
SCIENCE CHINA
Information Sciences

October 2023, Vol. 66 200403:1–200403:19

https://doi.org/10.1007/s11432-023-3800-9

c© Science China Press 2023 info.scichina.com link.springer.com

. REVIEW .
Special Topic: Recent Progress of Fundamental Research on Post-Moore Novel Devices

From macro to microarchitecture: reviews and
trends of SRAM-based compute-in-memory circuits

Zhaoyang ZHANG, Jinwu CHEN, Xi CHEN, An GUO, Bo WANG, Tianzhu XIONG,

Yuyao KONG, Xingyu PU, Shengnan HE, Xin SI* & Jun YANG*

National Application Specific Integrated Circuit Center, Southeast University, Nanjing 210096, China

Received 23 April 2023/Revised 6 June 2023/Accepted 9 June 2023/Published online 21 September 2023

Abstract The rapid growth of CMOS logic circuits has surpassed the advancements in memory access,

leading to significant “memory wall” bottlenecks, particularly in artificial intelligence applications. To address

this challenge, compute-in-memory (CIM) has emerged as a promising approach to enhance the performance,

area efficiency, and energy efficiency of computing systems. By enabling memory cells to perform parallel

computations, CIM improves data reuse and minimizes data movement between the memory and the proces-

sor. This study conducts a comprehensive review of various domains of SRAM-based CIM macros and their

associated computing paradigms. Additionally, it presents a survey of recent SRAM-CIM macros, with a spe-

cific focus on the key challenges and design tradeoffs involved. Furthermore, this research identifies potential

future trends in SRAM-CIM macro-level design, including hybrid computing, precision enhancement, and

operator reconfiguration. These trends aim to resolve the tradeoff between computational accuracy, energy

efficiency, and support for diverse operators within the SRAM-CIM framework. At the microarchitecture

level, two possible solutions for tradeoffs are proposed: chiplet integration and sparsity optimization. Finally,

research perspectives are proposed for future development.

Keywords artificial intelligence (AI), compute-in-memory (CIM), static random access memory (SRAM)

Citation Zhang Z Y, Chen J W, Chen X, et al. From macro to microarchitecture: reviews and trends of

SRAM-based compute-in-memory circuits. Sci China Inf Sci, 2023, 66(10): 200403, https://doi.org/10.1007/

s11432-023-3800-9

1 Introduction

In recent years we have witnessed a growing number of artificial intelligence (AI) applications in the
fields of medicine, finance, transportation, and entertainment. The throughput required by AI models
is experiencing exponential growth, while the energy efficiency gains from scaling down are gradually
declining [1–4]. To bridge this “strong and weak molar” gap, compute-in-memory (CIM) is expected to
be a new principle of computing. On the one hand, by calculating inside the memory, it can signifi-
cantly reduce the number of data accesses. On the other hand, an order of magnitude multiplication of
computational energy efficiency can be achieved through different computing paradigms.

CIM refers to the latest computing paradigm that combines memory and computation within the
same hardware unit [5]. CIM promises to be the approach to improving the energy efficiency of AI edge
and AIoT devices [6]. Different from traditional computing systems, in which memory and processing
units are separate entities, leading to data transfer overheads and energy inefficiencies, CIM enables the
memory unit to perform computation, thus reducing data movement and improving energy efficiency [7].
As shown in Figure 1, the energy efficiency of traditional digital computing AI chips based on advanced
processes has been improved slowly. Meanwhile, CIM AI chips, while still immature in terms of multiple
data types and multi-operator support, have demonstrated their great potential in energy efficiency [8,9].

In recent years, memory cells employed in CIM circuits can be divided into volatile and non-volatile
memory devices [10–24]. Static random-access memory (SRAM) is currently one of the most mature and

*Corresponding author (email: xinsi@seu.edu.cn, dragon@seu.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-023-3800-9&domain=pdf&date_stamp=2023-9-21
https://doi.org/10.1007/s11432-023-3800-9
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-023-3800-9
https://doi.org/10.1007/s11432-023-3800-9
https://doi.org/10.1007/s11432-023-3800-9


Zhang Z Y, et al. Sci China Inf Sci October 2023 Vol. 66 200403:2
E

n
er

g
y
 e

ff
ic

ie
n
cy

 (
T

O
P

S
/W

)

0.25

2.75 6 13

24.7

44

2.3

0.54

0

10

20

30

40

50

60

70

80

90

100

2017 2019 2021 2023 2025

MIT
eyeriss
RS flow

KU leuven
envision
DVAFS

SRAM-CIM
8×8 bit

8×8 bit
8×8 bit

8×8 bit

SEU
FP-CIM

KAIST
UNPU
reconfigurable

Google

TPU-v4

Google
TPU-v3
Systolic

cambricon-X

sparsity

ICTAC

SRAM-CIM

von Neumann

based AI chips

Time

37.01

NTHU

27.8

PKU
SRAM-CIM

TSMC

Figure 1 (Color online) The energy efficiency of traditional digital computing AI chips and SRAM-CIM.

stable technologies that exhibits high speed and durability. The newly developed embedded non-volatile
memories (eNVM) such as phase-change random memory (phase-change RAM, PcRAM), spin-transfer
torque magnetic RAM (STT-MRAM), ferroelectric memory (ferroelectric RAM, FeRAM), and resistive
RAM (RRAM) are compatible with the CMOS BEOL process, and these emerging memories have high
array density, high energy efficiency but limited endurance. This paper mainly focuses on the development
of SRAM-CIM.

Figure 2 enumerates the representative studies at the macro and microarchitecture level CIM tech-
nology in recent years. After the rapid development of CIM technology over the span of years, both
academia and industry carried out a series of exploration and research in the fields of device types, com-
puting paradigms, and overall architectures. They applied CIM technology to machine learning, edge
computing, parallel computing, and reconfigurable computing initially, further verifying the feasibility of
CIM design and its great potential in AI applications.

The remainder of the paper is organized as follows. Section 2 introduces the computing paradigm
in SRAM-CIM macro design and challenges in its further development. Section 3 analyzes the design
tradeoffs of recent SRAM-CIM macros. Section 4 presents several potential research trends for SRAM-
based CIM at the macro and microarchitecture level. The conclusion is drawn in Section 5.

2 Computing paradigm in SRAM-CIM macro design

There are a large number of computational operations in AI-oriented applications. CIM was initially
designed to solve the multiply-accumulate (MAC) computation and memory access problem in convolu-
tional neural networks (CNNs). CNN and fully convolutional networks (FCNs) require a lot of pixel-by-
pixel and channel-by-channel MAC computation, and their large number of MAC and memory access
operations consume a lot of energy. The CIM computing paradigm achieves fast MAC operations by in-
volving multiple weight values stored in SRAM arrays in bitwise multiplication with input feature values
and completing accumulation through accumulation paths, which greatly reduces computational energy
consumption. The core lies in how to efficiently perform “in-memory multiplication” and “in-memory
accumulation”.

At the early stage of the development of CIM macro, traditional digital computing was superseded
by analog computing, which reduced the computational energy consumption by replacing the digital
quantity with analog quantity to complete MAC, but at the same time introduced computational er-
rors and reduced the computational accuracy due to the non-ideal characteristics of the device and the
fluctuation of the PVT (process, voltage and temperature) environment. To address these problems,
some researchers started to focus on the use of partial digital computing instead of analog computing to



Zhang Z Y, et al. Sci China Inf Sci October 2023 Vol. 66 200403:3

10T CSRAM

BWN@ISSCC 18

SRAM-CIM

(macro level)

4b-T8T SRAM CNN 

@ISSCC 19

6T-SRAM Classifier

DSC6T SRAM

BNN@ISSCC 18

Classifier SVM

@ISSCC 18

Sandwich-RAM

BWN@ISSCC 19

XNOR-SRAM

@VLSI 18@VLSI 17@VLSI 16

4+2T SRAM

55 nm@VLSI 17

BRein Memory

8b 6T-SRAM-CIM

@ISSCC 20

8b SRAM-CIM

training@ISSCC 20

4b SRAM-CIM 7 nm

Finfet CMOS@ISSCC 20

4b All-Digital SRAM-

CIM@ISSCC 21

Time-based-SRAM

@ISSCC 19

8b Compact-6T-

SRAM-CIM@ISSCC 21

AI-Accelerator

+6T-SRAM

@ISSCC 19

Compute SRAM

@ISSCC 19

AI-Accelerator+T8T AI-Accelerator+6T

SRAM-CIM@ISSCC 20 SRAM-CIM@ISSCC 21

AI-Accelerator+8T

SRAM-CIM@ISSCC 22

AI-Accelerator+8T

SRAM-CIM@ISSCC 23

AI-Accelerator+8T1C

SRAM-CIM@ISSCC 21

SRAM-CIM

(microarchitecture level)

Precision programmable

6T-SRAM-CIM@JSSC 21

1-8b Configurable 

SRAM-CIM@JSSC 20

Ultra-low leakage 6T-

SRAM-CIM@ISSCC 22

4b Digital SRAM-CIM

5 nm @ISSCC 22

1-8b Reconfigurable 

SRAM-CIM@ISSCC 22

8b Low-Latency-

Time-domain SRAM-CIM

@ISSCC 22

AI-accelerator digital

FPCIM@ISSCC 22

BF 16 float point 

SRAM-CIM@ISSCC 23

8b DW-Cov SRAM-CIM

Mobile-Net@ISSCC 23

Hybrid float-point

SRAM-CIM@ISSCC 23

8b Analog SRAM-CIM

@ISSCC 23

2016 2017 2018 2019 2020

AI-Accelerator+6

2021

AI-Accelerator+8T

2022

AI-Accelerator+8T

2023

AI-Accelerator+8/10T

SRAM-CIM@ISSCC 23

INT 8b 6T-SRAM-

CIM@JSSC 21

Figure 2 (Color online) The representative studies on SRAM-CIM.

achieve the guarantee of computational accuracy, while others centered on the architecture of sufficiently
flexible and reliable analog computing circuits. This section reviews the silicon-verified SRAM-CIM
macros in academia and industry in previous years and classifies them as time domain [25–41], current
domain [42–54], charge domain [55–70], and digital domain [71, 72] according to different computation
paradigms. In these schemes, the logic operation of analog domain computation (time domain, electric
domain, voltage domain) is implemented by modifying the standard 6T SRAM cell or adding transistors
to the logic operation. Digital domain computation is achieved by adding logic gates next to the SRAM
bit-cells or next to the SRAM array to complete more logic operations. Each computing paradigm has
its own characteristics, and this section concludes with a comparative analysis of the advantages and
disadvantages of each one.

2.1 Time domain CIM

In the time domain, data is expressed in terms of pulse widths or path delays, where MAC is achieved
by varying the pulse width proportionally [31] or by comparing the time difference between the rising
edges of the pulses [38, 40]. A time-to-digital converter (TDC) is required for readout. As pulses in
time domain computing have rare switching activity, energy consumption is low and is more in line
with the trend towards data-intensive applications. Time-domain-CIM (TDCIM) is therefore the ideal
CIM architecture for implementing energy-efficient edge AI processors. The time-domain computing
moves beyond the limits of the dynamic range of analog signals, and larger data features wider pulses,
which in theory can be extended in width indefinitely. However, due to time-domain computing unfolds
computation and quantization in the time domain, the computation is relatively slow and the larger the
data is, the longer the computation takes, thus reducing the arithmetic power of the memory computation
unit.

This subsection examines a selection of silicon-verified SRAM-CIM studies adopting time domain
computing paradigm (see Table 1) [31, 38, 73].

2.1.1 Sandwich-RAM

Yang et al. [31] proposed a “sandwich” structure-based SRAM-CIM circuit design. The CIM macro stacks
weights, eigenvalues, and MAC operations on top of each other, the design utilized a tightly coupled



Zhang Z Y, et al. Sci China Inf Sci October 2023 Vol. 66 200403:4

Table 1 Comparison table of time-domain SRAM-CIM studies

Reference ISSCC19 [31] JSSC21 [73] ISSCC22 [38]

Technology (nm) 28 28 28

Supply voltage (V) 0.6–0.9 0.55–1.05 0.65–0.9

Cell-structure

Bit-cell 8T 8T 6T+EDC

Input precision 8 8 8

Weight precision 1 1–8 8

Output precision 8 8 22

Energy efficiency (TOPS/W) 46.6 60.18 37.01

memory-computation-storage structure shaped like a “sandwich” and uses a pulse width modulation
(PWM) unit (PWMU) based time domain computation circuit to perform MAC operations. Pulse
quantizer by replica delay units (PQRDC) converted the calculated pulse into a digital output. In
addition, a delay-sensitive control-voltage generator (DSCVG) was put forward to dynamically track the
PVT variation in order to improve the accuracy and power efficiency of the analog calculation. Two
energy efficiency enhancement schemes that reduce the amount of computation in the memory were also
proposed to improve power efficiency. The design was flow-tested and validated for use in a binary weight
network (BWN), resulting in a peak power efficiency of 119.7 TOPS/W.

2.1.2 TIMAQ: a time-domain computing-in-memory based processor

Yang et al. [73] proposed a TD-CIM-based processor TIMAQ. Supporting both convolutional (CONV)
and fully connected (FC) layers in 1-8b NUQ (nonuniform quantization)- and UQ (uniform quantization)-
DNNs (deep neural networks), this design employed a time-domain CIM macro cell to implement con-
volution for bitmap convolutions. TD-CIM macros used PWM to perform MACs. The bit-cell used a
read/write separated 8T structure to read out the 8b data into the pulse delay cell. The PDC (pulse delay
cell) adopted a delay chain structure with separate MSB (most significant bit) and LSB (least significant
bit). The delay chain internally used a 2–4 decoder to convert the 2-b data into four voltage control
pulse widths from V0–V3. This macro can compute 1152 MACs each time. TIMAQ achieved 60.18 and
29.78 TOPS/W system-level energy efficiency for 1-b and 2-b uniform quantized DNNs.

2.1.3 Time-domain computing-in-memory 6T-SRAM macro

Wu et al. [38] developed a 28 nm 1 Mb SRAMmacro. This time domain CIMmacro employed standard 6T
bit-cell. The 2-column SRAM array shared a single delay computing unit (DCU). The input 2-bit data was
converted into an analog input voltage (VSS, V01, V10, or V11) to the MUL node. The modulation of the
gate delay by different inputs and weights resulted in a delay of kt between the input and the output, which
characterizes the multiplication result and transmits the delay to the next level. The EDC (edge-delay
cell) introduces an intrinsic delay (t0) when the result is 00. When the result is 01, the EDC generates
a delay of t0 + ∆t, where ∆t represents the delay-step of the EDC. In this work, we have set ∆t to be
30 ps, resulting in remarkably low latency. This work also proposed dynamic a differential-reference TDC
(D2REF-TDC). Faster TDC quantization is achieved by different REF values adopted bias reference
differencing. This work registered a 6.6 ns access time (tAC) and a 37.01 TOPS/W energy efficiency for
a nearly full output-ratio (22b-OUT).

These designs have demonstrated progressive moving towards higher accuracy and shorter computation
times in recent years, as well as increased energy efficiency in time-domain CIM. Since the most distinctive
feature of time-domain computing is the accumulation of results by delay, it is still difficult to break
through the logical operations outside the MAC for time-domain CIM.

2.2 Current domain CIM

In the current domain, data is expressed in terms of the magnitude of the current and the MAC is
implemented by the accumulation of current on the current accumulation line. The readout requires an



Zhang Z Y, et al. Sci China Inf Sci October 2023 Vol. 66 200403:5

Table 2 Comparison table of current-domain SRAM-CIM studies

Reference ISSCC19 [44] ISSCC20 [46] ISSCC23 [74]

Technology (nm) 55 28 28

Supply voltage (V) 0.7–1.0 0.7–0.9 0.6–0.9

Cell-structure

Bit-cell T8T 6T+LCC SW6T+CSU

Input precision 4 8 8

Weight precision 5 8 8

Output precision 7 20 20

Energy efficiency (TOPS/W) 18.37 16.63 33.44

analog-to-digital converter (ADC) and the SRAM reads the data based on the bit line voltage value.
Some of the current domain CIM designs utilize the BL (bit line) accumulation current to achieve MAC
operation by changing the specification of the bit-cell while turning on multiple lines of words [43, 44].
Some of the current domain CIM designs implement the current representation of multiplication results
through local computation cells, in conjunction with the use of external current accumulation lines to
accumulate current for MAC operation [46,74]. The use of current domain computation allows for highly
area-efficient and energy-efficient computation in a neural network accelerator. However, since current
domain computation converts digital signals into analog signals for computation and quantization into
digital signals. The reliance on high performance digital-to-analog converters (DACs) and ADCs increases
the overhead of the circuit and reduces the computational power of the stored computational units.

The compute current variation in this process is influenced by the operating state of the transistors.
Transistors are subject to variations due to process variability, temperature effects, and power supply
noise. To address these variations, dummy computing modules are commonly incorporated to provide a
reference current for calibration purposes. By comparing the current outputs of the actual computation
modules with the reference current, adjustments can be made to compensate for the compute current
variation. Furthermore, the compute current variation of the quantization circuit is dependent on its
specific quantization methodology. In the quantization process, the conversion of current into voltage is
typically achieved using resistors or capacitors. However, the introduction of resistors and capacitors in
the quantization circuit introduces variations in capacitance and resistance. These variations contribute
to the overall compute current variation, resulting in a more significant cumulative effect.

This subsection examines some of the silicon-verified SRAM-CIM studies using the current domain
computing paradigm (see Table 2) [44, 46, 74].

2.2.1 A twin-8T SRAM computation-in-memory macro

Si et al. [44] designed a CIM macro based on twin 8T SRAM cells. The 2 bit weights were stored in two
immediately adjacent 8T SRAM cells, the right LSB cell used a standard 8T bit-cell with a discharge
tube control of 1× for the readout bit-line (RBL), and the left MSB cell increased the output discharge
tube so that its discharge current to the RBL was LSB twice as much, the left and right bit-cell shared
a common current accumulation line, realizing a tightly coupled multi-bit weight calculation at the same
time, achieving 4 discharge stages through the RWL (read word line) voltage, and reflecting 16 current
differences on the RBL. The solution ultimately reached an energy efficiency of 72.1 TOPS/W.

2.2.2 A 28 nm 64 Kb 6T SRAM-CIM macro with LCC

Si et al. [46] proposed a CIM macro for CIM based on a local computation cell, featuring up to 8b-IN,
8b-W, and 20b output accuracy. At the level of data mapping and computational texture, this work
uses weight bit MAC operation to extend sensing margins and improve IN/W/OUT accuracy. At the
architectural level, this work uses 6T local computing cells (LCC) for compact area and robust reading
of process variations, this research achieved an energy efficiency of 16.63 TOPS/W.



Zhang Z Y, et al. Sci China Inf Sci October 2023 Vol. 66 200403:6

2.2.3 A 28-nm separate-WL 6T-SRAM-CIM unit-macro

Wang et al. [74] proposed a CIM macro at both the architectural and circuit levels. At the architectural
level, a flexible and configurable memory-computing array was proposed for the first time, which supports
two data mapping methods, improving array utilization and greatly reducing data update costs. At the
circuit level, (a) a shift-multiply-add local computation unit embedded in a separate word line SRAM
array was proposed for the first time to support CIM and low data update cost convolutional longitudinal
shift operations. (b) A weighted transverse shift circuit and alternate load-computation scheme were
developed to efficiently perform convolutional transverse shift operations while significantly reducing
data storage overhead. (c) A current-digital quantization readout circuit with computational current
tracking was established. The proposed current-digital quantization readout circuit (CCT-CDC), with a
shared reference current generation circuit and a “three-step quantization” readout acceleration scheme,
significantly improved the area efficiency of the storage array while reducing the computation-readout
access time compared to conventional SAR (successive-approximation register) ADCs.

Previous studies have reported innovations in the design of the bit-cell. Unique designs paired with
custom-designed data mapping methods and calculations have achieved greater energy and area efficien-
cies. However, the issue of analog-to-digital conversion overhead in current domain computing remains
challenging.

2.3 Charge domain CIM

In the charge domain, the data is expressed in terms of voltage magnitude. The individual multiplication
results are fed into a parallel array of capacitors, and then the redistribution of charge on the capacitors
completes the MAC operation. An ADC is required for readout. Since charge domain calculations usually
require charge sharing on the columns, MAC calculations are often implemented at the architectural level
using a read/write separated bit-cell structure with word-lines turned on at the same time. This achieves
a very high memory-to-computation ratio. Moreover, capacitive coupling and charge sharing schemes
usually achieve a high degree of linearity and improve the accuracy of the calculation. As with the
current domain, the charge domain also requires the introduction of a large number of DACs and ADCs,
adding a lot of additional circuit overhead.

This subsection outlines some of the silicon-verified SRAM-CIM studies that adopt charge domain
computing paradigm (see Table 3) [69, 75, 76].

2.3.1 A 28 nm 384 kb 6T-SRAM computation-in-memory macro

Su et al. [69] proposed a charge domain SRAM-CIM macro. At the overall architecture level, a segmented-
BL charge-sharing (SBCS) scheme was used to share the results of local operations with the rest of the
operations for overall charge sharing. A conventional 6T structure was applied to the bit-cell, paired with
a new LCC cell called the source injection local multiplication cell (SILMC), which separated storage from
computation. Reducing area overhead with a prioritized-hybrid-ADC (Ph-ADC) at the analog-to-digital
conversion level, this work supported the accumulation of 8b inputs and 8b weights on 16 channels, with
near-full precision outputs. This macro achieved a 7.2 ns tAC and a 22.75 TOPS/W energy efficiency.

2.3.2 A fully bit-flexible computation in memory macro

Yao et al. [76] proposed a fully bit-flexible CIM macro. A CIM computing bit cell (CIMC) was formed
using a conventional 6T cell on a bit-cell with gates, non-gates, and capacitors. The four operating
modes were standard read/write access, 1-b×1-b MAC, reference voltage generation, and memory A/D
conversion. This design improved area efficiency and reduced ADC overhead. This work also adopted
an embedded input sparsity sensing and an automatic on-chip reference voltage generation scheme on
the ADC circuit. Adaptive dynamic range extension based on real-time input sparsity characteristics
was achieved. In addition, the use of interleaved layouts and the CIMC structure enabled simultaneous
CIM and writing ping-pong operations. The energy efficiency of the proposed CIM design reached
383 TOPS/W(1×1).

2.3.3 PVT-insensitive 8b word-wise ACIM

Hsieh et al. [75] proposed a 12 nm FinFET CIM macro. The charge-sharing MAC achieved PVT-
insensitive linear 1bIN 1bW accumulation. The multiplication of 8 bit IN with 1 bit W was implemented



Zhang Z Y, et al. Sci China Inf Sci October 2023 Vol. 66 200403:7

Table 3 Comparison table of charge-domain SRAM-CIM studies

Reference ISSCC21 [69] JSSC23 [76] ISSCC23 [75]

Technology (nm) 28 28 12 Finfet

Supply voltage (V) 0.7–0.9 0.7–0.8 0.7–0.8

Cell-structure

Bit-cell 6T+SILMC 6T+AND+NOR+1C 9T

Input precision 8 1/4/8/16 8

Weight precision 8 1/4/8/16 8

Output precision 20 8 8

Energy efficiency (TOPS/W) 22.75 5.98 86.27

at the memory structure level using a 6T bit-cell + 3T transfer tube control logic structure. The 8-bit W
stored in the SRAM was divided into a 4-bit LSB and a 4-bit MSB, which corresponded to a capacitive
array of 1, 2, 4, and 8 C respectively for capacitive coupling. The coupling charges of the LSB and MSB
were shared on the 64 channels and fed into the 8 bit SAR ADC via a buffer at the output. This achieved
a 70.85–86.27 TOPS/W energy efficiency and more than 10b linearity.

The studies have provided evidence that work in the charge domain in recent years was designated
to solve different paradigms of capacitive coupling and charge distribution and the corresponding energy
efficiency improvements in ADC quantization circuits. So far, current operations are mainly confined to
traditional MAC operations, and there have been limited attempts at new operators.

2.4 Digital domain CIM

In the digital domain, the data is represented as the output of a logic gate and an adder tree, where
the MAC is implemented by multiplying the logic gate to obtain a partial product and using the adder
tree to achieve accumulation. The data is always stored and calculated in digital form. There is no need
for additional DACs and ADCs. Since the addition and multiplication in digital domain calculations
are implemented using digital circuitry, full precision outputs can be achieved with an output ratio of 1.
However, the accumulation of digital domain calculations relies on the adder tree, leading to a significant
area overhead within the array. Digital domain computation addresses the problem of low accuracy in
analog domain computation, allowing greater data throughput and better adaptation to a wider range of
data types (binary, INT8, BF16). In spite of that, compared with analog domain computation, the less
sensitivity of the digital domain to data sparsity causes an unnecessary loss of energy efficiency.

This subsection reviews some of the silicon-verified SRAM-CIM studies that use digital domain com-
puting paradigm (see Table 4) [71, 72, 77].

2.4.1 An all-digital SRAM-based full-precision CIM macro in 22 nm

Chih et al. [71] proposed the first all-digital SRAM-CIM macro. The bit-cell used a conventional 6T
structure with a non-gate to implement multiplication. Due to the additive flexibility of numeric domain
calculations, arrays could support input activations with programmable bit widths (1–8 per macro),
signed or unsigned, and weights with four different bit widths (4, 8, 12, or 16). The parallelism of the
MAC was enhanced at the architectural level using a new architecture based on bit-serial multiplication
and parallel adder trees. A 30 percent improvement in energy efficiency was achieved by interleaving 14T
and 28T full adders in the adder tree. This work accomplished 89TOPS/W energy efficiency in a 22 nm
logic process.

2.4.2 A signed-INT8 dynamic-logic-based ADC-less SRAM-CIM macro

Yan et al. [72] proposed an ADC-less SRAM-CIM macro. Reconfigurable local processing units (RLPUs)
within bit cell arrays supporting reconfigurable bit operations including AND, XOR, and OR. Dynamic
logic makes more operator support possible. The summation circuit was implemented using an adder
tree, and a bypass design was added to the adder tree so that it can support the depth-wise convolution
of the mobile-net. This work also extended the MAC operation to vector matrix multiplication (VMM)



Zhang Z Y, et al. Sci China Inf Sci October 2023 Vol. 66 200403:8

Table 4 Comparison table of digital-domain SRAM-CIM studies

Reference ISSCC21 [71] ISSCC22 [72] ISSCC23 [77]

Technology (nm) 22 28 28

Supply voltage (V) 0.72 0.8 0.6–0.9

Cell-structure

Bit-cell 6T+NOR 6T+RLPU DB6T+HFMC/LAMC

Input precision 1–8 1–8 8

Weight precision 4/8/12/16 1/4/8 8

Output precision 16/24 8/21 23

Energy efficiency (TOPS/W) 24.7 27.38 44

and vector Hadamard product (VHP) calculations, expanding the application scenario of CIM. This work
achieved 19.21–35.55 TOPS/W energy efficiency in signed 8b integer (INT8) inputs and weights.

2.4.3 A 28 nm 64-kb digital-domain macro for floating-point CNNs

Guo et al. [77] proposed a floating-point convolutional neural network oriented digital CIM macro, which
adopted double 6T cell and high bit full precision low bit approximate computing unit structure, reaching
the highest energy efficiency compared to previous studies while taking into account the tradeoff among
energy efficiency, area efficiency, and memory density. The double-6T structure using split word lines
on the bit-cell allows 2 bit weights to be read out in the same cycle to participate in the calculation.
The partial approximation, partial full precision calculation approach accomplishes an optimal trade-off
between energy efficiency, area efficiency, and calculation accuracy. This work achieved 31.6-TFLOPS/W
energy efficiency in BF16.

As suggested by the research above, the work in the digital domain in recent time has mainly been
exploring different approaches to data mapping and logical computer reasoning, as well as area efficiency
improvements in adder trees. These studies focus on the trade-offs between output ratio, inference
accuracy, and circuit overhead. However, the overhead of the adder tree is difficult to avoid, and the
overhead ratio of the whole circuit is still large. This overhead limits further improvements in the energy
efficiency of the digital domain SRAM-CIM.

The charge domain computing fits better with the characteristics of SRAM cell read operations, but
there are some drawbacks. The charge domain is graded by voltage, with each voltage value corresponding
to one piece of data, and since there is an upper limit to the operating voltage, a sufficient voltage margin is
required for each voltage level. Furthermore, as high energy efficiency forces the operating voltage towards
the near threshold, the dynamic range of the voltage signal is further reduced, and its disadvantage of
insufficient voltage margin is gradually amplified.

The current domain computing is similarly limited by the dynamic range of the analog signal. At
the same time, the high computational currents in electrical basin calculations result in relatively high
computational energy consumption. In order to improve throughput in electric basin computing, it is
necessary to increase the number of parallel computations, which in turn leads to higher computing power
consumption. Currently, there is no optimal solution to address the trade-off between throughput and
computing power consumption.

In theory, time domain computing can have infinitely scalable pulse widths, with less flip-flopping
of the computational signal and lower energy efficiency. However, by unfolding the computation and
quantization in the time domain, it is susceptible to PVT fluctuations and the computation speed is
relatively slow.

Although digital domain computation has seen a significant improvement over the analog domain
computation described above in terms of dynamic reconfigurability, type of computational logic, and
computational accuracy modulation, the area overhead of digital logic remains inefficient.

In summary, each of the four computational approaches has its own advantages and disadvantages,
and there are trade-offs among them that will collectively navigate in-deposit computing into the future.



Zhang Z Y, et al. Sci China Inf Sci October 2023 Vol. 66 200403:9

0

10

20

30

40

50

60

70

80

90

100

0.2 0.4 0.6 0.8 1

E
n
er

g
y
 e

ff
ic

ie
n
cy

n
o
rm

al
iz

ed
 t

o
 8

 b
it

×
8
 b

it

(T
O

P
S

/W
)

Output ratio

108.87 [62]

86.27 [75]

55.8 [11]

18.37 [44]

22.75 [69]

16.63 [46]
14.24 [74]

Figure 3 (Color online) Tradeoff between output ratio and energy efficiency.

3 SRAM-CIM design tradeoffs

In the initial SRAM-CIM work, various institutions and companies have made some explorations on the
design of CIM macros. However, from an architecture perspective, completing the design of macros alone
does not enable a complete AI computing deployment. In addition to CIM macro, supporting memory
layers, data flow, and instruction design, are needed to form a complete AI acceleration core or even
a system-on-chip that enables AI computing. Therefore, in recent years, there have been a number of
microarchitecture designs based on CIM macro.

This section analyzes the tradeoffs in SRAM-CIM at both the macro and microarchitecture levels.
The design tradeoffs are found through the analysis of the silicon-verified SRAM-CIM macro. The design
tradeoffs of microarchitecture are sought through an abstract analysis based on the existing macro work.

3.1 Tradeoffs at the macro level

There are many tradeoffs and considerations in the design of the SRAM-CIM macro. Energy efficiency,
as one of the most significant metrics, has always been the focus of research by various institutions and
companies. High energy efficiency enables higher computing throughput with lower energy, making it
possible to use larger amounts of data and more complex network types. By analyzing the parameters
of the recently silicon-verified SRAM-CIM operation, this work identifies three important metrics that
constrain the energy efficiency of SRAM-CIM and points out the potential for further breakthroughs.

3.1.1 High energy efficiency and high precision

In both analog and digital domain CIM, higher precision requirements will bring additional overhead
to the circuit. In analog domain computing, higher accuracy is accompanied by more digital-to-analog
conversion and analog-to-digital conversion overhead. In digital domain computing, higher precision is
associated with more digital logic circuit overhead.

As shown in Figure 3 [11, 44, 46, 62, 69, 74, 75], the output ratio (actual output accuracy/theoretical
output accuracy) of existing CIM is inversely proportional to energy efficiency under different data accu-
racy requirements. Therefore, in many efforts to pursue energy efficiency, higher energy efficiency is often
achieved by reducing the output ratio. For neural networks with good robustness, such as VGG (visual
geometry group) networks, a low output ratio will not affect its reasoning accuracy [5]. However, for
other networks with high precision requirements, a higher output ratio is essential for general purposes.

3.1.2 High energy efficiency and high throughput

There is often a trade-off between throughput and energy efficiency in SRAM-CIM. On the one hand,
increasing the throughput typically involves increasing the clock frequency or parallelism of the CIM
macro. This can result in higher power consumption due to increased activity and more frequent data
movement. Additionally, more power may be required to drive the larger number of transistors in the



Zhang Z Y, et al. Sci China Inf Sci October 2023 Vol. 66 200403:10

0

5

10

15

20

25

30

35

40

45

50

0.2 0.4 0.6 0.8 1

E
n
er

g
y
 e

ff
ic

ie
n
cy

 n
o
rm

al
iz

ed
 t

o

8
 b

it
×

8
 b

it
 (

T
O

P
S

/W
)

27.38 [72]

21.38 [78]

13.6 [80]

24.7 [71]

11.71 [79]

Throughput normalized to 8 bit×8 bit (TOPS)

Figure 4 (Color online) Tradeoff between throughput and energy efficiency.

macro. On the other hand, improving energy efficiency often involves reducing power consumption
through techniques such as reducing supply voltage or minimizing data movement. However, these
techniques may lead to lower throughput due to slower operation or reduced parallelism.

As shown in Figure 4 [71, 72, 78–80], throughput and energy efficiency showed an inverse relationship.
Throughput measures the area efficiency of the CIM design, energy efficiency measures the energy con-
sumption performance, one corresponds to the area overhead of the design, the other corresponds to
the power overhead. When the design focuses on area optimization, it is difficult to optimize energy
consumption at the same time, which is a tradeoff in design. With the development of technology and
design progress, the FOM (figure of merit) of computing power density and energy efficiency is gradually
increasing.

3.1.3 High energy efficiency and reconfigurability

So far, CIM can only support the calculation of certain layers of some networks since it gained attention.
The remaining layers of the network still rely on conventional digital circuits for acceleration, which may
limit the further improvement of system-level energy efficiency. As a result, CIM gradually moves towards
universality, which requires CIM to support more operators and cover most or even all network layers,
further reduce the data handling of CIM macro, external storage and external logical operation circuits.

As Figure 5 [72,74,77,81] shows, more operator support contradicts greater energy efficiency. Current
energy-efficient CIMs support only specific operators, such as MACs. However, the need for operator
support grows as networks and network layer operations increase, which have to be realized through
various reusable and reconfigurable logical operation units combined with unique data mapping methods.
This poses new challenges to the architecture design of CIM.

3.2 Tradeoffs at the microarchitecture level

Compared to CIM macro, there is more design freedom existing in the design of the SRAM-CIM microar-
chitecture. There are two key aspects of CIM microarchitecture design. One is the memory hierarchy
design and the other is the dataflow design. As shown in Figure 6, this work evaluated a more basic typ-
ical CIM-based AI microarchitecture, with a three-level structure of two levels of SRAM buffer and one
level of CIM computation. The calculation is processed by six INT8-CIM macros. The test performance
of silicon verification is used as model parameters of the CIM macro.

A typical Conv2 layer in ResNet18 is developed on the proposed AI-core architecture using the Ima-
geNet dataset. The area overhead and energy consumption of each part are evaluated by pairing existing
macro-level work with abstract analysis. The evaluation result identifies two important metrics that
constrain the SRAM-CIM microarchitecture, and points to the potential for further breakthroughs.

3.2.1 Memory size and system performance

Under the initial conditions of a single conv2 layer with a 256 kB shared memory, a 32 kB local memory,
a 128 B feed register and a 64 B accumulation register. The analysis has estimated the area and energy



Zhang Z Y, et al. Sci China Inf Sci October 2023 Vol. 66 200403:11

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5

E
n
er

g
y
 e

ff
ic

ie
n
cy

 n
o
rm

al
iz

ed
 t

o

8
 b

it
×

8
 b

it
 (

T
O

P
S

/W
)

Number of operators

33.44 [74] MAC+DW

27.38 [72] XOR+OR+AND

44 [77]

18.09 [81] ADD+

SHIFT+MAC+

XOR+INV

Figure 5 (Color online) Tradeoff between operators and energy efficiency.

Macro0

Feed Reg.

Macro1

Feed Reg.

Macro2

Feed Reg.

Macro3

Feed Reg.

Macro4

Feed Reg.

Macro5

Feed Reg.

Local memory
P

ar
ti

al
 S

u
m

 R
eg

.
Special

function

unit

Shared memory

Off-chip memory

Data 

reshape

23b

27b-29b

25b-29b

8b

...

Figure 6 (Color online) A CIM-based AI microarchitecture.

CIM macros 64.76%

Shared memory 30.05%

Partial sum register 0.1%

Feed register 0.47%

Local memory 4.63%

Area overhead

Local memory 42.89%

Shared memory 8.17%

Partial Sum register 1.7%

Energy overhead

Feed register 17.38%

CIM macros 12.82%Offchip memory 8.17%

(a) (b)

Figure 7 (Color online) (a) Area and (b) energy overhead of CIM microarchitecture.

efficiency of each part of the circuit.

As shown in Figure 7, CIM macros have the largest area overhead, accounting for 64 percent of the
total area. Meanwhile, local memory has the largest energy consumption. As the feature is serially input,
there is data multiplexing at the input register level for different bit feature values. 128 2bits-feature is
fed to each CIM-macro in four cycles by feed register.



Zhang Z Y, et al. Sci China Inf Sci October 2023 Vol. 66 200403:12

0

2

4

6

8

32 64 96 128

Energy consumption (µJ)

Feed register size (B)

10

12

3

4

5

6

7

8

100

150

200

250

300

350

400
System EE (TOPS/W)

Throughput (GOPS/mm2)

Energy consumption (µJ)
System EE (TOPS/W)

Throughput (GOPS/mm2)

0

5

10

15

20

64 128 192 256

Shared memory size (kB)

4

5

6

300

400

500

600

700

800
(a) (b)

Figure 8 (Color online) (a) Relationship between feed reg size and system performance; (b) relationship between shared memory

size and system performance.

As shown in Figure 8(a), when a larger feed register is used, the energy used to update data is
reduced and the system’s throughput and overall energy efficiency are significantly improved. As shown
in Figure 8(b), when larger shared memory is used, the power consumption of shared and off-chip memory
is significantly reduced. The throughput of the microarchitecture decreases slightly due to the larger
memory area. The reduction in computing time associated with larger storage results in improved overall
efficiency.

In summary, the larger the memory size used for caching, the easier data reuse in the microarchitecture.
Large memory size reduces some data moving overhead and makes the microarchitecture more energy
efficient. However, a large memory size will result in a large on-chip area, which will reduce area efficiency
and reduce throughput.

3.2.2 Dataflow and system performance

Data flow design is another focus of microarchitecture design. Network operators in different networks
have different data characteristics, and the characteristics of operations vary between different layers
of the same network. A shallow network has a smaller number of channels and a larger feature map,
and the feature is much larger than the weight. Therefore, shallow networks have a greater need for
shift operations and input of features. The deeper networks have a larger number of channels and
smaller features, and the weight is much larger than the feature, which often requires more weight update
operations and fewer feature shifts. This poses a major challenge to microarchitecture design in terms of
data flow scheduling and data mapping.

In the microarchitecture there are multiple macros of the same computation in parallel. As shown
in Figure 9, two types of parallelism exist when different macros are working simultaneously. Column-
parallel macros can process the same input feature at the same time, thus enabling the same feature to be
input to a column-parallel macro, but the full multiplicative sum of the results in a row is not available,
incurring some partial sum data storage overhead. The row-parallel approach is faster in obtaining the full
multiplication result, but requires different features to be entered, resulting in a larger input bandwidth.

In summary, the column-parallel mapping approach is more friendly for shallow networks with a small
number of channels, and the row-parallel approach is more friendly for deeper networks with smaller
feature maps. Column-parallel solutions require more shared memory while row-parallel solutions require
more feed register. The upper limit of data reuse for both mappings depends on the network.

4 From macro to microarchitecture: future trends of SRAM-CIM

Sections 1–3 describe recent research on SRAM-CIM. The advantages and disadvantages of different
computing methods are analyzed from the perspective of computational mechanisms. At the macro level,
tradeoffs between several key metrics are emphasized. At the microarchitecture level, the link between
data reuse, memory size, and system performance is analyzed. This section addresses the bottlenecks in
the development of SRAM-CIM and discusses potential directions for future SRAM-CIM work.



Zhang Z Y, et al. Sci China Inf Sci October 2023 Vol. 66 200403:13

64×(3×3×64=576)

64×(3×3×64=576)

576×(56×56=3136)

576×(56×56=3136)

64×3136

64×3136

× =

Filter

1×576

1×576

...

Macro × n

8128

128

...

IA shift

Partial sum

8

128
8

... 8

...

× =

...
8128

128

...

IA shift
8128

8
...

128

...

Macro × n Partial sum

Column-parallel mode

Row-parallel mode

(a)

(b)

Figure 9 (Color online) (a) Column-parallel data mapping and (b) row-parallel data mapping.

4.1 Future trends of CIM macro

The work of the macro level has received a great deal of attention in recent years. The research has
also encountered many contradictions as described above. Higher computational accuracy, higher energy
and area efficiency, and diverse network requirements are driving further work at the macro level. Three
potential trends are described in this subsection.

4.1.1 Hybrid computing

As mentioned above, energy efficiency has always been one of the most important indicators of SRAM-
CIM work. Much work has been done to mitigate energy overheads through simulations and approxima-
tions. However, the progressively larger data set models and increasingly complex neural network layers
have made it challenging to reduce the computational accuracy in exchange for high energy efficiency.
How to achieve a good balance between energy efficiency and computational accuracy is the focus of fu-
ture research in CIM. The hybrid domain computing paradigm can be a possible solution to outperform
the existing CIM architecture.

Hybrid domain SRAM computes in memory is a new computing paradigm that combines the benefits of
the digital domain and analog domain. Digital domain computing ensures full accuracy, but area efficiency
is low, and the energy efficiency improvements have come across a bottleneck. In contrast, analog domain
calculations have a limited accuracy and non-accurate calculation errors but are more area efficient
and energy efficiency improvements are easier to achieve. An implementable hybrid domain calculation
approach is proposed, where the low partial product of a multi-bit multiplication operation is calculated
using analog, and the high partial product is calculated using digital. As shown in Figure 10, in a recent
study, Tsinghua University and Southeast University jointly proposed a computational paradigm for
high level full precision low level approximation calculations. The work at Taiwan Tsing Hua University
implemented the low-bit approximation using the current domain paradigm and utilized time domain
computation for the exponential addition and subtraction operations of floating-point computation, taking
full advantage of the various computational paradigms.

Current hybrid domain computing is still confined to adding other computing paradigms to some
scenarios to improve some of the metrics. There is a lack of a systematic analysis of network characteristics
to match different network layers, network sparsity, network operator types, network data types, and
different computational paradigms. This will be the focus of future research.



Zhang Z Y, et al. Sci China Inf Sci October 2023 Vol. 66 200403:14

F[3]

AADD

AADD

AADD

AADD

Low precision 
calculation area

Full precision
calculation area

Mixed precision
calculation area

AADD

ADD

DD

DD

Low precision 
calculation area

Full precision
calculation area

D

D D

DD

A

D

Analog computing partial results

Digital computing partial results

F[2] F[1] F[0]

W[0]W[1]W[2]W[3]

F[3] F[2] F[1] F[0]

W[0]W[1]W[2]W[3]

Figure 10 (Color online) Two different types of hybrid domain CIM.

4.1.2 Precision reconfiguration

In the first stage, all work surrounding CIM work faced the need to quantify feature and weight data into
8-bit specific point data before mapping it into the SRAM array. As data in the same feature map may
have uneven data distribution, the quantization process introduces uncontrollable computational errors,
and relies on optimization of the mapping algorithm and a series of redistribution and retraining of the
weights, resulting in a lot of off-chip energy overhead. It is imperative to introduce more precise data
types.

As AI tasks become more and more complex, floating-point MAC is needed to ensure ideal perfor-
mances. In computer science, floating-point refers to a numerical representation format that allows a
computer to store and manipulate real numbers (numbers with fractional values). A floating-point num-
ber is represented in binary form as a sign, a mantissa (also known as a significand), and an exponent. The
sign indicates whether the number is positive or negative, the mantissa represents the significant digits
of the number, and the exponent indicates the position of the decimal point. The floating-point format
is used in most programming languages and is essential for many scientific and engineering calculations
that require high precision.

The current floating-point CIM solution is “global floating-point, local fixed-point”. Compared with
pure floating-point in the past, this solution employs a common index over a range of time, taking
advantage of the high dynamic and high accuracy characteristics of floating-point, while making the
best of the similarity of the network in the local data. At present, a common exponentiation scheme is
widely applied in floating-point operations, which converts common points to fixed points and combines
common points with the mantissa which is computed by CIM macro into floating-point result. However,
this process creates additional overhead on the circuit. Given this, further research needs to be carried
out to reduce the overhead of over floating-point extraction or find alternative floating-point solutions.

4.1.3 Operator reconfiguration

Along with the rapid development of AI, more complex application scenarios have come into being,
with emerging scenarios such as face recognition and binocular ranging bringing in new operators. The
original MAC-based operators for CIM have difficulty supporting the new tasks. Multi-operator sup-
port in SRAM-CIM refers to the ability of the memory array to perform multiple arithmetic or logical
operations in parallel on the data stored within it. This feature can significantly improve the perfor-
mance of many computational tasks, such as matrix multiplication, convolutional neural networks, and
encryption/decryption.

To implement multi-operator support in SRAM-CIM, the memory array must be equipped with mul-
tiple compute cells that can perform arithmetic or logical operations on the data stored in their local
memory cells. These computing cells are usually connected via control signals to an external network
at the top level, enabling them to be configured and selected for different operations. Current work
implements different operators’ support through the design of unique local computational cells, which
often need to be paired with different data representations, such as binary complement. However, be-
cause often only basic logical operations are supported, it is difficult to implement functions like MAC,



Zhang Z Y, et al. Sci China Inf Sci October 2023 Vol. 66 200403:15

Silicon interposer

3D-stacked 
memory

CIM-based

AI coreCPU

CIM-based

AI corePHY/IOs

Substrate

Figure 11 Profile map of Chiplet based AI chip.

making SRAM-CIM not flexible enough compared with the digital logic of the traditional von Neumann
architecture. Based on that, configurable multi-operator support would be a potential direction for future
research.

Overall, multi-operator support in SRAM-CIM has the potential to revolutionize computing by pro-
viding highly efficient and scalable processing-in-memory solutions for a wide range of applications.

4.2 Future trends of CIM microarchitechture

The work at the micro-architectural level is an important step in the evolution of CIM into applications.
The contradictions in the current microarchitecture work are also described above. The area overhead
of various memories is a key design point for microarchitectures. So how to break the z-constraint of
memory area versus system performance has become the focus of research.

4.2.1 Chiplet

There are considerable challenges to deploying large-scale networks onto CIM microarchitecture. Typi-
cally, high throughput chip designs require larger on-chip areas and advanced technology nodes to provide
more computing resources and higher area efficiency. Nevertheless, due to manufacturing limitations such
as reticle size, the area of a single die cannot increase indefinitely. Furthermore, a larger chip area will
lead to higher chip production costs. On the one hand, the design difficulty of advanced processes is
higher, and the yield of chips will decrease as the area increases. On the other hand, the design and
verification of large-area chips are more complex, resulting in longer time-to-market (TTM) and higher
manufacturing thresholds.

For CIM applications, to meet the system’s high-throughput computing requirements, multiple CIM
macros are organized to form small AI cores, and many AI cores are integrated on a single die to form
a whole AI accelerator. Therefore, the deployment of large-scale networks often requires the design of
large-area CIM-based chips, which poses significant challenges for chip designers.

To address this problem, chiplet solutions based on 2.5D and 3D packages have been widely discussed
in both academia [82] and industry [83] and are expected to be the development direction of future
chips, including CIM-based AI accelerators. Figure 11 shows a CIM-based AI accelerator structure using
chiplets, where small chiplets with different functions are integrated together on a 2D silicon interposer.
Unlike traditional organic substrates, silicon interposer is manufactured under an advanced process and
can provide multiple layers of high-speed and high-density interconnects between chiplets. Thus, the
design and manufacturing of chiplets do not affect each other, and only the interconnect matching with
the interposer needs to be considered. As the area of each chiplet is reduced, the corresponding production
and testing costs are greatly reduced, and the yield can also be well guaranteed. In addition, different
chiplets can employ different process nodes. For example, advanced nodes can be used for CPU and AI
cores, while some low-speed units and analog circuits can use lower processes. Chip production costs are
reduced, and processes that are more suitable for different circuit functions could be used in an SoC.

Chiplets bring great scalability and configurability to SoC design, which is particularly important
for CIM-based AI accelerators. During the design of fundamental AI cores, operators’ implementation
and data flow design are highly correlated with the deployed network tasks. For example, convolution
operators for CNNs are implemented in [46], and matrix transposition and multiplication operations for
Transformer are implemented in [84]. The efficient deployment of different operators is difficult to balance
simultaneously. However, chiplet-based CIM accelerators can simply use AI core chiplets with different
functions. Moreover, by increasing or decreasing the number of chiplets used, different computational



Zhang Z Y, et al. Sci China Inf Sci October 2023 Vol. 66 200403:16

requirements for networks of different scales can be met, thereby achieving configurability and scalability
of AI accelerators at the system level.

Currently, there are still some obstacles to building chiplet-based CIM accelerators. In response,
a uniform chiplet interconnect standard needs to be formulated, and CIM-based AI cores suitable for
chiplet operating modes need to be developed.

4.2.2 Sparsity optimization

Different layers of a neural network have different degrees of fitness for CIM. Those layers that can be
mapped to MVM (matrix-vector multiplication) operations are structurally friendly to CIM. However, for
some of the layers in the neural network, the sparsity of their inputs and weights imposes an additional
overhead on CIM. For the sparsity of the weights, zero-weight data does not generate currents but
non-zero values in the same block still need to be computed, which imposes an additional overhead on
the quantization circuit. For the sparsity of the input activation (feature-map), the additional control
circuitry is required if the configuration is required, as the regular CIM can only activate continuous
multiple rows rather than random-distributed non-zero rows.

At the same time the advantages offered by sparsity optimization are very attractive. Energy efficiency
improvements based on sparsity have been demonstrated in previous digital ASIC (application specific
integrated circuit) architectures. In the CIM microarchitecture weight data can be compressed by a
factor of 13–71 by means of weight pruning techniques. Skipping zero operations saves energy and
execution time. So sparsity optimization significantly improves the macro usage efficiency of the CIM
micro-architecture, taking the system energy efficiency to new heights.

There are two main approaches to optimizing sparsity at the microarchitectural level. The first is to
perform sparsity detection on the input. Microarchitecture uses a dynamic sparsity monitoring system to
sense the sparsity of the input and configures different CIM execution modes when the input is sparse. For
example, microarchitecture activates more rows to maximize resource utilization. This approach has no
specific requirements for the network, but the dynamic detection introduces additional circuit overhead.
The second approach is the sparsity optimization of weights, where the microarchitecture can also sense
whether the weight data is all zeroes downwards by means of a sparsity index for the stored weights in
the macro, and change the input policy by feeding back an index to the input, and the corresponding
ADC of the sparse block can also be powered down to save power. This approach has high adaptation
requirements for the network, but the additional overhead of the circuit is less than in the first approach.

Sparsity optimization is an important research direction in the design of CIM microarchitectures.
Better adaptation of sparsity optimization for neural networks and better control of additional circuit
overheads will drive more efficient microarchitectural systems.

5 Conclusion

SRAM-CIM is a future-oriented solution that can break memory and power walls. This study reviews
the computational principles of SRAM-CIM macros from the perspective of different computational
paradigms and analyzes the problems faced by the current technical architecture of the time, current,
charge, and digital computing paradigms. This paper also studied the SRAM-CIM macro recently val-
idated by silicon and analyzed its trade-offs with other indicators, focusing on energy efficiency and
bottlenecks in the further development of SRAM-CIM. In addition, this paper has analyzed the link
between memory size, data reuse, and system performance in the SRAM-CIM microarchitecture. To ad-
dress the contradiction between energy efficiency, computational accuracy, area efficiency, and operator
needs in CIM macro, three future trends are introduced. Chiplet and sparsity optimization will be used
to improve the efficiency of microarchitecture.

Acknowledgements This work was supported by National Key R&D Program of China (Grant No. 2022ZD0118902) and

National Natural Science Foundation of China (Grant Nos. 92264203, 62204036).

References

1 Chang L, Li C, Zhang Z, et al. Energy-efficient computing-in-memory architecture for AI processor: device, circuit, architec-

ture perspective. Sci China Inf Sci, 2021, 64: 160403

2 Cheng C, Tiw P J, Cai Y, et al. In-memory computing with emerging nonvolatile memory devices. Sci China Inf Sci, 2021,

64: 221402

https://doi.org/10.1007/s11432-021-3234-0
https://doi.org/10.1007/s11432-021-3327-7


Zhang Z Y, et al. Sci China Inf Sci October 2023 Vol. 66 200403:17

3 Zhang W, Gao B, Yao P, et al. Array-level boosting method with spatial extended allocation to improve the accuracy of

memristor based computing-in-memory chips. Sci China Inf Sci, 2021, 64: 160406

4 Zou X, Xu S, Chen X, et al. Breaking the von Neumann bottleneck: architecture-level processing-in-memory technology. Sci

China Inf Sci, 2021, 64: 160404

5 Jhang C J, Xue C X, Hung J M, et al. Challenges and trends of SRAM-based computing-in-memory for AI edge devices.

IEEE Trans Circ Syst I, 2021, 68: 1773–1786

6 Si X, Zhou Y L, Yang J, et al. Challenge and trend of SRAM based computation-in-memory circuits for AI edge devices.

In: Proceedings of the 14th International Conference on ASIC (ASICON), 2021

7 Wang Y F, Zhou Y L, Wang B, et al. Design challenges and methodology of high-performance SRAM-based compute-in-

memory for AI edge devices. In: Proceedings of International Conference on UK-China Emerging Technologies (UCET),

2021

8 Xiong T Z, Zhou Y L, Kong Y Y, et al. Design methodology towards high-precision SRAM based computation-in-memory for

AI edge devices. In: Proceedings of the 18th International SoC Design Conference (ISOCC), 2021

9 Dong F Y, Si X, Chang M F. Design methodology and trends of SRAM-based compute-in-memory circuits. In: Proceedings

of the 16th International Conference on Solid-State & Integrated Circuit Technology (ICSICT), 2022

10 Chang M F, Lin C C, Lee A, et al. 17.5 A 3T1R nonvolatile TCAM using MLC ReRAM with Sub-1ns search time.

In: Proceedings of IEEE International Solid-State Circuits Conference, 2015

11 Khwa W S, Chang M F, Wu J Y, et al. 7.3 A resistance-drift compensation scheme to reduce MLC PCM raw BER by over

100× for storage-class memory applications. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC),

2016

12 Lin C C, Hung J Y, Lin W Z, et al. 7.4 A 256b-wordlength ReRAM-based TCAM with 1ns search-time and 14× improvement

in wordlength-energyefficiency-density product using 2.5T1R cell. In: Proceedings of IEEE International Solid-State Circuits

Conference (ISSCC), 2016

13 Xue C X, Chen W H, Liu J S, et al. 24.1 A 1Mb multibit ReRAM computing-in-memory macro with 14.6ns parallel MAC

computing time for CNN based AI edge processors. In: Proceedings of IEEE International Solid-State Circuits Conference

(ISSCC), 2019

14 Chang T C, Chiu Y C, Lee C Y, et al. 13.4 A 22nm 1Mb 1024b-read and near-memory-computing dual-mode STT-MRAM

macro with 42.6GB/s read bandwidth for security-aware mobile devices. In: Proceedings of IEEE International Solid-State

Circuits Conference (ISSCC), 2020

15 Liu Q, Gao B, Yao P, et al. 33.2 A fully integrated analog ReRAM based 78.4TOPS/W compute-in-memory chip with fully

parallel MAC computing. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2020

16 Xue C X, Huang T Y, Liu J S, et al. 15.4 A 22nm 2Mb ReRAM compute-in-memory macro with 121-28TOPS/W for multibit

MAC computing for tiny AI edge devices. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC),

2020

17 Xue C X, Hung J M, Kao H Y, et al. 16.1 A 22nm 4Mb 8b-precision ReRAM computing-in-memory macro with 11.91 to

195.7TOPS/W for tiny AI edge devices. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2021

18 Yoon J H, Chang M, Khwa W S, et al. 29.1 A 40nm 64Kb 56.67TOPS/W read-disturb-tolerant compute-in-memory/digital

RRAM macro with active-feedback-based read and in-situ write verification. In: Proceedings of IEEE International Solid-State

Circuits Conference (ISSCC), 2021

19 Chang M, Spetalnick S D, Crafton B, et al. A 40nm 60.64TOPS/W ECC-capable compute-in-memory/digital 2.25MB/768KB

RRAM/SRAM system with embedded cortex M3 microprocessor for edge recommendation systems. In: Proceedings of IEEE

International Solid-State Circuits Conference (ISSCC), 2022

20 Chiu Y C, Yang C S, Teng S H, et al. A 22nm 4Mb STT-MRAM data-encrypted near-memory computation macro with

a 192GB/s read-and-decryption bandwidth and 25.1-55.1TOPS/W 8b MAC for AI operations. In: Proceedings of IEEE

International Solid-State Circuits Conference (ISSCC), 2022

21 Hu H W, Wang W C, Chen C K, et al. A 512Gb in-memory-computing 3D-NAND flash supporting similar-vector-matching

operations on edge-AI devices. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2022

22 Hung J M, Huang Y H, Huang S P, et al. An 8-Mb DC-current-free binary-to-8b precision ReRAM nonvolatile computing-in-

memory macro using time-space-readout with 1286.4-21.6TOPS/W for edge-AI devices. In: Proceedings of IEEE International

Solid-State Circuits Conference (ISSCC), 2022

23 Khwa W S, Chiu Y C, Jhang C J, et al. A 40-nm, 2M-cell, 8b-precision, hybrid SLC-MLC PCM computing-in-memory macro

with 20.5-65.0TOPS/W for tiny-Al edge devices. In: Proceedings of IEEE International Solid-State Circuits Conference

(ISSCC), 2022

24 Spetalnick S D, Chang M, Crafton B, et al. A 40nm 64kb 26.56TOPS/W 2.37Mb/mm2 RRAM binary/compute-in-memory

macro with 4.23× improvement in density and >75 use of sensing dynamic range. In: Proceedings of IEEE International

Solid-State Circuits Conference (ISSCC), 2022

25 Everson L R, Liu M, Pande N, et al. A 104.8TOPS/W one-shot time-based neuromorphic chip employing dynamic threshold

error correction in 65nm. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2022

26 Mohammed M U, Chowdhury M H. Reliability and energy efficiency of the tunneling transistor-based 6T SRAM cell in sub-10

nm domain. IEEE Trans Circ Syst II, 2018, 65: 1829–1833

27 Everson L R, Liu M, Pande N, et al. An energy-efficient one-shot time-based neural network accelerator employing dynamic

threshold error correction in 65 nm. IEEE J Solid-State Circ, 2019, 54: 2777–2785

28 Huynh K, Saltin J, Han J W, et al. Study of layout dependent radiation hardness of FinFET SRAM using full domain 3D

TCAD simulation. In: Proceedings of IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference, 2019

29 Sayal A, Fathima S, Nibhanupudi S S T, et al. 14.4 all-digital time-domain CNN engine using bidirectional memory delay

lines for energy-efficient edge computing. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC),

2019

30 Wang T, Shan W W. An energy-efficient in-memory BNN architecture with time-domain analog and digital mixed-signal

processing. In: Proceedings of IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH), 2019

31 Yang J, Kong Y Y, Wang Z, et al. 24.4 sandwich-RAM: an energy-efficient in-memory BWN architecture with pulse-width

modulation. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2019

32 Agrawal A, Kosta A, Kodge S, et al. CASH-RAM: enabling in-memory computations for edge inference using charge accu-

mulation and sharing in standard 8T-SRAM arrays. IEEE J Emerg Sel Top Circ Syst, 2020, 10: 295–305

33 He Y X, Choi M, Kim K K, et al. A time-domain computing-in-memory micro using ring oscillator. In: Proceedings of the

https://doi.org/10.1007/s11432-020-3198-9
https://doi.org/10.1007/s11432-020-3227-1
https://doi.org/10.1109/TCSI.2021.3064189
https://doi.org/10.1109/TCSII.2018.2874897
https://doi.org/10.1109/JSSC.2019.2914361
https://doi.org/10.1109/JETCAS.2020.3014250


Zhang Z Y, et al. Sci China Inf Sci October 2023 Vol. 66 200403:18

18th International SoC Design Conference (ISOCC), 2021

34 Lin C S, Tsai F C, Su J W, et al. A 48 TOPS and 20943 TOPS/W 512kb computation-in-SRAMmacro for highly reconfigurable

ternary CNN acceleration. In: Proceedings of IEEE Asian Solid-State Circuits Conference (A-SSCC), 2021

35 Song J, Wang Y, Guo M, et al. TD-SRAM: time-domain-based in-memory computing macro for binary neural networks. IEEE

Trans Circ Syst I, 2021, 68: 3377–3387

36 Kong Y, Chen X, Si X, et al. Evaluation platform of time-domain computing-in-memory circuits. IEEE Trans Circ Syst,

2023, 70: 1174–1178

37 Park H, Lee K, Park J. A 10T SRAM compute-in-memory macro with analog MAC operation and time domain conversion.

In: Proceedings of the 4th International Conference on Artificial Intelligence Circuits and Systems (AICAS), 2022

38 Wu P C, Su J W, Chung Y L, et al. A 28nm 1Mb time-domain computing-in-memory 6T-SRAM macro with a 6.6ns latency,

1241GOPS and 37.01TOPS/W for 8b-MAC operations for edge-AI devices. In: Proceedings of IEEE International Solid-State

Circuits Conference (ISSCC), 2022

39 Wang Y S, Liu L B, Yin S Y, et al. Hierarchical representation of on-chip context to reduce reconfiguration time and

implementation area for coarse-grained reconfigurable architecture. Sci China Inf Sci, 2013, 56: 112401

40 Miyashita D, Kousai S, Suzuki T, et al. A neuromorphic chip optimized for deep learning and CMOS technology with

time-domain analog and digital mixed-signal processing. IEEE J Solid-State Circ, 2017, 52: 2679–2689

41 Biswas A, Chandrakasan A P. Conv-RAM: an energy-efficient SRAM with embedded convolution computation for low-power

CNN-based machine learning applications. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC),

2018

42 Zhang J, Wang Z, Verma N. In-memory computation of a machine-learning classifier in a standard 6T SRAM array. IEEE J

Solid-State Cir, 2017, 52: 915–924

43 Khwa W S, Chen J J, Li J F, et al. A 65nm 4Kb algorithm-dependent computing-in-memory SRAM unit-macro with 2.3ns and

55.8TOPS/W fully parallel product-sum operation for binary DNN edge processors. In: Proceedings of IEEE International

Solid-State Circuits Conference (ISSCC), 2018

44 Si X, Chen J J, Tu Y N, et al. 24.5 A twin-8T SRAM computation-in-memory macro for multiple-bit CNN-based machine

learning. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2019

45 Choi I, Choi E J, Yi D, et al. An SRAM-based hybrid computation-in-memory macro using current-reused differential CCO.

IEEE J Emerg Sel Top Circ Syst, 2022, 12: 536–546

46 Si X, Tu Y N, Huang W H, et al. 15.5 A 28nm 64Kb 6T SRAM computing-in-memory macro with 8b MAC operation for AI

edge chips. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2020

47 Su J W, Si X, Chou Y C, et al. 15.2 A 28nm 64Kb inference-training two-way transpose multibit 6T SRAM compute-in-memory

macro for AI edge chips. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2020

48 Xue C X, Huang T Y, Liu J S, et al. 15.4 A 22nm 2Mb ReRAM Compute-in-Memory Macro with 121-28TOPS/W for Multibit

MAC Computing for Tiny AI Edge Devices. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC),

2020

49 Yin S, Jiang Z, Seo J, et al. XNOR-SRAM: in-memory computing SRAM macro for binary/ternary deep neural networks.

IEEE J Solid-State Circ, 2020, 55: 1733–1743

50 Wang Y, Zou Z, Zheng L. Design framework for SRAM-based computing-in-memory edge CNN accelerators. In: Proceedings

of IEEE International Symposium on Circuits and Systems (ISCAS), 2021

51 Xu T, Li S, Su F, et al. A current domain computing-in-memory SRAM macro with hybrid IAF-SAR ADC for signal

margin enhancement. In: Proceedings of IEEE International Conference on Integrated Circuits, Technologies and Applications

(ICTA), 2022. 119–120

52 Yue J S, Feng X Y, He Y F, et al. 15.2 A 2.75-to-75.9TOPS/W computing-in-memory NN processor supporting set-associate

block-wise zero skipping and ping-pong CIM with simultaneous computation and weight updating. In: Proceedings of IEEE

International Solid-State Circuits Conference (ISSCC), 2021

53 Song J, Tang X, Luo H, et al. A calibration-free 15-level/cell eDRAM computing-in-memory macro with 3T1C current-

programmed dynamic-cascoded MLC achieving 233-to-304-TOPS/W 4b MAC. In: Proceedings of IEEE Custom Integrated

Circuits Conference (CICC), 2023

54 Peng S Y, Liu I C, Wu Y H, et al. An SRAM-based reconfigurable cognitive computation matrix for sensor edge applications.

IEEE J Solid State Circ, 2023. doi: 10.1109/JSSC.2023.3303910

55 Yin G, Cai Y, Wu J, et al. Enabling lower-power charge-domain nonvolatile in-memory computing with ferroelectric FETs.

IEEE Trans Circ Syst, 2021, 68: 2262–2266

56 Song J, Tang X, Luo H, et al. Spike-CIM: a 290TOPS/W spike-encoding sparsity-adaptive computing-in-memory macro with

differential charge-domain integrate-and-fire. In: Proceedings of IEEE Asian Solid-State Circuits Conference (A-SSCC), 2022

57 Gonugondla S K, Kang M, Shanbhag N. A 42pJ/decision 3.12TOPS/W robust in-memory machine learning classifier with

on-chip training. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2018

58 Valavi H, Ramadge P J, Nestler E, et al. A mixed-signal binarized convolutional-neural-network accelerator integrating dense

weight storage and multiplication for reduced data movement. In: Proceedings of IEEE Symposium on VLSI Circuits, 2018

59 Jiang Z W, Yin S H, Seo J S, et al. C3SRAM: in-memory-computing SRAM macro based on capacitive-coupling computing.

IEEE Solid-State Circ Lett, 2019, 2: 131–134

60 Kim H, Chen Q, Kim B. A 16K SRAM-based mixed-signal in-memory computing macro featuring voltage-mode accumulator

and row-by-row ADC. In: Proceedings of IEEE Asian Solid-State Circuits Conference (A-SSCC), 2019

61 Valavi H, Ramadge P J, Nestler E, et al. A 64-tile 2.4-Mb in-memory-computing CNN accelerator employing charge-domain

compute. IEEE J Solid-State Circ, 2019, 54: 1789–1799

62 Dong Q, Sinangil M E, Erbagci B, et al. 15.3 A 351TOPS/W and 372.4GOPS compute-in-memory SRAM macro in 7nm

FinFET CMOS for machine-learning applications. In: Proceedings of IEEE International Solid-State Circuits Conference

(ISSCC), 2020

63 Chen Z Y, Chen X, Gu J. 15.3 A 65nm 3T dynamic analog RAM-based computing-in-memory macro and CNN accelerator

with retention enhancement, adaptive analog sparsity and 44TOPS/W system energy efficiency. In: Proceedings of IEEE

International Solid-State Circuits Conference (ISSCC), 2021

64 Chen Z Y, Yu Z H, Jin Q, et al. CAP-RAM: a charge-domain in-memory computing 6T-SRAM for accurate and precision-

programmable CNN inference. IEEE J Solid-State Circ, 2021, 56: 1924–1935

65 Jia H Y, Ozatay M, Tang Y Q, et al. 15.1 A programmable neural-network inference accelerator based on scalable in-memory

computing. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2021

https://doi.org/10.1109/TCSI.2021.3083275
https://doi.org/10.1007/s11432-013-4842-5
https://doi.org/10.1109/JSSC.2017.2712626
https://doi.org/10.1109/JSSC.2016.2642198
https://doi.org/10.1109/LSSC.2019.2934831
https://doi.org/10.1109/JSSC.2019.2899730
https://doi.org/10.1109/JSSC.2021.3056447


Zhang Z Y, et al. Sci China Inf Sci October 2023 Vol. 66 200403:19

66 Lee E, Han T, Seo D, et al. A charge-domain scalable-weight in-memory computing macro with dual-SRAM architecture for

precision-scalable DNN accelerators. IEEE Trans Circ Syst I, 2021, 68: 3305–3316

67 Lee J, Valavi H, Tang Y, et al. Fully row/column-parallel in-memory computing SRAM macro employing capacitor-based

mixed-signal computation with 5-b inputs. In: Proceedings of Symposium on VLSI Technology, 2021

68 Song J H, Wang Y, Tang X Y, et al. A 16Kb transpose 6T SRAM in-memory-computing macro based on robust charge-domain

computing. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2021

69 Su J W, Chou Y C, Liu R, et al. 16.3 A 28nm 384kb 6T-SRAM computation-in-memory macro with 8b precision for AI edge

chips. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2021

70 Bharti P K, Jain S, Pillai K R, et al. Compute-in-memory using 6T SRAM for a wide variety of workloads. In: Proceedings

of IEEE International Symposium on Circuits and Systems (ISCAS), 2022

71 Chih Y D, Lee P H, Fujiwara H, et al. 16.4 An 89TOPS/W and 16.3TOPS/mm2 all-digital SRAM-based full-precision

compute-in memory macro in 22nm for machine-learning edge applications. In: Proceedings of IEEE International Solid-State

Circuits Conference (ISSCC), 2021

72 Yan B, Hsu J L, Yu P C, et al. A 1.041-Mb/mm2 27.38-TOPS/W signed-INT8 dynamic-logic-based ADC-less SRAM compute-

in-memory macro in 28nm with reconfigurable bitwise operation for AI and embedded applications. In: Proceedings of IEEE

International Solid-State Circuits Conference (ISSCC), 2022

73 Yang J X, Kong Y Y, Zhang Z, et al. TIMAQ: a time-domain computing-in-memory-based processor using predictable

decomposed convolution for arbitrary quantized DNNs. IEEE J Solid-State Circ, 2021, 56: 3021–3038

74 Wang B, Xue C, Feng Z Y, et al. A 28nm horizontal-weight-shift and vertical-feature-shift-based separate-WL 6T-SRAM

computation-in-memory unit-macro for edge depthwise neural-networks. In: Proceedings of IEEE International Solid-State

Circuits Conference (ISSCC), 2023

75 Hsieh S, Wei C, Xue C, et al. 7.6 A 70.85-86.27TOPS/W PVT-insensitive 8b word-wise ACIM with post-processing relaxation.

In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2023

76 Yao C Y, Wu T Y, Liang H C, et al. A fully bit-flexible computation in memory macro using multi-functional computing bit

cell and embedded input sparsity sensing. IEEE J Solid-State Circ, 2023, 58: 1487–1495

77 Guo A, Si X, Chen X, et al. A 28nm 64-kb 31.6-TFLOPS/W digital-domain floating-point- computing-unit and double-bit

6T-SRAM computing-in-memory macro for floating-point CNNs. In: Proceedings of IEEE International Solid-State Circuits

Conference (ISSCC), 2023

78 Chen P Y, Wu M, Zhao W T, et al. 7.8 A 22nm delta-sigma computing-in-memory (delta sigma CIM) SRAM macro with

near-zero-mean outputs and LSB-first ADCs achieving 21.38TOPS/W for 8b-MAC edge AI processing. In: Proceedings of

IEEE International Solid-State Circuits Conference (ISSCC), 2023

79 Wang H C, Liu R Z, Dorrance R, et al. A 32.2 TOPS/W SRAM compute-in-memory macro employing a linear 8-bit C-2C

ladder for charge domain computation in 22nm for edge inference. In: Proceedings of IEEE Symposium on VLSI Technology

and Circuits, 2022

80 Park J S, Jang J W, Lee H, et al. 9.5 A 6K-MAC feature-map-sparsity-aware neural processing unit in 5nm flagship mobile

SoC. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2021

81 Yue Z H, Wang Y, Wang H Z, et al. 7.7 CV-CIM: a 28nm XOR-derived similarity-aware computation-in-memory for cost-

volume construction. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2023

82 Vivet P, Guthmuller E, Thonnart Y, et al. IntAct: a 96-core processor with six chiplets 3D-stacked on an active interposer

with distributed interconnects and integrated power management. IEEE J Solid-State Circ, 2021, 56: 79–97

83 Gomes W, Koker A, Stover P, et al. Ponte Vecchio: a multi-tile 3D stacked processor for exascale computing. In: Proceedings

of IEEE International Solid-State Circuits Conference (ISSCC), 2022

84 Tu F B, Wang Y Q, Wu Z H, et al. A 28nm 29.2TFLOPS/W BF16 and 36.5TOPS/W INT8 reconfigurable digital CIM

processor with unified FP/INT pipeline and bitwise in-memory booth multiplication for cloud deep learning acceleration.

In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2022

https://doi.org/10.1109/TCSI.2021.3080042
https://doi.org/10.1109/JSSC.2021.3095232
https://doi.org/10.1109/JSSC.2022.3224363
https://doi.org/10.1109/JSSC.2020.3036341

	Introduction
	Computing paradigm in SRAM-CIM macro design
	Time domain CIM
	Sandwich-RAM
	TIMAQ: a time-domain computing-in-memory based processor
	Time-domain computing-in-memory 6T-SRAM macro

	Current domain CIM
	A twin-8T SRAM computation-in-memory macro
	A 28 nm 64 Kb 6T SRAM-CIM macro with LCC
	A 28-nm separate-WL 6T-SRAM-CIM unit-macro 

	Charge domain CIM
	A 28 nm 384 kb 6T-SRAM computation-in-memory macro
	A fully bit-flexible computation in memory macro
	PVT-insensitive 8b word-wise ACIM

	Digital domain CIM
	An all-digital SRAM-based full-precision CIM macro in 22 nm
	A signed-INT8 dynamic-logic-based ADC-less SRAM-CIM macro
	A 28 nm 64-kb digital-domain macro for floating-point CNNs


	SRAM-CIM design tradeoffs
	Tradeoffs at the macro level
	High energy efficiency and high precision
	High energy efficiency and high throughput
	High energy efficiency and reconfigurability

	Tradeoffs at the microarchitecture level
	Memory size and system performance
	Dataflow and system performance


	From macro to microarchitecture: future trends of SRAM-CIM
	Future trends of CIM macro
	Hybrid computing
	Precision reconfiguration
	Operator reconfiguration

	Future trends of CIM microarchitechture
	Chiplet
	Sparsity optimization


	Conclusion

