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Massive multiple-input multiple-output (MIMO) with a

larger number of base station (BS) antennas has been re-

garded as a key technique to support digital twins and the

metaverse in future 5G-Advanced and 6G [1]. To realize

the expected high-speed transmission, the channel informa-

tion state (CSI) is required to design the precoding in BS.

However, since the pilot and feedback overhead scales lin-

early with the number of BS antennas, the CSI acquisition

overhead is prohibitively high for future frequency division

duplexing (FDD) massive MIMO systems.

To reduce the CSI acquisition overhead for future 5G-

Advanced and 6G, some solutions have been proposed to

improve the downlink pilot training strategy in FDD mode.

The compressed sensing (CS) algorithm is utilized to exploit

the sparse structure of the channel, which could compress

the high-dimensional channel to a low-dimensional repre-

sentation. However, iterative CS algorithms always bring

high time consumption. Leveraging GPU, the CsiNet [2]

composed of deep neural networks (DNN) could realize user

equipment (UE) channel quantization and BS channel re-

covery in a short time. At the same time, with the help

of joint optimization of these two modules, CsiNet could

realize lower feedback overhead than CS algorithms. More-

over, Ref. [3] introduced an end-to-end (E2E) design shown

in Figure 1(a), which further takes BS downlink pilot de-

sign and UE downlink channel estimation into consideration

and jointly optimized the four modules to realize lower pilot

overhead.

Besides relying only on downlink pilot training, the up-

link CSI could be used to reduce downlink CSI acquisition

overhead by utilizing the partial reciprocity between the up-

link and downlink channels in FDD mode. By using the

CS algorithm, the frequency-independent channel parame-

ters such as azimuth angles are first extracted from uplink

CSI. Then, the pilot is customized according to the azimuth

angles to obtain the frequency-dependent parameters. To

shorten the running time, a CsiNet-based downlink CSI es-

timation network named DualNet was proposed in [4] by

additionally considering uplink CSI. Furthermore, Ref. [5]

developed the E2E design [3] to further reduce the CSI ac-

quisition overhead with the help of the uplink CSI shown

in Figure 1(b). Unfortunately, the above uplink-aided E2E

schemes do not include the downlink precoding design. Ow-

ing to the severe multi-user interference, the lack of downlink

precoding in E2E models could result in a limited reduction

in CSI acquisition overhead.

To fill the gap, in this study, we consider the uplink-aided

E2E design that takes precoding into consideration, and pro-

pose a transformer-based downlink precoding scheme to fur-

ther reduce the CSI acquisition overhead. In the field of

deep learning, the transformer model could be regarded as

a multimodal fusion model [6], which could simultaneously

process text and image data representing the same content

and extract the fusion feature to serve downstream tasks.

Inspired by this, we design a transformer model by consid-

ering the uplink CSI and feedback bits as multimodal data

and utilize the transformer to fuse these two types of data

to support subsequent precoding design.

Specifically, we consider an N-antennas BS which could

simultaneously serve K single-antenna UEs. In the

proposed scheme, the multi-user uplink channels H =

[hul
1 ,hul

2 , . . . ,hul
K ] ∈ CN×K are utilized to design the down-

link pilot P ∈ CN×M and downlink precoder V ∈ CN×K at

BS shown in Figure 1(c), where M is the length of the pilot

signal. First, the downlink pilot design could be denoted by

a DNN with Lp layer, which could be written as

Γ
(i) = γ

(i)
p

(

W
(i)
p Γ

(i−1) + b
(i)
p

)

, i = 1, 2, . . . , Lp, (1)

where Γ
(0) = vec(H); Γ(Lp) = vec(P ); γ

(i)
p (·), W (i)

p , and

b
(i)
p are the activation function, weights, and bias of the i-th

layer, respectively. Note that the γ
(Lp)
p (·) at the last layer

is the normalized function which makes the downlink pilot

P satisfy the power constraint. After receiving the pilot

signals, each UE describes the downlink channel with infor-

mation bits qk ∈ {±1}B×1 according to the observed pilot

signals yk ∈ CM×1, which is also realized by another DNN

as follows:

Υ
(i)
k

= γ
(i)
q

(

W
(i)
q Υ

(i−1)
k

+ b
(i)
q

)

, i = 1, 2, . . . , Lq, (2)
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Figure 1 (Color online) (a) The E2E scheme for downlink channel estimation without uplink aid [3]; (b) the E2E scheme for

downlink channel estimation with uplink aid [5]; (c) the proposed transformer-based E2E scheme for downlink precoding with

uplink aid; (d) the proposed transformer-based precoding model; (e) the comparison of achievable sum rate performance.

where Υ
(0)
k

= yk, Υ
(Lq)

k
= qk, and γ

(Lq)
q (·) = sign(·).

Next, as shown in Figure 1(d), the downlink precoder V

is computed by the proposed transformer-based precoding

model according to the uplink CSI and feedback bits. Specif-

ically, in the transformer model, self-attention mechanisms

are used to calculate the inter-user interference, which could

be denoted by

Zs1 = W
s1
valHSoftmax

(

(W s1
keyH)TW s1

queH/
√
h
)

, (3)

Zs2 = W
s2
valQSoftmax

(

(W s2
keyQ)TW s2

queQ/
√
h
)

, (4)

where Q = [q1,q2, . . . , qK ] ∈ {±1}B×K is the feedback bits

from multi-user; W si
val, W

si
key , and W

si
que are three trainable

linear transformations. Then, the residual link and layer

normalization (LN) are used to improve the training effi-

ciency. The inter-user interference features extracted from

the uplink channel and collected bits could be written as

F s1 = LN(Zs1 +H) and F s2 = LN(Zs2 +Q), respectively.

Following, a cross-attention mechanism is applied to uti-

lize uplink features F s1 to assist downlink precoding. Since

the uplink channel contains frequency-independent angle pa-

rameters, F s1 can be used to mitigate inter-user angle in-

terference. The output of the cross-attention is denoted by

Zc = W c
valF

s2Softmax
(

(W c
keyF

s1)TW c
queF

s2/
√
h
)

, (5)

where the W c
val, W

c
key, and W c

que are corresponding train-

able linear transformations of cross-attention. Then, the

downlink precoding matrix could be given by V = LN(Zc+

F s2 ). Finally, by maximizing the achievable sum rate,

the transformer-based downlink precoding scheme could be

jointly optimized.

Simulation results. Figure 1(e) shows the achievable sum

rate performance comparison when N = 64, K = 2, and

M = 8. The 3.5 GHz uplink channels are utilized to assist

the downlink precoder design in 3.6 GHz. We could observe

that the uplink-aided transformer-based downlink precod-

ing scheme could achieve 20% gain over the existing uplink-

aided E2E scheme when B = 10. In addition, compared

with other uplink-aided schemes, the proposed scheme could

reduce the feedback overhead by 60% when the achievable

sum rate is 12 bits/s/Hz, which benefits from the joint op-

timization of multiple modules. Moreover, compared with

the upper bound, the proposed uplink-aided transformer-

based downlink precoding scheme suffers from 2 bits/s/Hz

performance loss.

Conclusions. We have proposed an uplink-aided

transformer-based downlink precoding scheme to further re-

duce the CSI acquisition overhead for a massive MIMO sys-

tem. Unlike the existing E2E schemes, the proposed scheme

could realize the uplink-aided multi-user downlink precod-

ing. This is achieved by using the multimodal fusion model

named transformer in the deep learning field, which could si-

multaneously process the uplink CSI and feedback bits. Sim-

ulation results show that the proposed transformer-based

downlink precoding scheme can achieve a much more over-

head reduction than the existing E2E schemes.
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