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Abstract Computation-in-memory (CIM) chips offer an energy-efficient approach to artificial intelligence
computing workloads. Resistive random-access memory (RRAM)-based CIM chips have proven to be a
promising solution for overcoming the von Neumann bottleneck. In this paper, we review our recent studies
on the architecture-circuit-technology co-optimization of scalable CIM chips and related hardware demonstra-
tions. To further minimize data movements between memory and computing units, architecture optimization
methods have been introduced. Then, we propose a device-architecture-algorithm co-design simulator to pro-
vide guidelines for designing CIM systems. A physics-based compact RRAM model and an array-level analog
computing model were embedded in the simulator. In addition, a CIM compiler was proposed to optimize
the on-chip dataflow. Finally, research perspectives are proposed for future development.
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1 Introduction

Many artificial intelligence (AI) applications, such as speech recognition, computer vision, and recom-
mendation systems, have achieved significant progress. This is primarily attributed to the development
of deep learning algorithms. These tremendous developments have also prompted innovation in AI chip
architectures. Currently, customized hardware architectures are available for Al, particularly for deep
learning, to improve hardware performance and energy efficiency. CPUs, GPUs, and ASICs are optimized
for AI applications to achieve better real-time response speeds and low power consumption. However,
these CMOS-based chip architectures have inevitable data exchange between memory and computing
units, and memory access is much more expensive than computing power consumption [1,2]. This is
known as the “memory wall” of the von Neumann system [3]. Because deep neural networks have a large
number of parameters, CMOS-based accelerators have obvious bottlenecks in improving performance and
energy efficiency.

The resistive random-access memory (RRAM, also called memristor)-based computation-in-memory
(CIM) architecture can integrate the memory unit and the computing unit as the basic processing
unit [4-6]. This is analogous to biological brains in that neurons and synapses in biological brains
can store and process information in parallel while processing cognitive tasks with low power. RRAM is
a type of nonvolatile memory (NVM) with high storage density, low read power consumption, and good
analog programmability [2,4,5,7,8]. RRAM arrays can accelerate vector-matrix-multiplication (VMM)
operations in neural network computations with high energy efficiency. However, frequent data trans-
fers between RRAM arrays and off-chip memory result in significant latency. In addition, the area and
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Figure 1 Architecture of the scalable CIM chip.

power overhead of digital-to-analog converters (DACs)/analog-to-digital converters (ADCs) also reduce
system-level energy efficiency. The RRAM-based CIM architecture and demonstrations on systems are
introduced in Subsections 2.1 and 2.2. The cross-level co-optimization of RRAM-based CIM systems is
introduced in Subsection 2.3. In Subsection 2.4, we propose a monolithic-three-dimensional integration
(M3D)-based hybrid CIM architecture to improve system-level energy efficiency and throughput.

Furthermore, RRAM-based CIM systems encounter certain challenges for neural network inference and
online training. First, actual RRAM has nonideal characteristics and reliability issues [2,9] such as weight-
update nonlinearity and asymmetry, limited endurance, and limited retention. These carry errors into the
weight stored in the RRAM. Second, the IR drop caused by parasitic resistance and the offset and noise
of peripheral circuits can also cause calculation errors [10]. Third, the trade-off between energy efficiency,
flexibility, and computational accuracy cannot be addressed in a single abstraction layer. It is necessary
to build a device-architecture-algorithm co-optimization simulator. Several simulator platforms for co-
design have been proposed, such as NeuroSim [11,12] and MNSIM [13,14], which can perform data flow
or circuit-level simulations. A physics-based RRAM compact model and an array-level analog computing
model have been introduced in Subsection 3.1. We propose an RRAM-based hardware simulator to
provide guidelines for designing CIM systems in Subsection 3.1 and a CIM compiler to optimize the
on-chip dataflow in Subsection 3.2.

2 RRAM-based CIM architecture
2.1 Architecture of scalable CIM chip

To adapt to different scenarios and performance requirements, a CIM chip architecture with scalable
computing performance is proposed. Each basic computing module has unit computing and storage
resources, and the proportional growth of hardware resources can be achieved when mapping neural
networks of different scales. The RRAM-based CIM architecture consists of three levels, namely, chip,
tile, and basic processing unit (PE, also called crossbar or XB) [2, 15], as shown in Figure 1. The
top level, or chip level, comprises multiple interconnected tiles and global units. Data between tiles are
communicated through an on-chip interconnection fabric. The data flow is data-driven. Each tile initiates
its calculation if sufficient data are sent to the local buffer of the tile. The second level, the tile-level, is
for the convenience of hierarchical management. The tile-level is area-efficient because XBs in one tile
can share some circuit units, such as adder-trees, pooling units, and activation units. A tile consists of
several XBs, local buffers, a tile-level controller, and special function units (SFUs). The third level is the
XB-level, which is composed of RRAM arrays and other peripheral circuit units, such as DACs, ADCs,
and write drivers. For RRAM arrays, the weights of neural networks are represented as the conductance
of RRAM cells, and the input feature maps (IFMs) are mapped to the voltage-level-based inputs encoded
by DACs. The VMM can be implemented in RRAM arrays following Ohm’s law and Kirchhoff’s current
law. The output currents of the columns are quantified by ADCs and then processed by SFUs. CIM
chips can be scaled at the tile-level and XB-level to implement large-scale neural networks.
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Figure 2 Various demonstrations are experimentally implemented on hardware systems. (a) The grayscale face image classifi-
cation [16] and (b) sound localization on a 1k-1T1R array [17]; (c) a five-layer RRAM-based CNN on a fully hardware-implemented
PCB-level multi-array integrated system [5] Copyright 2020 Nature; (d) a complete multi-layer FCNN on a 160 kb fully-integrated
analog RRAM-based chip [19] Copyright 2020 IEEE; (e) a hybrid precoding technology for 5G/6G MIMO communication system
on a fully parallel 128 Kb RRAM array [21] Copyright 2022 IEEE; (f) an encryption-decryption process for privacy on eight
144 kb 2T2R RRAM arrays [22] Copyright 2022 IEEE.

2.2 Demonstrations on RRAM-based CIM systems

To demonstrate the feasibility and efficiency of CIM and explore hardware operation modes under different
application scenarios, various demonstrations are experimentally implemented on RRAM-based hardware
systems. A fabricated 1k-1T1R array is trained online for grayscale face image classification [16]. Two
online programming methods, a write-verify method and a without-write-verify method, are used for
weight updates. This experimental demonstration has equivalent accuracy on test sets compared with a
CPU. This consolidates the feasibility of RRAM arrays as analog synapses (Figure 2(a)). In addition,
sound localization, a basic cognitive function of human beings, is also demonstrated on the 1k-1T1R
array [17]. A multi-threshold-update scheme is proposed to make the in-situ training weights more
stable and precise (Figure 2(b)). Then, a five-layer RRAM-based CNN (convolutional neural network)
to perform MNIST image recognition with 96.19% accuracy is experimentally implemented on a fully
hardware-implemented printed circuit board (PCB)-level multi-array integrated system [5]. This study
proposes a hybrid training method. It is a system-level solution for increasing immunity to device
imperfections. The method only needs to fine-tune the last fully connected (FC) layer of the neural
network to achieve a tradeoff between the overall system performance and the overhead of learning energy.
Replication of multiple convolutional (CONV) kernels to RRAM arrays is implemented to balance the
processing speed between the CONV and FC layers. The benchmark shows more than two orders of
magnitude better energy efficiency than the V100 GPUs (Figure 2(c)). In addition, binary morphology
operations are demonstrated in the CIM integrated system [18]. The basic operations include dilation,
erosion, opening, and closing. These morphological operations can be used for defect detection and
medical image processing.

A 160 kb fully integrated analog RRAM-based chip for a complete multi-layer FCNN (fully connected
neural network) is presented in [19], with sign-weighted 2T2R arrays to reduce IR-drop and power con-
sumption. The chip realizes 94.4% accuracy on the MNIST dataset and 78.4 TOPS/W peak energy
efficiency (Figure 2(d)). A four-layer Bayesian neural network is demonstrated on a 160 kb RRAM ar-
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ray with 97% accuracy for MNIST image classification [20]. The distribution of the total current of N
RRAM cells is represented by a weighted probability distribution in the Bayesian neural network. The
RRAM-based network can also detect adversarial images using the RRAM intrinsic read noise.

A hybrid precoding technology for a 5G/6G MIMO communication system is demonstrated on a fully
parallel 128 Kb RRAM array [21]. It can achieve a sum rate comparable to that of an FPGA (field
programmable gate array) and higher energy efficiency. An IR-drop compensation scheme and a multi-
bias column mapping method are proposed to address read noise (Figure 2(e)). The encryption-decryption
process for privacy is experimentally implemented on eight 144 Kb 2T2R RRAM arrays [22], with small
accuracy losses of 0.73% for heart disease prediction using SVM (support vector machine) and 1.9% for
fashion MNIST using 4 layers of CNN. RRAM arrays are used as both VMM units and true random
number generators (TRNG). An RNS-wise (residue number system) mapping method is proposed to
reduce the VMM error caused by intrinsic stochasticity in RRAM devices (Figure 2(f)). RRAM arrays
demonstrate the feasibility of high-performance neural signal analysis in brain-machine interfaces [23].
RRAM arrays are used to implement both a finite impulse response (FIR) filter bank and perceptron
neural network in one system. It can preprocess and decoder signals in the analog domain with high
efficiency, achieving a high accuracy of 93.46%.

2.3 Co-optimization of RRAM-based CIM systems

The RRAM-based CIM system can be optimized at five levels, including neural network structures,
quantization methods, data flow, circuits, and devices. At the neural network algorithm level, the goal of
the CIM system is to realize general neural networks. There are various algorithms, and the CIM system
should maintain accuracy as a software baseline. At the CIM chip level, the precision of the device
determines the bits of the network weight, and the precision of the analog-to-digital and digital-to-analog
conversion circuits determines the bits of the IFMs and output feature maps (OFMs). However, the
precision of RRAM devices, the precision of peripheral circuits, and the array size are limited. Therefore,
the neural network requires low-bit quantization training before being mapped to the CIM chip, and
the weight matrix needs to be split into multiple arrays. At the macro level, nonidealities in peripheral
circuits, such as ADC quantization noise, ADC offset, and DAC noise, can induce VMM calculation
errors. At the array level, interconnection resistance between devices in the array causes IR drop. This
can lead to errors in the programming values and results of the VMM. At the device level, reliability
issues and nonidealities of RRAM can lead to errors in the weights stored in devices, which can affect
the system computing performance.

The impact of nonidealities in RRAM devices and circuits cannot be evaluated and optimized at a
single abstraction layer. For example, further optimization for nonidealities in RRAM devices is difficult
owing to the limitations of the device material and physical mechanism. However, optimization can be
considered at the level of data flow and neural network algorithms. In addition, with the development of
Al the structure of deep neural networks is becoming increasingly complex. This increases the require-
ments for the design of accelerators. Therefore, the CIM system necessitates co-optimization to explore
design spaces from algorithms to devices to provide design guidance.

Some co-optimization methods have been reported in our recent work. Device-macro-algorithm
co-optimization. Owing to the nonidealities and noise of devices and circuits in CIM systems, neural
networks need noise-aware offline training and low-bit quantization training to achieve high classifica-
tion accuracy. During noise-aware training, nonidealities and noise are considered in the offline training
process. Through the self-adaptation of neural networks, specific weights are trained for the CIM sys-
tem. During low-bit quantization training, the neural network weights are quantitated according to the
precision of RRAM devices, and the IFMs and OFMs are quantitated according to the precision of the
ADC/DAC in the CIM system. Device-array co-optimization. Variations in RRAM devices are diffi-
cult to eliminate because of the inherent filament-based conductive mechanism of RRAM. An array-level
boosting method is proposed to reduce the accuracy loss caused by the limited precision and noise of
RRAM [24]. The array-level spatial extended allocation method can reduce variations in addition and
averaging. RRAM arrays were replicated N times, and the average values of the array outputs were cal-
culated. In addition, the greedy spatial extended allocation (GSEA) algorithm is proposed to determine
the replication number N of each layer. The accuracy of ResNet-34 on the CIFAR-10 dataset with the
array-level boosting method is close to the software-based accuracy (93.2%), with approximately 56%
overhead of area usage and 36% of power consumption. Array-algorithm co-optimization. For the
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IR-drop problem, the diagonal matrix regression layer (DMRL) [25] method is proposed for array opti-
mization. It incorporates interconnect resistance effects and sneak path problems into the ex situ training
of neural networks. The derived gradient of the neural network is equal to the product of the standard
gradients and diagonal matrices of the DMR model [26]. Device-macro co-optimization. For the
read noise problem, a multi-bias column mapping method is proposed [21], which uses multiple columns
instead of one represented as bias. The mapping strategy is read-noise-tolerable with low energy and
area overhead. Device-chip co-optimization. For reliability degradation, an on-chip hybrid training
scheme can recover the accuracy loss [27]. This method can improve the accuracy of approaching the
baseline after several iterations.

2.4 Architectural optimization: M3D architecture

Analog RRAM arrays could perform VMM with extremely high energy efficiency. However, the frequent
data transfer between RRAM arrays and off-chip memory with limited bandwidth causes substantial
latency and limits the parallelism of the CIM. In addition, the AD/DA area and power overhead also
reduce system-level energy efficiency. Therefore, an M3D-based hybrid CIM architecture is proposed
to further improve energy efficiency and parallelism [28-30]. The M3D architecture can enable the
full implementation of large-scale neural networks with high efficiency [31]. The M3D chip consists of
three layers: the 1st Si CMOS layer, the 2nd CIM layer of 1T1R analog RRAM arrays, and the 3rd
processing-near-memory (PNM) layer based on complementary field-effect transistor (CFET) circuits
with CNT/IGZO. The dense interlayer vias between layers can provide ultra-high bandwidth. Intensive
VMM computations and data processing are performed by the CIM and PNM layers, respectively. An
enhanced deep super-resolution (EDSR) network is implemented on the M3D chip with 149X lower
energy consumption compared with the GPU. In addition, another M3D architecture of Si-based CMOS
logic, RRAM-based CIM, and carbon nanotube field-effect transistor (CNTFETs)-based ternary content-
addressable memory (TCAM) layers is demonstrated to implement one-shot/few-shot learning. It shows
162x lower energy consumption than the GPU [32].

3 CIM simulator

3.1 Hardware simulator

Simulator framework. A device-circuit-algorithm co-design simulator framework is built to provide
guidelines for designing CIM systems [2,33]. The RRAM-based CIM system can be optimized at five
levels, including neural network structures, quantization methods, data flow, circuits, and devices. The
co-design simulator considers the impact of each optimization level to realize high energy efficiency and
acceptable accuracy error. As shown in Figure 3(a), the weights of the neural network and datasets are
initially prepared. RRAM device parameters, such as on/off ratio, array size, and input/output precision,
are configured for the simulator to parse. Then, the weights are mapped onto multiple XBs according to
general matrix-matrix multiplications (GEMMs). Next, the XBs calculate the output based on the device
and array models. Finally, the simulator outputs the inference accuracy and total performance of the CIM
chips. A physics-based RRAM compact model is embedded in the framework (Figure 3(b)) [27,34-36].
Nonideal effects and reliability issues are fully considered in the inference and online training processes.
All the circuit modules of the XBs, as shown in Figure 3(c), are modeled for performance and accuracy
evaluation [15,25-27,36]. For the XB computation, the digital inputs are coded to analog voltage levels by
DACs. Then, the VMM is implemented on RRAM arrays, and the analog current outputs are quantified
by ADCs. The nonidealities of peripheral circuits are taken into account in the XB analog computing
model. In addition, the diagonal matrix regression (DMR) model is used to model the IR-drop effects [26].
To validate the simulator, it is calibrated with the fully hardware-implemented PCB-level multi-array
integrated system and 160 kb fully-integrated CIM chip (Figure 3(d)) [5,19,27]. The accuracy results
and circuit performance trends matched well during the hybrid training process.

Device model. The proposed physics-based RRAM compact model fully considered the nonideal
effects and reliability issues of analog RRAM devices, as shown in Figure 4. The HfOs-based analog
RRAM has a material stack of TiN/TEL/HfOo/TiN [37]. Its resistance switching is the result of the
formation and rupture of conductive filaments (CFs) in the HfOy layer. The analog RRAM is multiple-
weak-filament-based because of the percolation effect, and the oxygen vacancies (Vo) determine the
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Figure 3 The simulator framework. (a) Device-architecture-algorithm co-design [2,33]; (b) embedded compact models: retention,
I-V nonlinearity, variations affect the inference process, and endurance, bit yield, and weight update nonlinearity /asymmetry affect
the online training process [27,34-36] Copyright 2021 IEEE; (¢) XB analog computing model [15,25-27,36] Copyright 2021 IEEE;
(d) calibration with prototype hardware systems [5,19,27] Copyright 2020 Nature and 2020 IEEE.

number of CFs and the conductivity of each CF [9,27]. The connecting state can be described by the
gap length. A lower Vo density in one CF results in a longer gap length. The resistance state (RS)
of CFs is similar to the electron tunneling process through the gap. For the I-V nonlinearity [36], a
quantum point contact (QPC) model is used to describe the tunneling behavior (Eq. (1) in Figure 4).
For the programming process [36], the changes in the gap length and CF numbers are modeled based
on the directed percolation scheme (Egs. (2) and (3) in Figure 4). For endurance [27], to bridge the
final current states and endurance cycle number, the relationship between the final state and update
numbers is presented in Egs. (4) and (5) in Figure 4. For retention [27], in the higher RS, the gap length
determines the RS, and its change obeys Brownian motion. In the lower RS, the broken CF number
obeys the Poisson distribution. The probability density functions (PDF) of a higher RS and lower RS
are presented in Egs. (7) and (10) in Figure 4, respectively. The relaxation model [35] and thermal
model [38] are based on the statistical measurement results (Egs. (11)—(14) in Figure 4).

3.2 CIM compiler

For CIM chips, the dataflow can be blocked in the first several computing-intensive layers, resulting in
an unbalanced utilization of tiles. To bridge the gap between the algorithm and chip, the CIM compiler
is proposed to realize hardware-software co-optimization [15]. It has the ability to optimize the on-
chip dataflow by reallocating hardware resources. The compiler framework is shown in Figure 5(a).
The open neural network exchange (ONNX) format of the neural network is the input of the compiler.
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Figure 4 The analog RRAM device model considering nonidealities and reliability degradation [34] Copyright 2021 IEEE.

ONNX is parsed, analyzed, and optimized by frontend (Figure 5(b)). One optimization is the node
combination, such as splitting a CONV into a combination of VMM operations and fusing the CONV
and batch normalization (BN) layers into one layer. The other is critical path reforming, which entails
re-allocating remaining resources to computing-intensive layers to improve throughput and utilization.
Next, Frontend produces an optimized model, the intermediate representation data format file, which
includes the address information and operation types for each layer in the new model. Then, the backend
takes the intermediate representation as input and allocates hardware resources to the neural network
layers. Finally, it produces code that can be executed on CIM chips. Figure 5(c) shows the chip-in-loop
emulation. If one layer cannot be realized by real hardware, its address will be virtual, and the operation
of this layer is processed with the XB analog computing model (Figure 3(c)) based on PyTorch. If the
layer can be realized by real hardware, its address will be a specific location of the hardware, and VMM
operations of the layer will be executed on the RRAM chip.

By adopting the proposed compilation scheme, the throughput can be significantly improved for differ-
ent networks when the hardware resources are determined, as illustrated in Figure 6(a). When compared
to the networks without compilation, the throughput can be improved by at least several tens of times.

This work is compared with previous studies on the simulation platform of CIM chips on five repre-
sentative aspects: compilation optimization, hardware system support, inference model, training, and
on-chip verification (Figure 6(b)). Given a specific hardware architecture, our compiler can find an op-
timized deployment. With compilation optimization, it can automatically place various AI models on
hardware or simulators more reasonably. The compiler consolidated the hardware and simulator work-
flows, making the verification process faster and more convenient. To validate the proposed simulation
model, the results of the chips and simulator were compared.

4 Future perspectives

For the CIM architecture, the weight data are stored in RRAM arrays, but the IFM and OFM data
are still transmitted between the XBs and the off-chip memory. The amount of IFM and OFM data
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Figure 6 (a) Throughput optimization with compiler; (b) comparison with other studies [15].

is tremendous. To further eliminate the “memory wall”, novel architectures need to be proposed, such
as the M3D-based CIM architecture [31] and ADC-less architecture [39-41]. Furthermore, to improve
scalability and generality for more applications, hybrid digital-analog accelerators with reconfigurable
on-chip interconnection fabrics can be employed [42].
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