and neural network (NN) learning approximation
schemes. Finally, a simulation is conducted to illustrate the validity of the developed spacecraft attitude
control procedures.

2 Problem formulation

2.1 Spacecraft attitude kinematics and dynamics

The modified Rodrigues parameters (MRPs)-based attitude kinematics and dynamics for flexible space-
craft are depicted as follows [23, 24]:

σ̇ = G(σ)ω, (1)

Jω̇ + δTη̈ = −ω×
(

Jω + δTη̇
)

+ τ + τd, (2)

η̈ +Ksη̇ +Kdη + δω̇ = 0, (3)

where σ ∈ R
3 is the MRPs variable denoting the spacecraft orientation, G(σ) = (1/4)[(1−σTσ)I3+2σσT+

2σ×] with I3 meaning a 3× 3 identity matrix, ω represents the angular velocity of spacecraft, J ∈ R
3×3

denotes the inertia matrix, δ ∈ R
4×3 denotes the coupling parameter matrix between the rigid and elastic

components, η ∈ R
4 is the modal displacement coordinate vector, Ks = diag{2ζn1ωn1, . . . , 2ζn4ωn4} is

the damping matrices with ζni and ωni, i = 1, . . . , 4 denoting the damping ratio and natural frequency of
the ith-order mode, respectively, Kd = diag{Ω2

n1, . . . , ω
2
n4} is the stiffness matrix, and τ and τd denote the

actuator torque and disturbance torque applied to the spacecraft, respectively. In addition, the operator
‘(·)×’ is employed to perform the cross product, i.e., a× b = a×b.

Remark 1. The singularity problem encountered in the attitude representation of σ can be solved
by introducing the shadow MRPs and corresponding switching shadow sets, which have been widely
employed in [25, 26]. To be specific, the raw representation σ is used when ‖σ‖ 6 1, and its shadow
function σs = −σ/(σTσ) is used when ‖σ‖ > 1. The above switching method can realize the non-singular
description of the attitude globally, and the MRPs vector can always be kept in the unit ball.

Property 1. The properties for G(σ) is provided by the following equalities:

G(σ)σ = GT(σ)σ =
1

4
(1 + ‖σ‖2)σ, (4)

GT(σ)G(σ) =
(1 + ‖σ‖2)2

16
I3, (5)

G−1(σ) =
16

(1 + ‖σ‖2)2G
T(σ), (6)
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and let m(σ) = (1+‖σ‖2)2

16 for simplicity.

2.2 Hysteresis quantizer

In this paper, we consider the case that the data transmitted between the controller and actuator with
wireless communication, and signal quantization behavior are thus taken into account for the attitude
control system design. Moreover, since the hysteretic quantizer requires a low communication rate and
excludes the chattering aroused by the traditional logarithmic quantizer, we employ it in this paper to
quantize the control command.

In this study, the original control command generated in the controller side is defined as uc(t) =
[uc1(t) uc2(t) uc3(t)]

T, and the quantization behavior of uc(t) is defined as Q(uc), which is formulated as
follows [27]:

Q(ui(t)) =











































µisgn(ui),
µi

1 + κq
< |ui| 6 µi, u̇i < 0, or µi < |ui| 6

µi

1− κq
, u̇i > 0,

µi(1 + κq)sgn(ui), µi < |ui| 6
µi

1− κq
, u̇i < 0, or

µi

1− κq
< |ui| 6

µi(1 + κq)

1− κq
, u̇i > 0,

0, 0 6 |ui| <
µmin

1 + κq
, u̇i < 0, or

µmin

1 + κq
< |ui| 6 µmin, u̇i > 0,

q(ui(t
−)), u̇i = 0,

(7)

where κq is defined as κq = (1 − κ)/(1 + κ), µi = κ
(1−i)µmin for i = 1, 2, 3 with µmin > 0, 0 < κ < 1

being basic parameters of the hysteresis quantizer. Specifically, µmin signifies the size of the quantizer
dead-zone and κ denotes a measure of quantization density.

In order to compensate for the quantization error, the output of the hysteresis quantizer can be
decomposed into a linear part and a nonlinear part as follows:

Q(uci) = uci + ς(uci). (8)

Lemma 1 ([28]). The nonlinear part satisfies that

ς2(uci) 6 κ2qu
2
ci, for |uci| > µmin,

ς2(uci) 6 µ2
min, for |uci| 6 µmin.

According to Lemma 1, Eq. (8) can be rewritten as

Q(uc) = uc +∆uuc + ̺ (9)

with the following constraints:

{

̺i = 0, −κq 6 ∆ui 6 κq,

−µmin 6 ̺i 6 µmin, ∆ui = 0,

if |ui| > µmin,

if |ui| 6 µmin.
(10)

It can be seen that ‖̺‖ 6
√
3µmin holds whatever u values.

Consider the control torque τ(t) in the actuator side with partial loss of efficiency, which can be modeled
by

τ(t) = Λ(ρ)Q(uc), (11)

where ρ(t) = [ρ1(t), ρ2(t), ρ3(t)] denotes the actuator faults efficiency factor with time-varying ρi(t)
belonging to the interval (0, 1], and Λ(ρ) = diag{ρ1(t), ρ2(t), ρ3(t)} represents the diagonal fault matrix.

An auxiliary state is introduced as ξ = δω + η̇ with

ξ̇ = δω̇ + η̈ = −Ksξ −Ksδω −Kdη. (12)

By substituting (12) into (2), one yields

(J − δTδ)ω̇ = −ω×(J − δTδ)ω + τ + ψ + τd, (13)
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Figure 1 (Color online) The attitude control system architecture.

where

ψ = δT
[

Kd Ks

]

[

η

ξ

]

− δTKsδω − ω×δTξ.

For brevity, let J0 = J−δTδ, and the attitude control problem with actuator faults and signal quantization
can be formulated as

σ̇ = G(σ)ω, (14)

J0ω̇ = −ω×J0ω + Λ(ρ)Q(uc) + dl, (15)

where dl = ψ + τd is treated as the lumped disturbances composed of external disturbance torque and
rigid-flexible nonlinear dynamics.

Further, the following assumptions are made for the subsequent development.

Assumption 1. The efficiency and its derivative of the actuator are bounded with 0 < ρ
m

6 ρi(t) 6 ρ̄M
and |ρ̇i| < ρ̄d.

Assumption 2. The external disturbance torque τd is bounded, and the modal vibration variables
involved with elastic appendages η and its time derivatives η̇, η̈ are bounded.

The objective of this paper is to design a fault-tolerant control scheme for (14) and (15) with the energy
cost being taken into consideration. First, an adaptive ILO design is presented to reconstruct the actuator
faults and the rigid-flexible nonlinearity coupled with disturbances. Then, based on observer estimations,
an integral-type sliding mode control law with ADP and neural networks schemes is developed which can
stabilize the attitude control systems with nearly optimal performance of the nominal dynamics. The
attitude control system architecture is illustrated in Figure 1.

Remark 2. Note that in the past few years there has been some interesting work focusing on attitude
control of plug-and-play spacecraft with wireless communication among components [29, 30]. Similar to
this paper, in these studies, the wireless data communication among control module and actuator module
is also considered, and attitude control laws are proposed with the consideration of input (attitude control
torques) quantization. On the other hand, with the development of spacecraft technology, it is desirable
to design the attitude control systems involved with the optimal performance and minimal energy cost,
which may be a feasible way to reduce design costs for practical spacecraft. However, this design constraint
has not been taken into account in [29, 30], which seems to remain as an open problem. To this end, in
this paper we will adopt the ADP approach to investigate and solve this research obstacle.

3 ADP-based sliding mode fault-tolerant control under input quantization

In this section, an adaptive ILO method will be proposed. Based on the estimation, an integral quantized
sliding mode control law is developed. Moreover, in this design the nearly optimal control policy for the
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sliding motion dynamics is also considered simultaneously.

3.1 Fault reconstruction observer design

To reconstruct the actuator faults and estimate the lumped disturbances, we consider the following fault
observer:

J0 ˙̂ω = −ω̂×J0ω̂ + Λ(ρ̂)Q(uc) + d̂l(t)− Lf ω̂ + Lfω,

d̂l(t) = Kf1d̂l(t− Tf ) +Kf2ω −Kf2ω̂, (16)

where Tf > 0 denotes the updating interval of the iterative learning observer (16), which is always set
as the sampling time interval of the considered control systems. Moreover, the adaptive law for ρ̂(t) is
designed as

˙̂ρ(t) = ΘΛ(Q(uc))Pω̃, (17)

where ρ̂(t) is the estimate of ρ(t), Θ > 0 is the diagonal adaptive gain matrix, Λ(Q(uc)) = diag{Q1(uc)(t),
Q2(uc)(t), Q3(uc)(t)}, and P , Lf , Kf1, Kf2, P are observer matrices to be designed. Before the subse-
quent analysis, we make the following assumptions.

Assumption 3. The lumped disturbance dl is bounded, and ‖dl(t)− dl(t− Tf )‖ 6 d̄l with d̄l being an
unknown positive constant.

Assumption 4. The nonlinear term “ω×J0ω − ω̂×J0ω̂” satisfies ‖ω×J0ω − ω̂×J0ω̂‖ 6 δ0ω̃.

Theorem 1. If the gain matrices for ILO (16) are designed to satisfy the following constraints:

Lf > 0, (18)

0 < δ1K
T
f1Kf1 < I3, (19)

P = γ̄1Kf2 > 0, (20)

2PLf + γ̄1K
T
f2Kf2 − 2δ0λmax(P )I > 0, (21)

where δ1 > γ̄1 > 1. Then the estimation errors for ρ(t) and dl are bounded.

Proof. See Appendix A.

3.2 Sliding surface design and reachability analysis

Let z = [z1 z2]
T with z1 = σ(t) and z2 = ω(t)− ω∗(t) with virtual control ω∗(t) designed as

ω∗(t) = −kσ
GT(σ)

m(σ)
σ = − 4kσ

1 + ‖σ‖2σ, (22)

where kσ is a positive scalar. Then the following coordinate transformation system is presented:

ż1 = G(z1)z2 +G(z1)ω
∗, (23)

ż2 = f(z2) + r(z2)Λ(ρ)Q(uc) + r(z2)dl, (24)

where f(z) = −J−1
0 (ω∗ + z2)

×J0(ω
∗ + z2)− ω̇∗, r(z) = J−1

0 with

ω̇∗ = −kσ
4G(σ)− 2σσT

1 + ‖σ‖2 (ω∗ + z). (25)

The above equation can be written in a compact version:

ż(t) = F (z) +R(z)Λ(ρ)Q(uc) +R(z)dl, (26)
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where

F (z) =

[

G(z1)z2 +G(z1)ω
∗

−J−1
0 (ω∗ + z2)

×J0(ω
∗ + z2)− ω̇∗

]

,

R(z) =

[

03×3

J−1
0

]

. (27)

Remark 3. Under the virtual control ω∗(t), if we choose the Lyapunov function of the attitude kine-
matics subsystem as

Vσ = σTσ,

it is easy to derive that

V̇σ = −kσσTσ + kσ
1 + σTσ

4
σTz2.

Recalling that ‖σ‖ 6 1 as discussed in Remark 1, we can further derive that

V̇σ 6 −kσσTσ +
kσ
2
σTz2 6 −kσ

2
σTσ +

kσ
8
zT2 z2,

which implies that σ(t) is bounded by ‖σ(t)‖ 6 ‖z2‖
2 . Hence, if z2 is proven to be bounded, we can

conclude σ is bounded. Since ω = ω∗ + z2, it can be further concluded that ω(t) is bounded. This is just
the advantage that we introduce the virtual law and backstepping control method in this design.

We now design the control command in (26) as uc = u0 +u1 +u2, where u0 is the term to be designed
for the nearly optimal sliding motion dynamic in the subsequent discussion, and u1 and u2 are the
discontinuous controller components to reject unknown faults, lumped nonlinear/disturbance, and the
effect of signal quantization error.

In this paper, the following integral-type sliding surface is considered for system (26):

s(t) = z(t)− z(t0)−
∫ t

t0

[F (z(v)) +R(z(v))u0(v)]dv. (28)

Considering the integral term FR(t) =
∫ t

t0
[F (z(v))+R(z(v))u0(v)]dv in the sliding mode manifold (28),

it can be derived mathematically that ḞR(t) = F (z(v)) + R(z(v))u0(v). Subsequently, the derivative of
s(t) can be calculated as

ṡ(t) =ż(t)− F (z)−R(z)u0

=R(z)Λ(ρ)Q(uc) +R(z)dl −R(z)u0

=R(z)Λ(ρ)[(I +∆u)uc + ̺] +R(z)dl − R(z)u0

=R(z)[Λ(ρ)(I +∆u)(u0 + u1 + u2) + Λ(ρ)̺+ dl − u0]. (29)

We define

Kb =
1

ρm
[(Λ(ρ)Λ(ρ̂)−1 − I)u0 + dl − Λ(ρ)Λ(ρ̂)−1d̂l]. (30)

Then it can be seen that there exists an upper bound value K̄b > 0 such that

sTR(z)Kb 6 K̄b‖sTR(z)‖ (31)

holds.

Theorem 2. If the control components u1(t) and u2(t) are designed as

u1 = −(I − Λ(ρ̂)−1)u0 − Λ(ρ̂)−1K̂bsgn(R
T(z)s)− Λ(ρ̂)−1d̂l
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− 1

ρm
ksR

T(z)s−
√
3µminsgn(R

T(z)s), (32)

u2 = − κq
ρm(1− κq)

(‖u0‖+ ‖u1‖)sgn(RT(z)s), (33)

where K̂b is the estimation of Kb, the adaptive law of which is designed as

˙̂
Kb = ς0‖sT(t)R(z)‖, ς0 > 0, (34)

and ks > 0 and ς0 > 0 are the controller parameters to be designed. Then the sliding motion can be
guaranteed since the initial time.

Proof. Let K̃b = K̄b − K̂b, and the Lyapunov function for the sliding surface (28) is selected as

Vs(t) =
1

2
s(t)Ts(t) +

ρm
2ς0

K̃2
b . (35)

Then the derivative of Vs(t) is obtained as

V̇s =s
Tṡ− ρmς

−1
0 K̃b

˙̂
Kb

=sTR(z)[Λ(ρ)(I +∆u)(u0 + u1 + u2) + Λ(ρ)̺+ dl − u0]− ρmK̃b‖sT(t)R(z)‖
=sTR(z)(Λ(ρ)− I)u0 + sTR(z)Λ(ρ)u1 + sTR(z)dl + sTR(z)Λ(ρ)̺+ sTR(z)Λ(ρ)∆u(u0 + u1)

+ sTR(z)Λ(ρ)(I +∆u)u2 − ρmK̃b‖sT(t)R(z)‖. (36)

First, under the control law (32), one can obtain

V̇s =s
TR(z)(Λ(ρ)Λ(ρ̂)−1 − I)u0 − ρmK̃b‖sT(t)R(z)‖+ sTR(z)(dl − Λ(ρ)Λ(ρ̂)−1d̂l)

− sTR(z)Λ(ρ)Λ(ρ̂)−1K̂bsgn(R
T(z)s) + sTR(z)Λ(ρ)̺−

√
3µmin‖sTR(z)‖

− kss
TR(z)RT(z)s+ sTR(z)Λ(ρ)∆u(u0 + u1) + sTR(z)Λ(ρ)(I +∆u)u2. (37)

Recalling that 0 < ρm 6 ρM 6 1 and 0 < ρm 6 ρ̂ 6 1, it yields that I 6 Λ(ρ)ρ−1
m . Then, it is derived

V̇s 6− kss
TR(z)RT(z)s+ sTR(z)Λ(ρ)̺−

√
3µmin‖sTR(z)‖+ ρmKb‖sTR(z)‖

− ρmK̂b‖sTR(z)‖ − ρmK̃b‖sT(t)R(z)‖+ sTR(z)Λ(ρ)∆u(u0 + u1)

+ sTR(z)Λ(ρ)(I +∆u)u2. (38)

Noting that the quantization error satisfies ‖̺‖ 6
√
3µmin, it is obvious that the following inequality

holds:

sTR(z)Λ(ρ)̺−
√
3µmin‖sTR(z)‖ 6 0. (39)

Recalling that ‖∆u‖ 6 κq, it is derived that

V̇s 6− kss
TR(z)RT(z)s+ ρmKb‖sTR(z)‖ − ρmK̂b‖sTR(z)‖ − ρmK̃b‖sT(t)R(z)‖

+ κq‖sTR(z)‖(‖u0‖+ ‖u1‖) + sTR(z)Λ(ρ)(I +∆u)u2

6− kss
TR(z)RT(z)s+ ρmKb‖sTR(z)‖ − ρmK̂b‖sTR(z)‖ − ρmK̃b‖sT(t)R(z)‖

− κq‖sTR(z)‖(‖u0‖+ ‖u1‖)−
κq(‖u0‖+ ‖u1‖)
ρm(1− κq)

sTR(z)Λ(ρ)(I +∆u)sgn(R
T(z)s). (40)

Since K̃b = K̄b − K̂b, it is shown that V̇s 6 −ks‖R(z)s(t)‖2 holds, which implies that the reachability
condition can be guaranteed for all s(t) 6= 0. From (28), it can be known that s(0) = 0. As a result, one
can conclude that both s(t) = 0 and ṡ(t) = 0 hold for all t > 0. Therefore, the sliding motion dynamics
can be ensured from the initial time.
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3.3 Nearly optimal sliding mode control based on ADP

Note that under ṡ(t) = 0 the equivalent control can be derived as

ueq = (I +∆u)
−1Λ(ρ)−1u0 − (I +∆u)

−1Λ(ρ)−1dl. (41)

By substituting (41) into (26), the sliding motion is obtained as

ż = F (z) +R(z)u0. (42)

For system (42), we consider the following performance function:

Γ(z(t0), u0) =

∫ t

t0

[M(z) + uT0Nu0]dσ. (43)

The Hamiltonian function is written as

H(z, u0,Γz) =M(z) + uT0Nu0 + Γz(z(t0), u0)ż(t), (44)

where Γz(z(t0), u0) = ∂Γ(z(t0), u0)/∂z, and ż(t) defers to (26).
Our objective now is to solve the admissible optimal control law u∗0 to stabilize the sliding motion

dynamics (42) and minimize the performance index (43) simultaneously. Define the optimal function as

Γ∗(z) = min
u0∈Ωu

(
∫ t

t0

[M(z) + uT0Nu0]dσ

)

. (45)

Based on the optimal control theory, the optimal control policy u∗0 and the Hamilton-Jacobi-Bellman
(HJB) equation with respect to Γ∗

z are obtained as

u∗0(z) = −1

2
N−1RT(z)Γ∗

z, (46)

0 =M(z)− 1

4
Γ∗T
z R(z)N−1RT(z)Γ∗

z + Γ∗T
z F (z), (47)

where Γ∗
z(z) = ∂Γ∗

z/∂z denotes the solution of the HJB equation (47).
To obtain the optimal control policy u∗0, one should solve an analytical solution for Γ∗

z(z) of the HJB
equation (47). However, it is difficult to solve such a nonlinear differential equation directly. To this end,
the adaptive NN learning scheme is employed in the subsequent analysis to approximate Γ∗

z(z).
Based on the universal approximation property of NN [31], a standard NN can be adopted as

Γ∗(z) =W ∗T
c h(z) + ε(z), (48)

whose derivative with respect to z refers to

Γ∗
z(z) = ∇hTW ∗T

c +∇ε, (49)

where W ∗
c ∈ R

n, ∇h = ∂h(z)/∂z, and ∇ε = ∂ε(z)/∂z.
By substituting (49) into (46) and (47), it yields

u∗(z) = −1

2
N−1RT(z)(∇hTW ∗T

c +∇ε),

0 = εHJB +M(z) +W ∗T
c ∇h(z)F (z)− 1

4
W ∗T

c ∇h(z)R(z)N−1RT(z)∇hT(z)W ∗
c ,

, H(z, u∗0,Γ
∗
z), (50)

where H(z, u∗0,Γ
∗
z) denotes the HJB function [32], and εHJB = − 1

2∇εTR(z)N−1RT(z)∇hT(z)W ∗
c −

1
4∇εTR(z)N−1RT(z)∇ε+∇εTF (z).
Since the ideal weights W ∗

c are unknown, we employ a critic NN to approximate the cost function:

Γ̂(z) = ŴT
c (t)h(z), (51)
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where Ŵc(t) is the estimation of the ideal weightsW ∗
c . Further, we can obtain the derivative of Γ̂(z) with

respect to z as

Γ̂z(z) = ∇hT(z)Ŵc. (52)

Considering (46), the approximated optimal control is obtained as

û0(z) = −1

2
N−1RT(z)∇hTŴc. (53)

By applying the control law (53) into (42), the closed-loop sliding motion dynamics is obtained:

ż = F (z)− 1

2
R(z)N−1RT(z)∇hTŴc. (54)

The approximation for the HJB function H(z, u∗0,Γ
∗
z) is defined as

Ĥ(z, û0, Ŵc) =M(z) + ŴT
c ∇h(z)F (z)− 1

4
ŴT

c ∇h(z)R(z)N−1RT(z)∇hT(z)Ŵc. (55)

Then the Hamiltonian error is derived as (note H(z, u∗0,Γ
∗
z) = 0)

eH(t) =Ĥ(z, û0, Ŵc)−H(z, u∗0,Γ
∗
z) = Ĥ(z, û0, Ŵc). (56)

The objective now becomes designing the NN scheme to minimize eH(t). Motivated by [32], to obtain
the weights of the critic NN, the gradient-descent-based adaptive tuning law is designed as

˙̂
Wc =− α

π

(πTπ + 1)2
eH(t) +

β

2
χ(z, û0)∇h(z)R(z)N−1RT(z)VHz , (57)

with

χ(z, û0) =

{

0, if V̇H(z) < 0,

1, otherwise,
(58)

where α > 0 and β > 0 are constants to be designed for learning rate, π = ∇h
(

F (z)−R(z)N−1RT(z)∇hT
·Ŵc/2

)

, VH(z) = V T
Hz(F (z) − 1

2N
−1RT(z)∇hTŴc), which refers to the Lyapunov function candidate to

be selected later, and VHz represents its partial derivative to z. Based on [32], the first term in (57) seeks
to minimize eH(t) which was derived by the normalized gradient descent scheme, while the second term
χ(z, û0) is an adjusting term which ensures the states of the closed loop system remain bounded while
the NN scheme learns Γ∗(z).

Remark 4. In general, the trajectory of the optimal closed-loop sliding motion dynamics F (z)+R(z)u∗0
is always bounded by a positive constant, while here it is bounded as ‖F (z) + R(z)u∗0‖ 6 φ(z), where
φ(z) = 4

√

g0‖VHz‖ and VH(z) is selected as a continuously differentiable and radially unbounded Lyapunov

function candidate for (42). In addition, it satisfies V̇H(z) = V T
Hz(F (z)+R(z)u

∗
0) < 0 with VHz = ∂VH/∂z.

According to [32], VH(z) can be deliberately selected to satisfy the above requirements. Also, note that
one can always find a positive definite matrix function Ψ(z) such that the following holds:

V T
Hz(F (z) +R(z)u∗0) = −V T

HzΨ(z)VHz . (59)

We now define the NN weight approximation error:

W̃c(t) =W ∗
c − Ŵc(t), (60)

and in the following discussion, the convergence of W̃c(t) will be considered along with the stability of
system (26).

Note that ˙̃Wc(t) = − ˙̂
Wc(t), and

˙̂
Wc(t) is involved with eH(t) as in (57). Thus we should find the

relationship between eH(t) and W̃c(t). To this end, based on (55) and (56), it is shown that

eH(t) =− W̃T
c ∇h(z)(F (z) +R(z)u∗0 +

1

2
R(z)N−1RT(z)∇ε(z))
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− 1

4
W̃T

c ∇h(z)R(z)N−1RT(z)∇hT(z)W̃c − εHJB

=− W̃T
c ∇h(z)T (z)− 1

4
W̃T

c B(z)W̃c − εHJB, (61)

with B(z) = ∇h(z)R(z)N−1RT(z)∇hT(z).
As a result, it is derived that

˙̃Wc(t) =− α

π2
c

(∇h(z)T (z) + 1

2
B(z)W̃c(t))

(

W̃T
c ∇h(z)T (z) + 1

4
W̃T

c B(z)W̃c + εHJB(t)

)

− β

2
χ(z, û0)∇h(z)R(z)N−1RT(z)VHz . (62)

We present the following Assumption 5, and the stability analysis and convergence of W̃c(t) are pre-
sented in the following Theorem 3.

Assumption 5. For the critic NN, the activation function h(z) with its derivative ∇h(z), the ideal NN
weight W ∗

c , and the approximation error ε with its derivative ∇ε are bounded on a compact set, specifi-
cally, ‖h(z)‖ 6 hM , ‖∇h(z)‖ 6 hdM , ‖W ∗

c ‖ 6WM , ‖ε‖ 6 εM , and ‖∇ε‖ 6 εdM with hM , hdM ,WM , εM .
and εdM > 0.

Theorem 3. Considering the sliding motion dynamics (42) with the cost function Γ(z), under the
control input u0 in (53) and the adaptive tuning law for critic NNs in (57), the attitude state z(t) and the
approximation error for W̃c(t) can be ensured to be uniformly ultimately bounded (UUB). Moreover, the
obtained control input û0 will converge to the optimal control u∗0 approximately with an upper bound.

Proof. The Lyapunov function candidate is chosen as

VHJB(t) = βVH(z) +
1

2
W̃T

c W̃c. (63)

Then it is derived that

V̇HJB(t) = βV T
Hz ż + W̃T

c
˙̃Wc. (64)

Substituting (62) into (64) yields

V̇HJB(t) =Y1(z, t)−
β

2
W̃T

c χ(z, û0)∇h(z)R(z)N−1RT(z)VH(z) + βV T
Hz ż, (65)

where

Y1(z, t) ,− α

π2
c

(

(W̃T
c ∇h(z)T (z))2 + 3

4
W̃T

c ∇h(z)T (z)W̃T
c B(z)W̃c

+
1

8
(W̃T

c B(z)W̃c)
2 + W̃T

c ∇h(z)T (z)εHJB +
1

2
W̃T

c B(z)W̃cεHJB(t)
)

. (66)

Note that the following holds:

Y1(z, t) 6− α

16π2
c

‖W̃T
c B(z)W̃c‖2 +

4α

π2
c

‖W̃T
c ∇h(z)T (z)‖2 + 5α

2π2
c

ε2HJB(t)

6− αm0

16π2
c

‖W̃T
c ∇h(z)‖4 + 4α

π2
c

‖W̃T
c ∇h(z)‖2‖T (z)‖2 + 5α

2π2
c

ε2HJB(t), (67)

where m0 = r2m/λmax(N), λm 6 ‖R(z)‖ 6 λM .
Moreover, for the term ‖W̃T

c ∇h(z)‖2‖T (z)‖2 in (67), note that the following inequality holds:

‖W̃T
c ∇h(z)‖2‖T (z)‖2 6 1

2m2
1

‖W̃T
c ∇h(z)‖4 + m2

1

2
‖T (z)‖4, (68)

for any given constant m1 > 0. Considering the fact that 1/π2
c 6 1, and supposing that ‖πc‖ 6 πM with

πM > 0, it yields that

Y1(z, t) 6−
(

m0

16π2
M

− 2

m2
1

)

α‖W̃T
c ∇h(z)‖4 + 2m2

1α‖T (z)‖4 +
5α

2π2
c

ε2HJB(t), (69)
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where m1 satisfies m0/(16π
2
M)− 2/m2

1 > 0. The term ‖T (z)‖ satisfies the property ‖T (z)‖ 6 φ(z) +m2

according to Remark 4 with m2 = r2MεdM/(2λmin(N)). Considering the fact φ(z) = 4
√
g0VHz , based on

Cauchy-Schwarz inequality, it is derived that

Y1(z, t) 6−
(

m0

16π2
M

− 2

m2
1

)

α‖W̃T
c ∇h(z)‖4 + 16m2

1α‖VHz‖+ 16m2
1αm

4
2 +

5α

2π2
c

ε2M

6−
(

m0

16π2
M

− 2

m2
1

)

αh4M‖W̃T
c ‖4 + 16αm2

1‖VHz‖+ αΞm, (70)

where Ξm = 16m2
1m

4
2 + 5ε2M/(2π

2
c ).

Let ℓ̄0 = ( m0

16π2

M

− 2
m2

1

). Then the derivative of (63) satisfies

V̇HJB 6− αℓ̄0h
4
M‖W̃T

c ‖4 + 16αm2
1‖VHz‖+ αΞm + βV T

Hz ż

− β

2
W̃T

c χ(z, û0)∇h(z)R(z)N−1RT(z)VHz . (71)

We now consider the adjusting term χ(z, û0) in (71) in terms of the following two cases (i) and (ii).
(i) For the case χ(z, û0) = 0, it can be concluded that V̇H < 0, i.e. V T

Hz ż < 0. Considering that ‖z‖ > 0
and the strict inequality V T

Hz ż < 0 holds, there must exist a constant żmin satisfying 0 < żmin < ‖ż‖.
Then the following inequality is derived:

V̇HJB 6− αℓ̄0h
4
M‖W̃T

c ‖4 − (βżmin − 16αm2
1)‖VHz‖+ αΞm. (72)

For (72), given that α and β are selected to guarantee βżmin − 16αm2
1 > 0, since χ(z, û0) = 0, V̇HJB < 0

holds if the following inequalities are satisfied:

‖VHz‖ >
αΞm

βżmin − 16αm2
1

= A1 (73)

or

‖W̃c‖ >
1

hM

4

√

Ξm

αℓ̄0
= B1. (74)

(ii) Considering the case χ(z, û0) = 1, which means the closed-loop sliding motion exhibits unstable
behavoir. Adding and substracting the term βV T

HzR(z)N
−1RT(z)(∇hT(z)W ∗

c +∇ε)/2 to (71), it yields

V̇HJB 6− αℓ̄0h
4
M‖W̃T

c ‖4 + βV T
Hz(F (z) +R(z)u∗0)

+
β

2
V T
HzR(z)N

−1RT(z)∇ε+ 16αm2
1‖VHz‖+ αΞm. (75)

According to (59), it yields that

V̇HJB 6− αℓ̄0h
4
M‖W̃T

c ‖4 − β

2
λmin(Ψ)‖VHz‖2 +

m2
2

2βλmin(Ψ)
+ αΞm, (76)

where m2 = 16αm2
1 + βr2Mε

2
dM/(2λmin(N)) and λmin(Ψ) represents the minimum eigenvalue of Ψ(z).

Therefore, V̇HJB < 0 holds in the case χ(z, û0) = 1 when

‖VHz‖ >
√

m2
2 + 2αβλmin(Ψ)Ξm

βλmin(Ψ)
= A2 (77)

or

‖W̃c‖ >
1

hM

4

√

m2
2 + 2αβλmin(Ψ)Ξm

αβλmin(Ψ)ℓ̄0
= B2. (78)

We now summarize the aforementioned two cases (i) and (ii) as follows. If α and β are selected to satisfy
βżmin − 16αm2

1 > 0, then V̇HJB < 0 holds for ‖VHz‖ > max{A1,A2} = Ā, or ‖W̃c‖ > max{B1,B2} = B̄.
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Table 1 Flexible spacecraft parameters

Symbol Value

J









350 3 4

3 280 10

4 10 190









(kg · m2)

δ















6.45637 1.27814 2.15629

−1.25619 0.91756 −1.67264

1.11687 2.48901 −0.83674

1.23637 −2.6581 −1.12503















(kg
1

2 · m/s2)

Ωn [0.7681, 1.1038, 1.8733, 2.5496]T

ζ [0.005607, 0.008620, 0.01283, 0.02516]T

That means ‖VHz‖ and W̃c are UUB. Recalling the fact that VH(z) is a Lyapunov function candidate,
the boundedness of ‖VHz‖ thus implies that of z(t).

In the following, we prove that the approximated control law û0 converges to a bounded neighborhood
of the optimal control policy u∗0. Note that the following:

û0 − u∗0 =− 1

2
N−1RT(z)∇hTW̃c −

1

2
N−1RT(z)∇ε (79)

holds. According to Assumption 5, it can be obtained that

‖û0 − u∗0‖ 6
1

2
λmax(N

−1)rM (hdM B̄ + εdM ), (80)

which implies that û0 is approximated to u∗0 with an upper bound.

4 Illustrative example

In this section, the simulation results are presented to show the efficacy of the proposed method. The
flexible spacecraft parameter refers to [33], which is illustrated in Table 1. The initial attitude is set as
σ(0) = [0.2, −0.01, 0.01]T, ω(0) = [−1,−2, −3]T ◦/s.

The actuator is assumed to be subjected to the time-varying partial loss of efficiency with the efficiency
matrix given as

Λ(ρ) =









0.8 + 0.2e−0.5t 0 0

0 0.7 0

0 0 0.64 + 0.3−0.3t









.

Then the lower and upper bounds for the actuator efficiency factors are given as ρ
m

= 0.3, ρM = 1. The
external disturbances are given as









5 + 2.5 sin(0.1t)

−4 + 2 cos(0.05t)

3− 8 sin(0.3t)









× 10−3 N ·m.

The hysteresis quantizer is employed in the controller-actuator channel with µmin = 0.1 and κ = 0.85.
Then κq can be calculated as κq = (1 − κ)/(1 + κ).

For the observer (16), the gain parameters are set as Tf = 0.01 s,

Lf =









84 0 0

0 38 0

0 0 110









, Kf1 =









0.9 0 0

0 0.9 0

0 0 0.9









,

Kf2 =









8 0 0

0 8 0

0 0 8









, Θ =

[

0.4 0 0

0 0.42 1.6

]

,
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Figure 2 (Color online) The curves of (a) the attitude MRPs σ(t) and (b) the angular velocity ω(t).
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Figure 3 (Color online) (a) Estimation of NN weights Ŵc(t) and (b) NN weight approximation errors W̃c(t).

and we set P = 1.01Kf2.

The parameter in the virtual control law (22) is set as kσ = 0.1, and the controller parameters are set
as ks = 0.1, ς0 = 50. The performance function (43) is designed as

Γ(z(t0), u0) =

∫ t

t0

[zT(t)Mz(t) + uT0Nu0]dσ (81)

with M = I6 and N = 4J−T
0 J−1

0 .

The activation function for NN is selected as

h(z) =
[

z21 , z1z2, z1z3, z1z4, z1z5, z1z6, z
2
2 ,

z2z3, z2z4, z2z5, z2z6, z
2
3 , z3z4, z3z5, z3z6,

10z4 arctan(10z4)− 0.5 ln(1 + 100z24),

10z5 arctan(10z5)− 0.5 ln(1 + 100z25),

10z6 arctan(10z6)− 0.5 ln(1 + 100z26)
]

.

Figures 2(a) and (b) present the attitude MRPs σ(t) and angular velocity ω(t), respectively. Fig-
ures 3(a) and (b) show that the NN weights and approximation errors are convergent. Figure 4(a) shows
that the actuator faults are identified with small errors, and the estimated lumped disturbances with
accepted errors are illustrated in Figure 4(b). Figures 5(a)–(c) illustrate the control command uc with
its quantization Q(uc).
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Figure 4 (Color online) Estimation of (a) the actuator efficiency factors ρ̂ and (b) the lumped disturbances d̂l.

Figure 5 (Color online) Control commands (a) uc1, (b) uc2, and (c) uc3 and their quantization.

5 Conclusion

In this paper, the FTC problem for flexible spacecraft with actuator faults and input quantization has
been investigated. An adaptive ILO procedure is first proposed to estimate the actuator faults and rigid-
flexible nonlinear dynamics, and following the observer estimation and the ADP and NN methods, an
integral sliding mode control law has been developed by considering optimal performance and minimal
energy cost. Future work will consider extending the acquired design techniques to multi-spacecraft or
spacecraft swarm problems.
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Appendix A Proof of Theorem 1

Let ω̃ = ω − ω̂, d̃l = dl − d̂l, ρ̃ = ρ − ρ̂, and θ̃ = dl(t) − Kf1dl(t − Tf ). The estimation error dynamics

J0
˙̃ω = −(ω

×
J0ω − ω̂

×
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with d̃l(t) = Kf1d̃l(t − Tf ) − Kf2ω̃ + θ̃(t). There exists

d̃
T

l (t)d̃l(t) =d̃
T

l (t − Tf )K
T

f1
Kf1d̃l(t − Tf ) + ω̃

T
K

T

f2
Kf2ω̃ + θ̃(t)

T
θ̃(t) − 2ω̃

T
K

T

f2
Kf1d̃l(t − Tf )

+ 2d̃T

l (t − Tf )Kf1θ̃(t) − 2ω̃TKT

f2
θ(t). (A2)

The Lyapunov function is selected as

V0 =ω̃PJ0ω̃ +

∫

t

t−Tf

d̃T

l (s)d̃l(s)ds + ρ̃TΘ−1ρ̃. (A3)

The derivative of V0 is calculated as

V̇0 =2ω̃TP [−(ω×J0ω − ω̂×J0ω̂) − Lf ω̃ + Λ(ρ̃)Q(uc) + Kf1d̃l(t − Tf ) − Kf2ω̃ + θ̃(t)]

− γ1d̃
T

l (t)d̃l(t) − d̃T

l (t − Tf )d̃l(t − Tf ) + γ̄1d̃
T

l (t)d̃l(t) + 2ρ̃TΘ−1 ˙̃ρ (A4)

with γ̄1 = γ + 1.

In (A4), note that the following derivation holds:

Λ(ρ̃)Q(uc) =diag{ρ̃1(t), ρ̃2(t), ρ̃3(t)}[Q1(uc), Q2(uc), Q3(uc)]
T

=[ρ̃1(t)Q1(uc), ρ̃2(t)Q2(uc), ρ̃3(t)Q3(uc)]
T

=diag{Q1(uc), Q2(uc), Q3(uc)}[ρ̃1(t), ρ̃2(t), ρ̃3(t)]
T

=Λ(Q(uc))ρ̃(t).

Then, by substituting (A2) into (A4), one can obtain

V̇0 = − 2ω̃TPLf ω̃ − 2ω̃TP (ω×J0ω − ω̂×J0ω̂) + 2ω̃TPΛ(Q(uc))ρ̃ + 2ω̃TPKf1d̃l(t − Tf )

− 2ω̃
T
PKf2ω̃ + 2ω̃

T
P θ̃ − γ1d̃

T

l (t)d̃l(t) − d̃
T

l (t − Tf )d̃l(t − Tf ) + γ̄1ω̃
T
K

T

f2
Kf2ω̃

+ γ̄1d̃
T

l (t − Tf )K
T

f1
Kf1d̃l(t − Tf ) + γ̄1θ̃

Tθ̃ − 2γ̄1ω̃
TKT

f2
Kf1d̃l(t − Tf ) + 2γ̄1d̃

T

l (t − Tf )K
T

f1
θ̃

− 2γ̄1ω̃
TKT

f2
θ̃ + 2ρ̃TΘ−1 ˙̃ρ. (A5)

Noticing P = γ̄1Kf2, it yields that

V̇0 = − 2ω̃TPLf ω̃ − 2ω̃TP (ω×J0ω − ω̂×J0ω̂) + 2ω̃TPΛ(Q(uc))ρ̃ − γ̄1ω̃
TKT

f2
Kf2ω̃

− γ1d̃
T

l (t)d̃l(t) − d̃T

l (t − Tf )d̃l(t − Tf ) + γ̄1θ̃
Tθ̃ + γ̄1d̃

T

l (t − Tf )K
T

f1
Kf1d̃l(t − Tf )

+ 2γ̄1d̃
T

l (t − Tf )K
T

f1
θ̃ + 2ρ̃TΘ−1 ˙̃ρ. (A6)

Considering the term 2γ̄1d̃
T

l (t − Tf )K
T

f1
θ̃, there exists

2γ̄1d̃
T

l (t − Tf )K
T

f1
θ̃ 6 γ2d̃

T

l (t − Tf )K
T

f1
Kf1dl(t − Tf ) +

γ̄2

1

γ2

θ̃Tθ̃. (A7)

Substituting (A7) into (A6) yields

V̇0 6 − 2ω̃TPLf ω̃ − 2ω̃TP (ω×J0ω − ω̂×J0ω̂) + 2ω̃TPΛ(Q(uc))ρ̃ − γ̄1ω̃
TKT

f2
Kf2ω̃

− d̃T

l (t − Tf )(I − δ1K
T

f1
Kf1)d̃l(t − Tf ) − γ1d̃

T

l (t)d̃l(t) + δ2 θ̃
Tθ̃ + 2ρ̃TΘ−1 ˙̃ρ (A8)

with δ1 = γ1 + γ2 and δ2 = γ̄1 + γ̄2

1
/γ2.

According to Assumption 4 and applying the adaptive law for ρ̂ to (A8), it can be obtained that

V̇0 6 − 2ω̃
T
PLf ω̃ + 2δ0λmax(P )ω̃

T
ω̃ − γ̄1ω̃

T
K

T

f2
Kf2ω̃ − γ1d̃

T

l (t)d̃l(t) + δ2 θ̃
T
θ̃

− d̃T

l (t − Tf )(I − δ1K
T

f1
Kf1)d̃l(t − Tf ) + 2ρ̃TΘ−1ρ̇. (A9)

According to Assumption 1, the term ρ̃Θ−1ρ̇ can be unfolded as

ρ̃Θ−1ρ̇ = ρ̃Θ−1(−ρ̃ + ρ̃ + ρ̇) = −ρ̃Θ−1ρ̃ +
3

∑

i=1

(ρM − ρm)ϑi(ρM − ρm + ¯̇ρ). (A10)

It can be further derived that

V̇0 6 − ω̃T(2PLf + γ̄1K
T

f2
Kf2 − 2δ0λmax(P )I)ω̃ − 2ρ̃Θ−1ρ̃ − γ1d̃

T

l (t)d̃l(t)

− d̃T

l (t − Tf )(I − δ1K
T

f1
Kf1)d̃l(t − Tf ) + δ2 θ̃

Tθ̃ + 2

3
∑

i=1

(ρM − ρm)ϑi(ρM − ρm + ¯̇ρ). (A11)

It can be concluded that ω̃, ρ̃, d̃l are bounded.
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