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With the rapid development of deep learning, current deep

models can learn a fixed number of classes with high per-

formance. However, in our ever-changing world, data often

come from the open environment, which is with stream for-

mat or available temporarily due to privacy issues. As a

result, the classification model should learn new classes in-

crementally instead of restarting the training process. A

straightforward approach is to finetune the model with the

incoming new data, while it suffers catastrophic forgetting

phenomena: due to the absence of previous data, the predic-

tion on former classes drastically drops. Class-incremental

learning (CIL) aims to extend the acquired knowledge with

only new classes. For example, when training a robot in

the open-world, it meets new objects as time goes by, and

in the electronic commerce platform, new types of products

appear daily. We give an example to demonstrate the setting

of CIL. In the first task, the model needs to classify birds

and dogs. After that, the model is incrementally updated

with two new classes, i.e., tigers and fish, and it needs to

classify among two old classes (birds and dogs) and two new

classes (tigers and fish). Similarly, new classes like monkeys

and sheep will emerge in the next task, requiring the model

to incorporate them incrementally. New categories arrive

progressively, and the model needs to classify more classes

without forgetting the former ones.

With the growing interest of the machine learning com-

munity in class-incremental learning, it is essential to pro-

vide a simple and efficient toolbox with several class-

incremental learning algorithms. We choose to conduct its

development in the Python programming language for its

wide use in the machine learning community. Its high-

level interactive nature makes it an appealing tool for both

academic and industrial software developments, and several

popular machine learning libraries and deep learning open-

source frameworks are built upon it.

The Python class-incremental learning (PyCIL) library

takes advantage of Python to make class-incremental learn-

ing accessible to the machine learning community. It con-

tains implementations of several founding studies of CIL

and provides current state-of-the-art algorithms that can be

used to conduct novel fundamental research. As PyCIL is

designed to be user-focused and friendly, we have kept our

toolbox easy to use and accessible with convention consisten-

cies and syntax over all the available functions. Moreover,

our toolbox depends only on standard open-source libraries,

and it is usable under many operating systems such as Linux,

MacOSX, or Windows. The source code of PyCIL is avail-

able at https://github.com/G-U-N/PyCIL.

Definition 1 (Class-incremental learning). Class-

incremental learning was proposed to learn a stream of

data incrementally from different classes. Assume there are

a sequence of B training tasks
{

D1,D2, . . . ,DB
}

without

overlapping classes, where Db =
{(

x
b
i , y

b
i

)}nb

i=1
is the b-th

incremental step with nb instances. Besides, xb
i ∈ R

D is a

training instance of class yi ∈ Yb, Yb is the label space of

task b, where Yb ∩ Yb′ = ∅ for b 6= b′. During the training

process of task b, we can only access data from Db. The

aim of CIL at each step is not only to acquire the knowledge

from the current task Db, but also to preserve the knowledge

from former tasks. After each task, the trained model is

evaluated over all seen classes Yb = Y1 ∪ · · · ∪ Yb.

Definition 2 (Exemplar set). In the b-th stage, typi-

cal CIL methods update the model with only the current

dataset Db, which suffers severe catastrophic forgetting. As

a result, current CIL methods propose to maintain an ex-

tra exemplar set E = {(xj , yj)}
M
j=1

. E helps to reserve a

limited amount of instances for the classes seen before, and

revisiting them can help the model overcome catastrophic

forgetting. The exemplars are selected with the herding al-

gorithm to make them more representative.

Implemented algorithms. In PyCIL, we implemented 11

typical algorithms for class-incremental learning. They are

listed as follows. Finetune: The baseline method simply

updates parameters on new tasks and suffers from severe

catastrophic forgetting. Replay: The baseline method up-

dates parameters on new tasks with instances from the new

dataset and exemplar set. EWC [1]: Use the Fisher informa-

tion matrix to weigh the importance of each parameter and

regularize them to overcome forgetting. LwF [2]: Use knowl-
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Figure 1 (Color online) Reproduced incremental accuracy on CIFAR100 and ImageNet100. (a) CIFAR100, 10 stages; (b) CI-

FAR100, B50, 5 stages; (c) ImageNet100, 10 stages; (d) ImageNet100, B50, 5 stages.

edge distillation to align the output probability between old

and new models. iCaRL [3]: Based on LwF, it introduces an

exemplar set for rehearsal and uses the nearest center mean

classifier. GEM [4]: Use exemplars as the regularization of

gradient updating. BiC [5]: Train an extra adaptation layer

based on iCaRL, which adjusts the logits on new classes.

WA [6]: Normalize the classifier weight after each learn-

ing session based on iCaRL. PODNet [7]: Introduce pooled

outputs distillation to constrain the network. DER [8]: A

two-stage learning approach utilizes a dynamically expand-

able representation for more effective incremental concept

modeling. Coil [9]: Build bi-directional knowledge transfer

in the incremental learning process with optimal transport.

Dependencies: PyCIL relies on open-source libraries such

as NumPy and SciPy for linear algebra and optimization

problems. The network structure is designed with PyTorch.

Basic usage: PyCIL provides implementations of the

above 11 methods. As for the benchmark dataset setting

in class-incremental learning, we provide the environment

of CIFAR100 and ImageNet100/1000. When using Py-

CIL, users can edit the global parameters and algorithm-

specific hyper-parameter, and then run the main function.

The aforementioned global parameters include the following.

Memory-Size: The total exemplar number in the incremen-

tal learning process. Init-Cls: The number of classes in the

first incremental stage. Increment: The number of classes

in each incremental stage b, b > 1. Convnet-type: The back-

bone network for the incremental model. Seed: The random

seed for shuffling the class order, which is set to 1993 by de-

fault.

Evaluation. The common performance measure for CIL

is the test accuracy after every stage, denoted by Ab, where

b is the stage index. Similarly, the averaged accuracy across

all stages is also a common measure, i.e., Ā = 1

B

∑B
b=1

Ab.

As a preliminary step for research in the machine learning

field, we have tested the incremental performance (Top-1

accuracy) along the incremental stages, and the results are

shown in Figure 1. We use the benchmark datasets, i.e., CI-

FAR100 and ImageNet100, and divide the 100 classes into

several incremental stages. Since some parameters are not

reported in the original paper, we search for a good param-

eter set in our re-implementation. Most reproduced algo-

rithms have the same or even better performance than the

results reported in the original paper.

Conclusion. We have presented PyCIL, a class-

incremental learning toolbox written in Python. It contains

implementations of a number of founding studies of CIL, but

also provides current state-of-the-art algorithms that can be

used to conduct novel fundamental research. Code consis-

tency makes it an easy tool for research purposes, teaching,

and industrial applications.
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