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Recent years have seen a rising interest in distributed opti-

mization problems because of their widespread applications

in power grids, multi-robot control, and regression learning.

Over the last few decades, many distributed algorithms have

been developed for tackling distributed optimization prob-

lems. In these algorithms, agents over the network only have

access to their own local functions and exchange information

with their neighbors.

Moreover, observations in image processing and economic

dispatch are often captured with stochastic stripe observa-

tions. However, most of these mentioned studies are central-

ized. Thus far, solving optimization models with stochastic

stripe observations for distributed networks remains an un-

derexplored topic.

This motivates us to investigate the distributed optimiza-

tion problem with stochastic stripe observations. Challenges

of the problem come from the uncertain stripe observations

of local functions because the observations are not equipped

with exact analytic expressions. Therefore, we propose a dis-

tributed zeroth-order algorithm to determine approximate

solutions of distributed optimization problems with stochas-

tic stripe observations and perform an algorithm analysis.

Problem formulation and algorithm analysis. In this

study, we investigate the following distributed problem:

min
x

f(x), f(x) =
n
∑

i=1

fi(xi),

s.t. xi = xj , x ∈ X, (1)

where fi : Rp → R is a convex function. In our problem

setup, agents over the network only have access to observa-

tions of local functions with stochastic stripe observations

[YLi
(xi), YRi

(xi)] and global constraint X.

In our setting, each agent can observe the inexact

local objective function [YLi
(xi), YRi

(xi)] with stochas-

tic stripe noises. [YLi
(xi), YRi

(xi)] provides a stochas-

tic inexact observation pair of local objective function

fi(xi) with YLi
(xi) 6 YRi

(xi). For each point xi, dif-

ferent stochastic stripe observations [YLi
(xi)1, YRi

(xi)1],

[YLi
(xi)2, YRi

(xi)2], [YLi
(xi)3, YRi

(xi)3], . . . could be

made. We only use the information of one stochastic ob-

servation pair [YLi
(xi), YRi

(xi)] in this study.

The following is an approximate expression of problem

(1):

min
x

g
(

x,λ
)

, g
(

x,λ
)

=
n
∑

i=1

gi
(

xi, λi

)

,

s.t. xi = xj , x ∈ X, ∀i ∈ N ,

λi = λj , (2)

where λ = [λ1, . . . , λn]T with λi ∈ (0, 1). g
(

x,λ
)

,
∑n

i=1 gi
(

xi, λi

)

and gi
(

xi, λi

)

, λifLi
(xi)+(1−λi)fRi

(xi).

Agents have different observations in different distributed

stochastic settings. In the first-order settings [1, 2], agents

over the network have access to inexact (sub)gradient in-

formation ∇fi(xi) + ǫi(xi), whereas, in distributed zeroth-

order settings [3–6], agents over the network obtain informa-

tion of fi(xi) + ǫi. In these earlier settings, ǫi(xi)s are the

martingale-difference noise with zeroth means and bounded

variances. In our setting, agents have access to stochastic

stripe observations [YLi
(xi), YRi

(xi)]([fi(xi) + ǫi, fi(xi) +

ιi]).

To solve problem (1) with stochastic stripe observations

[YLi
(x), YRi

(x)], zeroth-order designs, which only make use

of function information over the network, are considered in

this study.

Distributed zeroth-order algorithm is given in Algo-

rithm 1.

{△q
i (k)}k>0, q = 1, 2, . . . , p, k = 1, 2, . . . is a sequence

of mutually independent and identically distributed ran-
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Algorithm 1 Distributed zeroth-order algorithm

Input: Total numbers of iteration T , step-size sequence
{

ι(k)
}

, parameter sequence
{

c(k)
}

, and random variables {△i(k)}.

Initialize: xi(0) ∈ X for all i = 1, 2, . . . n.

while k = 0, . . . T , for i ∈ N do

Average of random differences xi(k): ξi(k) =
∑n

j=1 wij(k)xj(k);

Calculation of local measurement di(k): di(k) =
[y+

i
(k) − y

−

i
(k)] △−

i
(k)

2c(k)
;

Descent step: xi(k) = Pξi(k)∈X (ξi(k) − ι(k)di(k));

Average of local observations λi(k): λi(k + 1) =
∑n

j=1 wij(k)λi(k);

end while

return (x(T ),λ(T )).

dom variables with zero mean, △i(k) = [△1
i (k),△

2
i (k), . . . ,

△p
i (k)]

T, and △−
i (k) = [ 1

△1
i
(k)

, 1
△2

i
(k)

, . . . , 1
△p

i
(k)

]T.

y+i (k) and y−i (k) are given as

y+i (k) = λi(k)YLi

(

ξi(k) + c(k)△i (k)
)

+
(

1− λi(k)
)

RLi

(

ξi(k) + c(k)△i (k)
)

,

y−i (k) = λi(k)YLi

(

ξi(k)− c(k)△i (k)
)

+
(

1− λi(k)
)

RLi

(

ξi(k)− c(k)△i (k)
)

.

{

c(k)
}

and
{

ι(k)
}

are two nonnegative step-size sequences

that gradually trend to zero with

ι(k) =
1

k1−ǫ
, c(k) =

1

kδ
, 0 6 ǫ <

1

4
,

1

2
− ǫ > δ > ǫ.

Results of Algorithm 1. We first show the almost-sure

convergence and convergence rate of (x∗,λ∗) to problem

(2). For problem (1), we provide the asymptotic behavior of

the approximate solution x
∗ of problem (1). The assump-

tions and parameter selection of Algorithm 1 are given in

Appendix A.

Let λ(0) = 1
n

∑n
i=1 λi(0). The almost-sure convergence

and convergence rate of (x∗,λ∗) to problem (2) are given in

Theorems 1 and 2, whose proofs are similar to [4] and are

omitted in this study.

Theorem 1. With Assumptions 1 and 2,

(a) the sequence {λi(k)}, i ∈ N generated by Algorithm

1 converges to the same point λ(0);

(b) the sequence {xi(k)}, i ∈ N generated by Algorithm

1 reaches a consensus almost surely, i.e., limk→∞
∥

∥xi(k) −
xj(k)

∥

∥ = 0, almost surely;

(c) the sequence {xi(k)}, i ∈ N generated by Algorithm

1 converges to the same point x∗ almost surely.

Theorem 2. With Assumptions 1 and 2, we have R(T ) ∼
O( 1

Tǫ ).

Subsequently, we consider the relationship between the

approximate solution
(

x∗, λ(0)
)

given by Algorithm 1 and

the exact solution x̂∗ of problem (1) in terms of network

scale.

Theorem 3. (a) With Assumptions 1–3 and 4(a),

‖g
(

x∗,λ(0)
)

− g
(

x̂∗,λ0
)

‖ = 0.

(b) With Assumptions 1–3 and 4(b), limn→∞ P (‖g(x∗,
λ(0)) − g

(

x̂
∗,λ0

)

‖ < ǫc0(x̂∗)) = 1, where c0
(

x̂∗) =

‖fL
(

x̂∗)− fR
(

x̂∗)‖.

(c) With Assumptions 1–3 and 4(c), limn→∞ P (‖g
(

x∗,

λ(0)
)

− g
(

x̂∗,λ0
)

‖ 6 ac0
(

x̂∗)) > 2φ(
√

na

ν
) − 1, and

limn→∞ P (‖g
(

x
∗,λ(0)

)

− g
(

x̂
∗,λ0

)

‖ > bc0
(

x̂∗)) 6 2 −

2φ(
√

nb

ν
), where φ(·) is the cumulative distribution function

of Gaussian distribution N (0, 1).

Conclusion. This study investigated a distributed opti-

mization problem with stochastic stripe observations subject

to local convex constraints. A distributed stochastic zeroth-

order algorithm was developed to determine an approximate

solution to the proposed problem. Moreover, the almost-

sure convergence and convergence rate were obtained for an

approximate solution to the problem, and the asymptotic

behavior of the approximate solution was further discussed.
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