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Appendix A Comparisons with the related works

• Comparisons with results on fault detection and isolation (FDI): In the existing literature, important works on distribut-

ed/decentralized sensor fault diagnosis for large-scale systems have been reported, such as [1–3]. In practice, the fault signal is

usually independent from the system structure and system behavior such that the existing FDI methods can effectively detect and

isolate the fault signal. In contrast to the system fault, the attack signal can exploit the vulnerability of the detection mechanism to

damage or destroy the function of the system without being detected. As reported by [8], the classical residual-based fault detection

filters, for instance those presented in [4], cannot be guaranteed to detect and isolate the signals that do excite exclusively zero

dynamics (i.e., zero-dynamics attacks). Recently, various stealthy attack strategies against different types of detection mechanisms

have been proposed, e.g., [5–7] and references therein. In our problem formulation we consider the malicious attack that aims to

destroy the DOC of the system without being detected.

• Comparisons with results on attack detection and identification (FDI): Some effective distributed ADI methods for intercon-

nected systems have also been proposed in the existing literature [10, 11]. However, the considered system models, attack models

and control objectives considerably differ from the ones studied in this paper.

System models: In [10,11], linear interconnected system models are considered. In this paper, the uncertain nonlinear strict-

feedback system model is considered.

Attack models: In [10,11], the attack models are assume to have no global knowledge of interconnected system or knowledge

of the detectors. In this paper, we allow the adversarial attacker to know the overall system model, system state, control input and

the possible detector.

Control objective: In [10, 11] the control objective is to stabilize the closed-loop system. In this paper, the control objective

is to steer the physical system converge to the optimal solution.

Adapted techniques: In [10], the strong observability of local subsystem is used to detect and identify the attacks, and

in [11] the stochastic hypothesis testing method is used to detect the attacks. In this paper, the double coupling residuals and

“strongly-robust” thresholds based on the prescribed performance technique are proposed to detect and identify the attacks.

Appendix B DOC structure description

The DOC architecture is a double-layer structure illustrated in Figure B1. Similar hierarchical architectures can also be found

in [3]. The cyber part C(j) consists of a decision-making network. Each decision-making agent, denoted by D(j), is responsible

for sending the control command y(j)r to Σ(j). Agent D(j) contains an optimization module and a monitoring module, denoted by

O(j) and M(j), respectively. Module O(j) is used to optimize its local objective function g(j), while exchanging its output y(j)

with its neighbors under an undirected network topology G. Since the attackers can corrupt the transmitted output, the effect of

the attack on (P(i), C(i)), i ∈ Nj can also be propagated to (P(j), C(j)) via information exchanges, where Nj denotes the set of

neighbors of node j. Note that for the jth subsystem, a(i), i ∈ Nj is leveraged against the output of its neighbor i, rather than

an attack on the information exchanged between these two subsystems. Each module M(j) is used to detect and identify the local

attack a(j) by monitoring module O(j) and transmit the detection logic 0(j) to O(j). In P(j), control module K(j) drives dynamics

Σ(j) in accordance with the control command y(j)r coming from D(j). Figure 1 illustrates sufficient interactions between cyber

and physical parts in the CPS architecture.
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Figure B1 Secure DOC architecture under cyber attacks.

Appendix C Controller design and stability analysis
First, we present the design of control agent K(j) (i.e., specify (4)) which consists of inner-loop module K(I,j) and outer-loop

module K(O,j). We define the following changes of coordinates

z
(j)
1 = x

(j)
1 − y

(j)
r , zi = x

(j)
i − α

(j)
i−1, i = 2, · · · , n (C1)

where α
(j)
i = α

(j)
i,I +α

(j)
i,O is the virtual control function determined at the ith step and spitted into two parts: inner-loop control α

(j)
i,I
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(j)
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• Inner-loop control K(I,j)(x(j),ℑ(j))

α
(j)
1,I = −c(j)1 z

(j)
1 − ρ̂

(j)
z
(j)
1 − ω

(j)
1 λ̂

(j)
+ π̂

(j) − S

(
z
(j)
1

δ(j)

)
α

(j)
i,I = −z(j)i − c

(j)
i z

(j)
i − ω

(j)
i λ̂

(j)
+ Λ

(j)
i (C2)
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The corresponding update laws are given as
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with δ(j)(t) being an exponentially decaying function with lower bound k
(j)
b such that |z(j)1,s(0)| < δ(j)(0), and z

(j)
1,s denotes the sth

(s = 1, · · · ,m) element of z
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1 ; ψ

(j)
1 = diag{φ(j)

1 (x
(j)
1 ), 0}, ψ(j)

i = diag{φ(j)
i (x̄

(j)
i ), z

(j)
i } for i = 2, · · · , N ; and λ̂(j), ρ̂(j) and π̂(j)

are the estimates of λ(j) =: [θTj , µ]
T with µ =: ((1+ η)2∥L∥+ ∥L∥3)Π2/2, ρ(j) := (2n− 1+ η)∥L∥ and π(j) =:

∑
i∈Nj

(v(j)∗ − v(i)∗ ),

respectively, where Π is defined in the appendix; Γ(j) is a positive definite matrix and γ
(j)
0 , γ

(j)
1 and c

(j)
i for i = 1, · · · , n are

positive constants, all chosen by users.

• Outer-loop control K(O,j)(ℑ(j))

α
(j)
1,O = − ∇g(j)(y(j)r ) − 2ṽ

Nj (C7)

α
(j)
i,O = −

∂α
(j)
i−1,O

∂y
(j)
r

[
∇g(j)(y(j)r ) + ṽ
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(C9)

Summarizing the above procedure (C1)-(C9), we derive Algorithm 1 for the DOC of the overall CPS under healthy environment.
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Algorithm 1: DOC under healthy environment
DO algorithm (Module O(y)):

ẏr =−∇g(yr)− Lv − (1 + η)Ly

v̇ =Ly

ℑ =(yr,∇g(yr), ṽ)
(C10)

where ∇g(yr) = vec(∇g(1)(y(1)r ), · · · ,∇g(N)(y
(N)
r )) and ṽ = vec(ṽN1 , · · · , ṽNN ).

Adaptive tracking control (Module K(x,ℑ)):
Inner-loop control KI(x,ℑ):
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δ

)
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where Ci = diag{c(1)i , · · · , c(N)
i }, ρ̂ = diag{ρ̂(1), · · · , ρ̂(N)}, Γ = diag{Γ(1), · · · ,Γ(N)}, B = diag{β1, · · · , βN},

S(z1/δ) = [S(z
(1)
1 /δ(1)), · · · , S(z(N)

1 /δ(N))], ψi = diag{ψ(1)
i , · · · , ψ(N)

i }, ωi = diag{ω(1)
i , · · · , ω(N)

i } and

τ1 = ω1z1

τi = τi−1 + ωizi

ωi = ψi −
i−1∑
k=1

∂αi−2

∂xk
ψk

Outer-loop control KO(ℑ):

α1,O =−∇g(yr)− 2Lv (C14)

αi,O =− ∂αi−1,O

∂yr
[∇g(yr) + Lv] (C15)

uO =−B−1 ∂αn−1,O

∂yr
[∇g(yr) + Lv] (C16)

where i = 2, · · · , n− 1 and Γ0 = diag{γ(1)
0 , · · · , γ(N)

0 }.
Update laws:

λ̇ = Γτn (C17)

ρ̇ = Γ0z1 ◦ z1 (C18)

π̇ = Γ1z1 (C19)

where Γ0 = diag{γ(1)
0 , · · · , γ(N)

0 } and Γ1 = diag{γ(1)
1 , · · · , γ(N)

1 }.

Now, we give the convergence analysis on the cyber dynamics (3) and physical dynamics (1) based on the Lyapunov method,

respectively.

Cyber dynamics: Let y∗ = 1N ⊗ y⋆ be a solution of (2). From [12, Proposition 3.2], there exists v∗ ∈ RNm such that

∇g(y∗r ) + Lv∗ + Ly∗r = 0 holds, and (y∗, v∗) is the saddle of G(y, v) = g(y) + yTLv + 1
2y

TLy. Consider the Lyapunov function of

the cyber dynamics

Vc =
1

2
(∥yr − y

∗∥2
+ ∥v − v

∗∥2
)

Note that z1 = y − yr under the healthy conditions. Then (3) becomes

ẏr = − ∇g(yr) − Lv − (1 + η)Lyr − (1 + η)Lz1

v̇ =Lyr + Lz1
(C20)
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The time derivative of Vc along with (C20) is

V̇c =(yr − y
∗
)
T
[−∇g(yr) − Lv − (1 + η)Lyr] + (v − v

∗
)
T
Lyr − (1 + η)z

T
1 Lyr + (v − v

∗
)
T
Lz1

(a)

6G(y
∗
, v) −G(y

∗
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∗
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∗
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∗
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T
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T
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∗
)
T
Lz1

(b)

6 − ηy
T
r Lyr − (1 + η)z

T
1 Lyr + v

T
Lz1 − z

T
1 π (C21)

where the equalities: (a) follows from the convexity of G in the first argument and the linearity of G in its second argument; (b)

follows from the fact that (y∗, v∗) is the saddle point of G. Note that the mismatching terms vTLz1 and −zT1 π will be compensated

by the following physical dynamics.

Physical system: The convergence analysis is discussed based on backstepping procedure. Rewrite (1) into a compact form

P :


ẋi = xi+1 + φi(x̄i)θ, i = 1, · · · , n− 1

ẋn = Bu+ φn(x)θ,

y = x1

(C22)

where φi(x̄i) = diag{φ(1)
i (x̄

(1)
i ), · · · , φ(N)

i (x̄
(N)
i )} and θ = vec(θ1, · · · , θN ).

The error dynamics can be expressed as 
ż1 = α1 + φ1(x̄1)θ − ẏr + z2

żi = αi + φi(x̄i)θ − α̇i−1 + zi+1

żn = Bu+ φn(x)θ − α̇n−1

(C23)

which can be spitted into inner-loop and outer-loop subsystems:
ż1,I =α1,I + ψ1(x̄1)λ+ z2

żi,I =αi,I + ψi(x̄i)λ− α̇i−1,I + zi+1 − µzi

żn,I =BuI + ψn(x)λ− α̇n−1,I − µzn

(C24)

and 
ż1,O = α1,O − ẏr

żi,O = αi,O − α̇i−1,O

żn,O = BuO − α̇n−1,O

(C25)

where zi = zi,I + zi,O for i = 1, · · · , n.
Next, we provide the Lyapunov analysis of the physical dynamics by considering
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Γ
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T
Γ
−1
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T
Γ
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)

where λ̃ = λ− λ̂, ρ̃ = ρ− ρ̂, π̃ = π − π̂.

The derivative of Vp can be computed as

V̇p =

n∑
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ziżi − λ̃
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Γ
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where V̇I =
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i=1 ziżi,I − λ̃TΓ−1 ˙̂
λ− ρ̃TΓ−1

0
˙̂ρ− π̃TΓ−1

1
˙̂π and V̇O =

∑n
i=1 ziżi,O represent the inner-loop and outer-loop Lyapunov

derivatives, respectively.

Consider the inner-loop error dynamics (C24) with controls (C11)–(C13) and adaptive laws (C17)–(C19). Following the tradi-

tional backstepping procedure [13], along with (C24), we can obtain

V̇I 6 −
n∑

i=1

z
T
i Cizi − µ

n∑
i=2

∥zi∥2 − ρ∥z1∥2
+ z

T
1 π − z

T
1 S

(
z1

δ

)
. (C26)

Now we consider the outer-loop error dynamics (C25) with controls (C14)-(C16).

Step 1. In view of (C10) and (C25), we have

ż1,O = α1,O + ∇g(yr) + Lv + (1 + η)Ly (C27)

To stabilize (C27), consider the Lyapunov derivative V̇1,O = z1ż1,O. Then using the virtual control (C14), we have

V̇1,O =z
T
1 [α1,O + ∇g(yr) + Lv + (1 + η)Ly]

= − z
T
1 Lv + (1 + η)z

T
1 Ly

= − z
T
1 Lv + (1 + η)z

T
1 L(yr + z1)

6 − z
T
1 Lv + (1 + η)z

T
1 Lyr + (1 + η)∥L∥∥z1∥2

(C28)
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Step i(2 6 i 6 n). Note that the arguments of the function αi−1,O involve yr and v. From (C10) and (C25), we have

żi,O=αi,O +
∂αi−1,O

∂yr
[∇g(yr) + Lv + (1 + η)Ly] −

∂αi−2,O

∂yr
L

2
y

=

[
(1 + η)

∂αi−1,O

∂yr
L−

∂αi−2,O

∂yr
L

2

]
(yr + z1) (C29)

On the compact set {V (t) 6 V (0)}, there exists a positive constant such that ∥∂αi,O/∂yr∥ 6 Π for all i = 1, · · · , n− 1. Based on

the fact and using the triangular inequality, the Lyapunov derivative V̇i,O = ziżi,O along with (C29) can be expressed as

V̇i,O =z
T
i

[
(1 + η)

∂αi−1,O

∂yr
L−

∂αi−2,O

∂yr
L

2

]
(yr + z1)

6µ∥zi∥2
+ 2∥L∥∥z1∥2

+ 2y
T
r Lyr (C30)

Combining (C28) and (C30), the outer-loop Lyapunov derivative satisfies

V̇O 6 −zT1 Lv + (1 + η)z
T
1 Lyr + ρ∥z1∥2

+ 2(n− 1)y
T
r Lyr + µ

n∑
i=2

∥zi∥2
(C31)

Finally, construct the Lyapunov function V = Vc + Vp for the overall CPS. Taking (C21), (C26) and (C31) into account, its time

derivative satisfies

V̇ 6 − (η − 2(n− 1))y
T
r Lyr −

n∑
i=1

z
T
i Cizi −

N∑
j=1

z
(j)T
1 S

(
z
(j)
1

δ(j)

)

6 − (η − 2(n− 1))y
T
r Lyr −

n∑
i=1

z
T
i Cizi (C32)

where the fact z
(j)T
1 S(z

(j)
1 /δ(j)) > 0 is used.

Choose η > 2(n− 1). Then V̇ 6 0. Thus, {V (t) 6 V (0)} is an invariant set. It implies that z(t), yr(t), v(t), λ̂(t), ρ̂(t), π̂(t) and

z
(j)T
1 S(z

(j)
1 /δ(j)) are bounded. Then y(t) = z1(t)+yr(t) is bounded. Along with the backstepping procedure, αi(t), ui(t) and xi(t)

are also bounded. Noting ẏr(t), v̇(t) ∈ L∞ and yTr (t)Lyr(t), zi(t) ∈ L2. According to Barbalat’s Lemma, limt→∞ yTr (t)Lyr(t) = 0

and limt→∞ zi(t) = 0. Finally, following the proof of [12, Theorem 4.1], one obtains that limt→∞ yr(t) = y∗. Thus, we can

conclude that limt→∞[y(t) − y∗] = limt→∞[y(t) − yr(t) + yr(t) − y∗] = 0.

Appendix D ADI design procedure
Taking (3) and (5) into account, we can express the error dynamics as the following form

ė
(j)
r = − η

(j)
(e

(j)
r + z

(j)
1 ) − η

(j)
a
(j)

(D1)

ė
(j)
v = − wNj

(e
(j)
v − e

(j)
r − z

(j)
1 ) + wNj

a
(j)

(D2)

where wNj
=
∑

i∈Nj
wji and η(j) = (1 + η)wNj

.

In the error dynamics (D1)–(D2), the tracking error z
(j)
1 is simultaneously affected by the local attack and multiple attacks

propagated from its neighbors, which hinders the identification of local attacks. Later, we will propose a robust method to address

this problem.

The jth detection thresholds, denoted by ē
(j)
r,H(t) and ē

(j)
v,H(t), are designed based on the bounds of residuals e(j)r (t) and e(j)v (t)

under healthy conditions, respectively. The error dynamics under healthy conditions, denoted by (e
(j)
r,H , e

(j)
v,H), can be expressed by

ė
(j)
r,H = − η

(j)
(e

(j)
r,H + z

(j)
1 ) (D3)

ė
(j)
v,H = − wNj

(e
(j)
v,H − e

(j)
r,H − z

(j)
1 ) (D4)

Along with (D3) and (D4), the residuals under healthy conditions e
(j)
r,H(t) and e

(j)
v,H(t) can be bounded by

∥e(j)r,H(t)∥ 6e−η(j)t
e
(j)
r,H(0) + Ψ(η

(j)
, z

(j)
1 (t), 0, t) (D5)

∥e(j)v,H(t)∥ 6e−wNj
t
e
(j)
v,H(0) + Ψ(wNj

, e
(j)
r,H(t) + z

(j)
1 (t), 0, t) (D6)

where Ψ(α, h(t), t0, t) := α
∫ t
τ=t0

eα(τ−t)∥h(τ)∥dτ .

Note that z
(j)
1 (t) ∈ ∆δ(j)

z . Substituting it into (D5) and (D6), we can obtain the two “strongly-robust” thresholds

ē
(j)
r,H(t) = e

−η(j)t
e
(j)
r,H(0) + Ψ̄

(j)

∆δ(j)
z

(η
(j)
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ē
(j)
v,H(t) = e
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t
e
(j)
v,H(0) + Ψ̄

(j)

∆δ(j)
ez

(wNj
, 0, t)

where ∆δ(j)

ez := {e+ z : ∥e∥ 6 ē
(j)
r,H , z ∈ ∆δ(j)

z } and Ψ̄
(j)

∆δ(j)
(α, t0, t) := sup

h(t)∈∆δ(j)
α
∫ t
τ=t0

eα(τ−t)∥h(τ)∥dτ .

Thus, the decision logic implemented in each module M(j), denoted by 0(j)(t), can be defined as

0
(j)

(t) = 0
(j,r)

(t) ∪ 0
(j,v)

(t) (D7)

where 0(j,r)(t) : ∥e(j)r (t)∥ 6 ē
(j)
r,H(t) and 0(j,v)(t) : ∥e(j)v (t)∥ 6 ē

(j)
v,H(t). If 0(j)(t) is violated, then M(j) will generate an alarm.
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Appendix E Proof of Theorem 1 and Remark
Proof. For sake of contradiction, we suppose that no local attack a(j) has occurred, then the error dynamics are expressed as (10)

and (11). According to the PPT, one has ∥z(j)1 (t)∥ <
√
mδ(j)(t) for all t ∈ [0, T

(j)
d ]. Further, if

∫ T
(j)
d

t=0 δ(j)2(t)dt 6 Ω/m, then∫ T
(j)
d

t=0

∥∥∥z(j)1 (t)
∥∥∥2 dt < m

∫ T
(j)
d

t=0 δ(j)2(t)dt 6 Ω. It means that there exists an instant t(j)∗ > T
(j)
d such that z

(j)
1 (t) ∈ ∆δ(j)

z can still

be ensured for any t ∈ [0, t(j)∗ ] even in the presence of the impacts of the attacks a(i) propagated from its neighbors i ∈ Nj . Hence,

0(j)(T
(j)
d ) is satisfied, a contradiction, which in turn implies that the occurrence of local attack a(j) is guaranteed. �

Remark E1. From (D1) and (D2), the variable z
(j)
1 suffers the coupling effects of attack signals a(i) from the neighbors i ∈ Nj

such that the local attack a(j) cannot be isolated from a(i), i ∈ Nj (i.e., the attack occurring at the neighbor may also cause

the false alarm of the local monitoring module). To address it, in the control module K(j) the prescribed performance technique

(PPT) [14, 15] is used to restrict the bound of tracking error z
(j)
1 (the nonlinear function S is introduced into K(j)). As a result,

the detection thresholds, or further the proposed ADI method, are strongly robust against propagated attacks. In other words, the

prescribed performance bound ∥z(j)1 (t)∥ <
√
mδ(j)(t) restrains the propagating effects of the attacks a(i), i ∈ Nj on e(j)r and e(j)v

such that the sensitivity to the local attack is improved. In fact, according to the special form of

S

(
z
(j)
1

δ(j)

)
=

1

2
ln

(
1 +

z
(j)
1

δ(j)

)
−

1

2
ln

(
1 −

z
(j)
1

δ(j)

)

it makes the PPT to have strong robustness, i.e., the prescribed performance constraint ∥z(j)1 (t)∥ <
√
mδ(j)(t) can be guaranteed

until the direct attack-associated terms −η(j)a(j) and wNj
a(j) in (D1)–(D2) cause the alarm (if these two terms exist). Hence, the

attack on a subsystem does not cause false alarm of the monitoring module of its neighbors and the local attack can be identified.

Appendix F Proof of Theorem 2 and Remarks
Following the stability analysis given in Appendix B, the proof of Theorem 2 can be formalized by proving ∥e(j)r (t)∥ 6 ē

(j)
r,H(t)

∥e(j)v (t)∥ 6 ē
(j)
v,H(t)

⇒ a
(j)

(t) ∈ L2[0,+∞)

A brief sketch of proof procedure is shown in Figure F1.

Figure F1 A brief sketch of vulnerability analysis

We first give some properties of functions Ψ̄
(j)

∆δ(j)
z

(α, t0, t) and Ψ̄
(j)

∆δ(j)
ez

(α, t0, t) in the “strongly-robust” thresholds, which are

important for analyzing the detectability performance of the ADI mechanism.

Lemma F1. Let δ(j)(t) = (k
(j)
0 e−c(j)t + k

(j)
b )/

√
m, where k

(j)
0 , k

(j)
b and c(j) (̸= α) are positive design parameters such that

|z(j)1,s(0)| < δ(j)(0), s = 1, · · · ,m. Then

(a) Ψ̄
(j)

∆δ(j)
z

(α, 0, t)6k(j)b (1 − e−αt) +
αk

(j)
0

α−c(j)
(e−c(j)t − e−αt);

(b) Ψ̄
(j)

∆δ(j)
ez

(α, 0, t) 6 2k
(j)
b (1 − e−αt) +

(2α−c(j))αk
(j)
0

(α−c(j))2
(e−c(j)t −e−αt) + α

[
k
(j)
b +

αk
(j)
0

α−c(j)
+ e

(j)
r,H(0)

]
te−αt;

(c)
∫∞
t=0

Ψ̄
(j)2

∆δ(j)
z

(α, 0, t)dt 6 Ω,
∫∞
t=0

Ψ̄
(j)2

∆δ(j)
ez

(α, 0, t)dt 6 2Ω.

Proof. (a) Note that Ψ(j)(α, h(t), 0, t) increases as ∥h(t)∥ increases. Based on the constraint ∥z(j)1 (t)∥ 6 k
(j)
0 e−c(j)t + k

(j)
b , we

have

Ψ̄
(j)

∆δ(j)
z

(α, 0, t) 6α
∫ t

τ=0

e
α(τ−t)

(k
(j)
0 e

−c(j)t
+ k

(j)
b )dτ

6k(j)b (1 − e
−αt

) +
αk

(j)
0

α− c(j)
(e

−c(j)t − e
−αt

)

(b) Based on (a) and using similar analysis, the proof can be completed.

(c) Let h∗(t) := arg sup
h(t)∈∆δ(j)

z

α
∫ t
τ=0

eα(τ−t)∥h(τ)∥dτ , i.e., Ψ̄
(j)

∆δ(j)
z

(α, t0, t) = α
∫ t
τ=0

eα(τ−t)∥h∗(τ)∥dτ . Since ∆δ(j)

z is a

compact set, h∗(t) satisfies
∫∞
τ=0

∥h∗(τ)∥2dτ 6 Ω. To show (c), we construct the auxiliary dynamics

χ̇(t) = −αχ(t) + α∥h∗
(t)∥, χ(0) = 0 (F1)
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By integrating (F1) we can find χ(t) = Ψ̄
(j)

∆δ(j)
z

(α, t0, t). On the other hand, considering the Lyapunov function V = χ2/2, its

derivative along with (F1) satisfies

V̇ = χ(−αχ+ α∥h∗∥) 6 −αV +
α

2
∥h∗∥2

integrating two sides of which yields
∫∞
t=0

χ2(t)dt 6 Ω. Using similar procedure to Ψ̄
(j)

∆δ(j)
ez

(α, 0, t), it is easily obtained that∫∞
t=0

Ψ̄
(j)2

∆δ(j)
ez

(α, 0, t)dt 6 2Ω. �

Remark F1. From Lemma F1-(c), one has limt→∞ Ψ̄
(j)

∆δ(j)
z

(α, 0, t) = 0 and limt→∞ Ψ̄
(j)

∆δ(j)
ez

(α, 0, t) = 0 following Barbalat’s

Lemma. It means that only if 0(j)(t) is satisfied, the bound functions ē
(j)
r,H(t) and ē

(j)
v,H(t) will converge to zero, which in turn

implies that e(j)r (t) and e(j)v (t) converge to zero. Lemma F1-(a) and -(b) give prescribed performance bounds of Ψ̄
(j)

∆δ(j)
z

and Ψ̄
(j)

∆δ(j)
ez

.

By replacing Ψ̄
(j)

∆δ(j)
z

and Ψ̄
(j)

∆δ(j)
ez

with the prescribed performance bounds, we can obtain low-complexity thresholds. However, such

relaxations will weaken the detectability and extend the detection time. Also, the two prescribed performance bounds converge to

k
(j)
b and 2k

(j)
b instead of zero, respectively, which may results in that the detection mechanism is not able to detect some small but

persistent attacks. However, we can choose k
(j)
b to be sufficiently small to reduce the effects of such attacks.

To examine the sensitivity of the proposed attack detection scheme, the following attack detectability is analyzed.

Lemma F2 (Detectable attacks). Consider cyber attack a(j) occurring at the subsystem (P(j), C(j)). If there exists some

time instant T
(j)
d > T (j)

a such that the attack satisfies

η
(j)

∥∥∥∥∥∥
∫ T

(j)
d

t=T
(j)
a

e
η(j)(t−T

(j)
d

)
a
(j)

(t)dt

∥∥∥∥∥∥ >2e
η(j)(T

(j)
a −T

(j)
d

)∥e(j)r (T
(j)
a )∥ + Ψ̄

(j)

∆δ(j)
z

(η
(j)
, T

(j)
a , T

(j)
d )

+ η
(j)
∫ T

(j)
d

t=T
(j)
a

e
η(j)(t−T

(j)
d

)
∥∥∥z(j)1 (t)

∥∥∥ dt (F2)

or

wNj

∥∥∥∥∥∥
∫ T

(j)
d

t=T
(j)
a

e
wNj

(t−T
(j)
d

)
a
(j)

(t)dt

∥∥∥∥∥∥ >2e
wNj

(T
(j)
a −T

(j)
d

)
∥e(j)v (T

(j)
a )∥ + Ψ̄

(j)

∆δ(j)
ez

(wNj
, T

(j)
a , T

(j)
d )

+ wNj

∫ T
(j)
d

t=T
(j)
a

e
wNj

(t−T
(j)
d

)
∥∥∥e(j)r (t) + z

(j)
1 (t)

∥∥∥ dt (F3)

then the attack a(j)(t) is detected by 0(j) at t = T
(j)
d .

Proof. After the first occurrence of the attack a(j), i.e., t > T (j)
a , the time derivative of e(j)r (t) becomes ė(j)r = −η(j)(e(j)r +

z
(j)
1 ) + η(j)a(j). Integrating both sides and applying the triangular inequality yield

∥e(j)r (T
(j)
d )∥ >η(j)

∥∥∥∥∥∥
∫ T

(j)
d

t=Tf

e
η(j)(t−T

(j)
d

)
a
(j)

(t)dt

∥∥∥∥∥∥− e
η(j)(T

(j)
a −T

(j)
d

)∥e(j)r (T
(j)
a )∥

− η
(j)
∫ T

(j)
d

t=T
(j)
a

e
η(j)(t−T

(j)
d

)
∥∥∥z(j)1 (t)

∥∥∥ dt,
substituting (F2) into which yields that ∥e(j)r (T

(j)
d )∥ > eη

(j)(T
(j)
a −T

(j)
d

)e(j)r (T (j)
a ) + Ψ̄

(j)

∆δ(j)
z

(η(j), T (j)
a , t).

Following similar analysis, (F3) ensures

∥e(j)v (T
(j)
d )∥ > e

wNj
(T

(j)
a −T

(j)
d

)
e
(j)
v (T

(j)
a ) + Ψ̄

(j)

∆δ(j)
ez

(wNj
, T

(j)
a , t)

From the definition of 0(j)(t), the attack a(j)(t) satisfying (F2) or (F3) provokes the violation of decision logic 0(j)(t) and

resultantly a(j)(t) is detected when t = T
(j)
d . �

Remark F2. The inequalities (F2)–(F3) characterize a class of detectable attacks under the worst-case detectability. The com-

putation of detection time T
(j)
d may be somewhat conservative. However, differing from the fault, the attacker may strategically

design the (worst-case) attack to extend the detection time as much as possible. Thus, the real-time detection time may sufficiently

approach to T
(j)
d but not exceed than it. In general, from (F2)–(F3), if the cyber attack on the time interval [T (j)

a , T
(j)
d ] is suffi-

ciently large, then the attack can be detected. However, a malicious attacker may strategically inject the attack signals which are

not detected by the proposed distributed ADI scheme, yet degrade the system performance. The following lemma gives necessary

conditions on undetectable attacks.

Lemma F3 (Undetectable attacks). If a cyber attack a(j)(t) occurring at subsystem (P(j), C(j)) is undetectable by 0(j),

the following inequality holds

∫ ∞

t=T
(j)
a

(∫ t

τ=T
(j)
a

e
η(j)(τ−t)∥a(j)(τ)∥dτ

)2

dt 6 M1 (F4)

∫ ∞

t=T
(j)
a

(∫ t

τ=T
(j)
a

e
wNj

(τ−t)
∥a(j)(τ)∥dτ

)2

dt 6 M2 (F5)
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where M1 = 8Ω

η(j)2
+

4∥e(j)r (T
(j)
a )∥2

η(j)4
and M2 = 16Ω

w2
Nj

+
4∥e(j)v (T

(j)
a )∥2

w4
Nj

. Further,
∫∞
t=T

(j)
a

∥a(j)(t)∥2dt < +∞.

Proof. Here we directly show (F5) from (F3), and (F4) is easily obtained by applying similar procedure to (F2). If the attack

a(j)(t) occurring at time T (j)
a is not detectable, from (F3) in Lemma F2, then for any t > T (j)

a ,

wNj

∥∥∥∥∥
∫ t

τ=T
(j)
a

e
wNj

(τ−t)
a
(j)

(τ)dτ

∥∥∥∥∥ 6 2e
wNj

(T
(j)
a −t)

∥e(j)v (T
(j)
a )∥ + 2Ψ̄

(j)

∆δ(j)
ez

(wNj
, T

(j)
a , t) (F6)

Consider the right-hand side of (F6). Taking square and integral consecutively to each term yields

4∥e(j)v (T
(j)
a )∥2

∫ ∞

t=T
(j)
a

e
2wNj

(T
(j)
a −t)

dt 6 2∥e(j)v (T (j)
a )∥2

wNj

,

4

∫ ∞

t=T
(j)
a

Ψ̄
(j)2

∆δ(j)
ez

(wNj
, T

(j)
a , t)dt 6 8Ω.

where the second inequality follows from Lemma F1-(c).

Then using the Cauchy-Buniakowsky-Schwarz inequality, one has

4

∫ ∞

t=T
(j)
a

(
e
wNj

(T
(j)
a −t)

∥e(j)v (T
(j)
a )∥ + Ψ̄

(j)

∆δ(j)
ez

(wNj
, T

(j)
a , t)

)2

dt 6 4∥e(j)v (T (j)
a )∥2

w2
Nj

+ 16Ω (F7)

Combining (F6) and (F7), Eq. (F5) follows at once.

Next, to prove
∫∞
t=T

(j)
a

∥a(j)(t)∥2dt < +∞, we consider the error dynamics

ė
(j)
v = −wNj

(e
(j)
v − e

(j)
r − z

(j)
1 ) + wNj

a
(j)
.

Noting that 0(j) is always satisfied, then e(j)r , e(j)v , z
(j)
1 ∈ L2[0,+∞) from Lemma F1-(c). Therefore, there exist a sufficiently big

T > T (j)
a and a time interval Ξv,s with ν(Ξv,s) = 0 such that

a(j)s (t)

e
(j)
v,s(t)

< 1, ∀t ∈ [T,∞)\Ξv,s

which means that there exists a function ϕ̄v,s(t) < −∥e(j)v,s(t)∥ such that

|a(j)s (t)| < |e(j)v,s(t)| or a
(j)

(t) = ϕ̄v,s(t)sgn(e
(j)
v,s(t)) (F8)

for any t ∈ [T,∞)\Ξv,s, where a(j)s and e(j)v,s represent the sth element of vectors a(j) and e(j)v , respectively. Applying similar

procedure to ė(j)r = −η(j)(e(j)r +z
(j)
1 )+η(j)a(j), there exist a function ϕ̄r,s(t) 6 −∥e(j)r,s(t)∥ and a time interval Ξr,s with ν(Ξr,s) = 0

such that

|a(j)s (t)| < |e(j)r,s(t)| or a
(j)
s (t) = ϕ̄r,s(t)sgn(e

(j)
r,s(t)) (F9)

for any t ∈ [T,+∞)\Ξr,s.

Compared (F8) with (F9), and noting that the equality

sgn(e
(j)
v,s(t)) = sgn(e

(j)
r,s(t)), ∀t ∈ [T,+∞)\(Ξr,s ∪ Ξv,s)

does not hold, it yields that ∥a(j)(t)∥ < max{∥e(j)r (t)∥, ∥e(j)v (t)∥} for any t ∈ [T,+∞)\
∪m

s=1(Ξr,s ∪ Ξv,s), which guarantees∫∞
t=T

(j)
a

∥a(j)(t)∥2dt < +∞. �
Remark F3. From its proof, we can see the design of double coupling residuals plays a key role in removing the existence of the

attacks a(j)s (t) = ϕ̄r,s(t)sgn(e
(j)
r,s(t)) and a(j)s (t) = ϕ̄v,s(t)sgn(e

(j)
v,s(t)) which are stealthy against two single decision logics 0(j,r)

and 0(j,v), respectively. Lemma F3 implies that any undetectable attack must belong to L2[0,+∞).

Appendix G Simulation illustration
As a practical application of the studied problem framework, we apply our algorithms to the problem of motion coordination of

multiple Remotely Operated Vehicles (ROVs): rendezvous at a location which is optimal for the formation. The dynamics equation

of each ROV can be expressed in two coordinate frames [16]:

η̇ =J(η)ν

M ν̇ + C(ν) +D(ν)ν + g(η) =τ + ∆f
(G1)

where η = [x, y, z, ϕ, θ, ψ]T is the position and orientation described in the earth-fixed frame (|θ| < π/2 and |ϕ| < π/2), ν =

[u, v, w, p, q, r]T is the linear and angular velocity in the body-fixed frame, M = MRB +MA and M is positive definite, C(ν) =

CRB(ν) + CA(ν) satisfying C(ν) = −CT (ν), MRB is the rigid-body inertia matrix, MA is the added inertia matrix; CRB(ν) is

the rigid-body Coriolis and centripetal matrix, CA(ν) is the hydrodynamic Coriolis and centripetal matrix in cluding added mass,

D(ν) is hydrodynamic damping and lift matrix, g(η) is a vector of gravitational forces and moment, τ is the control force and

torque vector, ∆f is the bounded disturbance vector.
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According to [16], the velocity dynamics can be expressed as linear-parametric form

M ν̇v + C(ν) +D(ν)ν + g(η) = Φ
T
(ν, ν̇v,η)σ

where σ = [mν −Xu̇,mν −Yv̇, Xu, X|u|u, Yv, Y|v|v,mν −Zẇ, Zw, Zw|w|,W −B, Iz −Nṙ, Nr, Nr|r|] is unknown system parameter

vector, νv is the virtual control and Φ(ν, ν̇v,η) is a known reduced regressor matrix function. The specific forms of M , J(η), C(ν),

D(ν), g(η), Φ(ν, ν̇v,η) and related system parameters can be found in [16] and are omitted here for saving space.

Consider a ROV formation which consists of 4 ROVs. The communication topology G is given by a 2-regular graph and the

connection weight wji = 1 if vi and vj are connected. The objective of multi-agent coordination is to find a distributed control

strategy that is able to drive each ROV from its initial position to rendezvous at the target position which minimizes the square sum

of distances from these initial positions. The objective can be formulated as the problem: min
η(j)

∑4
j=1 ∥η(j) −η

(j)
0 ∥2, s.t. η(1) =

· · · = η(4) where η
(j)
0 represents the initial state of the jth ROV.

Consider the cyber attacks (also including the sensor faults or some extraneous factors such as ocean currents) occurring in the

complex underwater environment. When the cyber core detects the existence of the cyber attacks, it will drive the attacked ROV

to the secure state ηs = 0. In the simulation, the initial state conditions of these four ROVs are set as η(1)(0) = [0.3 0.4 1 0]T ,

η(2)(0) = [0.1 0.1 0.5 − π/6]T , η(3)(0) = [0 0 0 − π/8]T and η(4)(0) = [0.2 0.5 1 0]T . Assume that the 4th ROV suffers the cyber

attack at t = 30s, and ϕ(4)(t) = e0.5(t−30)−1[sin(t) cos(t) − sin(t) − cos(t)]T . For simplifying calculation, only the decision logic

0(j,r)(t) rather than 0(j)(t) is used in the proposed ADI approach.
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Figure G1 ADI by the decision logic 0(j,r)(t).
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Figure G2 Routes of four ROVs.
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Figure G3 Routes of four ROVs on [0s,34.45s] with the basic DOC.

The ADI mechanism based on the decision logic 0(j,r)(t) formulated by e(j)r and e
(j)
r,H is shown in Figure G1. It can be observed

that although the residuals e(j)r , j = 1, 2, 3, fluctuate a little after the cyber attack occurs, the decision logics 0(j,r)(t) generated

by M(j) are still satisfied. Meanwhile, 0(4,y)(t) is immediately violated (about at t = 31.5s), thus indicating the cyber attack

occurs in the 4th ROV. After detecting the cyber attack, the module will send the reference y(4)r = 0 to the 4th ROV. Then the

ROV converges to the secure position ηs = 0, while the remaining three ROVs achieve the consensus at the optimal solution of

min
η(j)

∑3
j=1 ∥η(j) −η

(j)
0 ∥2, s.t. η(1) = η(2) = η(3). The trajectory curves of these four ROVs in the whole process are illustrated

in Figure G2. For comparison, we also apply the existing basic version of DOC (without the ADI mechanism) [17] under adversarial

environment. Figure G3 shows that under the case all the ROVs follow the wrong control commands and move along with wrong

(insecure) routes due to the attack propagation through the exchange of information between neighboring subsystems (The Simulink

reports “ERROR” at t = 34.45s and terminates).
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