
SCIENCE CHINA
Information Sciences

. Supplementary File .

A zeroth-order Algorithm for distributed 
optimization with stochastic stripe observations

Yinghui WANG1, Xianlin ZENG2*, Wenxiao ZHAO3 & Yiguang HONG4

1School of Automation and Electrical Engineering,

University of Science and Technology Beijing, Beijing 100083, China.;
2Key Laboratory of Intelligent Control and Decision of Complex Systems,

School of Automation, Beijing Institute of Technology, 100081, Beijing, China;
3Key Laboratory of Systems and Control, Academy of Mathematics and Systems Science

Chinese Academy of Sciences, Beijing, China;
4Tongji University

Appendix A Assumptions
Consider the following distributed optimization problem over an n-agent network [9]:

min
x

f(x), f(x) =
n∑
i=1

fi(xi)

s. t. xi = xj .x ∈ X (A1)

where x =
[
x>1 , x

>
2 , . . . , x

>
n

]> ∈ Rnp, xi ∈ Rp, fi : Rp → R is a convex function, X is the global constraint.

First, we provide an assumption about the communication topology between agents over the network.

Consider a time-varying multi-agent network. The communication topology between agents over the network is described by a

directed graph G(k) =
(
N , E(k),W (k)

)
, whereN = {1, 2, ...n} is the agent set, E(k) ⊂ N×N represents information communication

links at time k, and W (k) =
[
wij(k)

]
ij

represents the adjacency matrix at time k. In addition, denote Ni(k) = {j|(i, j) ∈ E(k)}
as the neighbors of agent i at time k. Each agent interacts with its neighbors in G(k) = (N , E(k),W (k)) at time k. The following

assumption is on the communication topology G(k) =
(
N , E(k),W (k)

)
, which is widely used in distributed time-varying network

designs ( [8]. [9]).

Assumption 1. The graph G(k) =
(
N , E(k),W (k)

)
satisfies:

(a) There exists a constant η with 0 < η < 1 such that, ∀k > 0 and ∀i, j, wii(k) > η; wij(k) > η if (j, i) ∈ E(k).

(b) W (k) is doubly stochastic, i. e.
∑m
i=1 wij(k) = 1 and

∑m
j=1 wij(k) = 1.

(c) There is an integer κ > 1 such that ∀k > 0 and ∀(j, i) ∈ N ×N , (j, i) ∈ E(k) ∪ E(k + 1) ∪ · · · ∪ E(k + κ− 1).

The following assumption holds for local functions and constraints of Problem (A1):

Assumption 2. (a) Problem (A1) has solutions.

(b) fLi (x) and fRi (x) are convex functions with fLi (x) 6 fRi (x).

(c) X is a non-empty, compact, convex constraint set in Rp.

(d) The gradients of fLi (x) and fRi (x) are locally Lipschitz continuous with constant L.

Then, we assume the following assumption holds for parameter λi of Problem (A1):

Assumption 3. There exists a common λ0 ∈ (0, 1), such that for all agents i ∈ N ,

gi(x) = λ0fLi (x) + (1− λ0)fRi (x).

Assumption 3 gives the characteristics of stripe observations YLi (x) and YRi (x), which results from inherent errors of measuring

devices or methods over the network. (x̂∗, λ0) is the optimal solution to Problem (??), and (x̂∗, λ0) is expected exact solution to

Problem (A1) with stripe observations YL(x) and YR(x) under Assumption 3.

Next, we give different probabilistic choices of each agents’ initial preferences λi(0) for Algorithm 1.

Assumption 4. (a) Each agent i has an initial preference λi(0) with λ0 =
∑n
i=1 λi(0).

(b) Each agent i has an initial preference λi(0). λi(0)s are independent and identically distributed (i.i.d.) random variables with

Eλi(0) = λ0.

(c) Each agent i has an initial preference λi(0). λi(0)s are independent and identically distributed (i.i.d.) random variables with

Eλi(0) = λ0, varλi(0) = ν2.

Assumption 4(a) is an ideal assumption that although each agent gets incomplete information of λi(0), they could get the com-

plete information of λ0 through cooperation. Assumption 4(b) and (c) are general probabilistic assumptions of agents preferences.

Still, the following assumption holds for parameters
{
4qi (k)

}
k>0

of Algorithm 1:

Condition 1. (Parameter selection)
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(a) Let
{
4qi (k)

}
k>0

be a sequence of independent and identically distributed (i. i. d.) random variables, for any fixed (i, q), all

k > 0 and (i, q),

∣∣4qi (k)
∣∣ < M1,

∣∣∣∣ 1

4qi (k)

∣∣∣∣ < M2, E
[

1

4qi (k)

]
= 0;

(b)
{
4qi (k)

}
k>0

and
{
4rj (k)

}
k>0

are mutually independent of each other for i 6= j or q 6= r.

Remark 1. In order to ensure the almost sure convergence of Algorithm 1,
{
c(k)

}
and

{
ι(k)

}
should satisfy the stochastic

approximation assumption [29]

∞∑
k=1

ι(k)

c(k)
=∞,

∞∑
k=1

ι2(k)

c2(k)
=∞,

and

∞∑
k=1

ι(k)c(k) <∞.

Therefore, 0 6 ε <
1

4
, 1

2 − ε > δ > ε.

With the stripe observation environment of the distributed problem,
ι(k)
c(k)

chosen in this paper differs from that of [17].

Appendix B Proof of Theorem 3
The following lemma, is essential for the proof of Theorem 3.

Lemma 1. With Assumption 3,
∥∥∥g(x∗,λ(0)

)
− g
(
x̂∗,λ0

)∥∥∥ 6
∣∣λ(0)− λ0

∣∣ · ∥∥∥fL(x̂∗)− fR(x̂∗)∥∥∥.

Proof. We get ∥∥∥g(x∗
,λ(0)

)
− g
(
x̂

∗
,λ0

)∥∥∥
=

n∑
i=1

[
λ(0)fLi

(
x
∗)

+ (1− λ(0))fRi
(
x
∗)]− n∑

i=1

[
λ0fLi

(
x̂
∗)

+ (1− λ0)fRi
(
x̂
∗)] 6

∥∥Γ1n + Γ2n‖ (B1)

where

Γ1n =

n∑
i=1

[
λ(0)

(
fLi
(
x
∗)− fLi(x̂∗))+

(
1− λ(0)

)(
fRi

(
x
∗)− fRi(x̂∗))]

Γ2n =

n∑
i=1

[(
λ(0)− λ0

)(
fLi
(
x̂
∗)− fRi(x̂∗))].

According to Assumption 2(b), we obtain

fLi
(
x
∗)− fLi(x̂∗) 6

〈
∇fLi

(
x
∗)
, x
∗ − x̂∗

〉
fRi

(
x
∗)− fRi(x̂∗) 6

〈
∇fRi

(
x
∗)
, x
∗ − x̂∗

〉
. (B2)

It yields

∥∥∥Γ1n

∥∥∥ =

∥∥∥∥∥
n∑
i=1

[
λ(0)

(
fLi
(
x
∗)− fLi(x̂∗))+

(
1− λ(0)

)(
fRi

(
x
∗)− fRi(x̂∗))]

∥∥∥∥∥
6

∥∥∥∥ n∑
i=1

[
λ(0)fLi

(
x
∗)

+
(
1− λ(0)

)
fRi

(
x
∗)]∥∥∥∥ · ∥∥∥fLi(x̂∗)− fRi(x̂∗)∥∥∥. (B3)

Since
(
x∗, λ(0)

)
is an optimal solution of the distributed problem, we have

n∑
i=1

[
λ(0)fLi

(
x
∗)

+
(
1− λ(0)

)
fRi

(
x
∗)]

= 0. (B4)

Therefore, ∥∥∥Γ1n

∥∥∥ = 0. (B5)

Combining (B5) with (B1), yields∥∥∥g(x∗
,λ(0)

)
− g
(
x̂

∗
,λ0

)∥∥∥ 6
∣∣λ(0)− λ0

∣∣ · ∥∥∥fL(x̂∗)− fR(x̂∗)∥∥∥. (B6)

Lemma 1 gives an upper bound of
∥∥∥g(x∗,λ(0)

)
− g
(
x̂∗,λ0

)∥∥∥.

Next, we provide the proof of Theorem 3.

Proof.
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(a) Theorem 3 is a direct conclusion of Lemma 1 and the fact that λ0 = λ(0) with Assumption 4(a).

(b) According to the law of large numbers [23],

lim
n→∞

P
(
‖λ(0)− λ0‖ < ε

)
= 1.

It yields

lim
n→∞

P

(∥∥∥g(x∗
,λ(0)

)
− g
(
x̂

∗
,λ0

)∥∥∥ < εc0
(
x̂
∗))

= 1.

(c) The following equality holds according to the central limit theorem [23]:

lim
n→∞

P

(√
n
(
λ(0)− λ0

)
ν

6 x

)
= φ(x)

where φ(x) is the cumulative distribution function of Gaussian distribution N (0, 1). With Lemma 1, we get

lim
n→∞

P

(∥∥∥g(x∗
,λ(0)

)
− g
(
x̂

∗
,λ0

)∥∥∥ 6 ac0
(
x̂
∗)) > lim

n→∞
P

(
|λ(0)− λ0| 6 a

)
=P

(√
n
∣∣λ(0)− λ0

∣∣
ν

6

√
na

ν

)
= φ

(√
na

ν

)
− φ

(
−
√
na

ν

)
= 2φ

(√
na

ν

)
− 1

and

lim
n→∞

P

(∥∥∥g(x∗
,λ(0)

)
− g
(
x̂

∗
,λ0

)∥∥∥ > bc0
(
x̂
∗)) 6 lim

n→∞
P

(
|λ(0)− λ0| > b

)
=P

(√
n
∣∣λ(0)− λ0

∣∣
ν

>

√
nb

ν

)
= 1− φ

(√
nb

ν

)
+ φ

(
−
√
nb

ν

)
= 2− 2φ

(√
nb

ν

)
.
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