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Abstract For switched cyber-physical systems with disturbances and actuator faults, we address fault

detection and isolation problems. First, the preconditions relative to subsystems are discussed in detail,

and the original subsystems are turned into an overall system. Second, the frequency ranges of faults are

considered to belong to the finite-frequency domain, and the observer, which makes the residual robust

against disturbances and sensitive to faults, is designed by combining the finite-frequency H− technique

with the mixed L2 − L∞/H∞ technique. Third, design conditions, which guarantee that the error system is

stable and satisfies the mixed performance, are derived using the average dwell time method and Lyapunov

functionals. Finally, a traffic density dynamic model is proposed to demonstrate the validity and effectiveness

of the proposed method.
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1 Introduction

As a multi-mode system, switched systems’ models are dominated by switching signals. In recent decades,
it has been confirmed that switched systems are of great importance in various applications, such as
aircraft control systems, artificial neural networks, electric systems, and traffic density estimation [1–3].

To guarantee the stability of a system, several methods have been applied in [4–8]. According to the
dwell time method, much has been achieved in switched systems [9–12]. Because switched systems con-
tain unstable modes, methods for addressing the stability problem were presented in [13,14]. The average
dwell time (ADT) method was provided in [15–18]. In [17], by considering systems with switching tran-
sition rates, sufficient conditions for L1-gain performance were provided by combining linear co-positive
Lyapunov functions with the ADT method. In [18], the problem of a nonlinear switched system’s stability
was solved by considering the multiple discontinuous Lyapunov functions and the mode-dependent ADT
method.

On another research frontier of switched systems, it is important to design the fault detection and
isolation (FDI) method. Several types of results on observer design have been conducted [19–22], and
the L2 − L∞ performance has been discussed in [23–25]. In [26], considering a switched piecewise-affine
system, a filter that is mode-dependent and region-dependent was proposed to guarantee a system’s
stability, and the finite-time L2−L∞ performance was satisfied. In [27,28], for switched neural networks,
non-fragile L2−L∞ filters were designed using mode-dependent Lyapunov functions, which were subjected
to either additive or multiplicative gain perturbations. In [29], the admissible edge-dependent average
dwell time switching method was provided, and the L2−L∞ performance was guaranteed by considering
Lyapunov functions and unknown disturbances. In practical switched control systems, H∞ control has
shown effectiveness [30–32]. Based on the event-triggered strategy, anH∞ filter was introduced to address
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the control problem of network switched systems in [33]; H∞ and L2 − L∞ performance was satisfied
in [34]. In [35, 36], a robust fault detection observer with an H∞ index was devised to accomplish fault
detection and estimation by comparing generated residuals with the generated threshold. Combining the
fault sensitivity with disturbance robustness, H∞/H− performance analysis was considered in [37, 38].
In several applications, the L2 − L∞ and the H∞ controls can be considered valuable methods. The
preceding literature only considered a single performance index. A helpful method considering the above
indexes is to be proposed. Moreover, combining the L2−L∞/H∞ performance with the H− performance
and then applying them to FDI for switched systems are important issues. Because of its complexity, the
cyber-physical system (CPS) is vulnerable to faults. Most existing methods for interconnected systems
suppose that only one subsystem is affected by the fault, which is considered in the full-frequency domain.
Among the above literature, the contributions of this paper are summarized as follows.

(1) The proposed method differs from the methods using a single index in [39–41] in that it is designed
based on the mixed L2 − L∞/H∞ performance. Then, the ADT method, which is used to guarantee
that the system is stable, is employed to design the switching signal. Therefore, the proposed method
combines two indexes in the unified framework, which is more flexible and effective.

(2) Compared with the methods in [37, 42, 43], a detection scheme is provided, where fault signals are
considered to belong to a finite-frequency domain in an interconnected CPS using a switching strategy,
and sufficient conditions are proposed.

(3) Unlike previously proposed strategies in [36, 44, 45], the finite-frequency H− performance is addi-
tionally constructed considering the fault sensitivity. By considering the generalized Kalman-Yakubovich-
Popov Lemma, detection conditions are provided as linear matrix inequalities (LMIs) through additional
parameters and matrices.

This paper is structured as follows. Section 2 presents system models and preliminaries. The fault
detection scheme and isolation scheme are then introduced in Sections 3 and 4, respectively. Sufficient
design conditions are established. Section 5 provides simulations to verify the feasibility of the proposed
method. Finally, conclusions are summarized in Section 6.

Notations. For ease of description, the following symbols are defined. R
n and R

m×n represent n-
dimensional and m × n dimensional Euclidean spaces, respectively. For a symmetric matrix A, A > 0
implies that it is positive definite, and λmin(A) and λmax(A) are the minimum and maximum eigenvalues
of A, respectively. The Hermitian part of A is expressed as He{A} =A + AT. The symbol ⊗ represents
the Kronecker product.

2 System descriptions and preliminaries

N subsystems are in the interconnected CPS with unknown disturbances and faults, and the motion of
the t-th subsystem using the switching strategy at moment k is modeled as



























xt(k + 1) = At,σ(k)xt(k) +Bt,σ(k)ut(k) +Dt,σ(k)ηt(k)

+ Et,σ(k)ft(k)− a
N
∑

j=1
j 6=t

gtjΛyj(k),

yt(k) = Ct,σ(k)xt(k), t = 1, . . . , N,

(1)

where xt(k) ∈ R
nx , ut(k) ∈ R

nu , ηt(k) ∈ R
nη , and ft(k) ∈ R

nf represent the state vector, the control
input, the unknown input, and the fault signal, respectively. a denotes the coupling strength, and Λ is the
coupling matrix. σ(k) : R+ → L = {1, 2, . . . , l} denotes the switching signal. For k ∈ [ks,ks+1), σ(k) = i
and ks is the switching instant. At,σ(k) ∈ R

nx×nx , Bt,σ(k) ∈ R
nx×nu , Ct,σ(k) ∈ R

ny×nx , Dt,σ(k) ∈ R
nx×nη ,

and Et,σ(k) ∈ R
nx×nf are known matrices.

The directed mode is proposed as (V ,W). V = {v1, v2, . . . , vn} represents the set of nodes, and n is
the number of nodes. W = {(vt, vj), t 6= j} is the set of edges, and gtj is the connectivity. When gtj = 1,
edges vt and vj are connected; when gtj = 0, edges vt and vj are unconnected. G is a Laplacian matrix
described as G = [gtj ], t 6= j. By considering the undirected graph, G is defined as a symmetric matrix.

If the Kronecker product and the interconnection of each subsystem are considered, then Eq. (1) is
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equivalent to
{

x(k + 1) = Aix(k) + Biu(k) +Diη(k) + Eif(k),

y(k) = Cix(k),
(2)

where
x(k) =

[

xT
1 (k), . . . , x

T
N (k)

]T
, u(k) =

[

uT
1 (k), . . . , u

T
N(k)

]T
,

η(k) =
[

ηT1 (k), . . . , η
T
N (k)

]T
, f(k) =

[

fT
1 (k), . . . , fT

N(k)
]T

,


































Ai = IN ⊗At,σ(k) − a(G ⊗ (ΛCt,σ(k))) ∈ R
Nnx×Nnx ,

Bi = IN ⊗Bt,σ(k) ∈ R
Nnx×Nnu ,

Di = IN ⊗Dt,σ(k) ∈ R
Nnx×Nnη ,

Ei = IN ⊗ Et,σ(k) ∈ R
Nnx×Nnf ,

Ci = IN ⊗ Ct,σ(k) ∈ R
Nny×Nnx .

Definition 1. For a switching signal σ(k) and 0 6 k1 6 k2, Nσ(k1, k2) denotes the number of discon-
tinuities of σ(k) in the interval k ∈ [k1, k2). If there exist the chatter bound N0 and τ , the inequality
satisfies Nσ(k1, k2) 6 N0 +

k2−k1

τ , where τ > 0 denotes the ADT.

Assumption 1.

rank

[

Inx
Rt,σ(k)

Ct,σ(k) 0ny×(nf+nη)

]

= nx + nf + nη,

where Rt,σ(k) = [Dt,σ(k) Et,σ(k) ].

Assumption 2.

rank

[

sInx
−At,σ(k) Rt,σ(k)

Ct,σ(k) 0ny×(nf+nη)

]

= nx + nf + nη,

where s satisfies ‖s‖ > 1.

Remark 1. From a practical perspective, Assumptions 1 and 2 are necessary and sufficient conditions
for observer design. Combining the observer matching conditions with the above two assumptions, design
methods have been developed in different types of systems with unknown input signals, such as switched
descriptor systems, multi-agent systems, and continuous systems [46–50].

Lemma 1.

rank(CiRi) = rank(Ri), Ri =
[

Di Ei

]

.

Proof. According to Assumption 1, we can obtain

rank

[

Inx
Rt,σ(k)

Ct,σ(k) 0

]

= rank























[

Inx
0

−Ct,σ(k) Iny

]

×

[

Inx
Rt,σ(k)

Ct,σ(k) 0

] [

Inx
−Rt,σ(k)

0 Inf+nη

]























= rank

[

Inx
0

0 −Ct,σ(k)Rt,σ(k)

]

.

We obtain rank(Ct,σ(k)Rt,σ(k)) = nf + nη.

rank(CiRi) = rank

















Ct,σ(k)Rt,σ(k)

. . .

Ct,σ(k)Rt,σ(k)

















= Nrank(Ct,σ(k)Rt,σ(k))

= N(nf + nη)

= rank(Ri).
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Lemma 2. On the basis of Assumption 2, we obtain
[

sINnx
−Ai Ri

Ci 0

]

= N(nx + nf + nη),

which holds for all s with ‖s‖ > 1.

Proof. For implicitness, we only let N = 2 and have

rank

[

sINnx
−Ai Ri

Ci 0

]

= rank













sInx
−At,σ(k) + ag11(ΛCt,σ(k)) ag12(ΛCt,σ(k)) Rt,σ(k) 0

ag21(ΛCt,σ(k)) sInx
−At,σ(k) + ag22(ΛCt,σ(k)) 0 Rt,σ(k)

Ct,σ(k) 0 0 0

0 Ct,σ(k) 0 0













= rank











































































I
nx

0 −ag11Λ −ag12Λ

0 Inx
−ag21Λ −ag22Λ

0 0 Iny
0

0 0 0 Iny













×













sInx
−At,σ(k) + ag11(ΛCt,σ(k)) ag12(ΛCt,σ(k)) Rt,σ(k) 0

ag21(ΛCt,σ(k)) sInx
−At,σ(k) + ag22(ΛCt,σ(k)) 0 Rt,σ(k)

Ct,σ(k) 0 0 0

0 Ct,σ(k) 0 0











































































= rank













sInx
−At,σ(k) 0 Rt,σ(k) 0

0 sInx
−At,σ(k) 0 Rt,σ(k)

Ct,σ(k) 0 0 0

0 Ct,σ(k) 0 0













= 2(nx + nf + nη).

Remark 2. Note that Lemmas 1 and 2 are used to guarantee the asymptotic convergence of error
systems. It is proven that the preconditions satisfied for the subsystems are guaranteed for the overall
system.

To facilitate the observer design, the following conditions should be considered.
(1) When f(k) = 0 and η(k) = 0, the stability of the error system is guaranteed.
(2) The residual r(k) is robust against the disturbance η(k), and the following mixed L2 − L∞/H∞

performance holds:
∞
∑

k=0

{(1− b)rT(k)r(k) − µ2ηT(k)η(k)} + brT(k)r(k) < 0. (3)

If b = 0 is selected, the H∞ performance holds; if b = 1 is selected, the L2 − L∞ performance holds.
(3) The generated residual r(k) is sensitive to the fault f(k), and the following H− performance holds:

‖r(k)‖
2
> β2‖f(k)‖

2
, (4)

where |ω| 6 ωl, and ωl is the low-frequency domain.

Remark 3. Inequality (3) is clearly a unified framework. If parameter b = 0 is selected, it can be turned
into the H∞ performance; if parameter b = 1 is selected, the L2 − L∞ performance holds. Therefore,
condition (3) is more general than the condition that considers a single control problem.

3 Fault detection scheme

In this section, an observer using the mixed L2 − L∞/H∞ index and the H− index is proposed to
generate residuals. The subsystems’ stability is considered, and LMI conditions are derived because of
the Lyapunov function and the ADT method.
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3.1 Observer design

The observer is defined as














z(k + 1) = Fiz(k) + TiBiu(k) + Liy(k),

x̂(k) = z(k) +Hiy(k),

ŷ(k) = Cix̂(k),

(5)

where Fi, Ti, Li, and Hi are matrices that will be determined, and x̂(k) is the estimation of state x(k).
Based on Assumption 1, for matrices Ti and Hi, the following equation is satisfied:

[

Ti Hi

]

[

INnx

Ci

]

= INnx
. (6)

Let Mi = [
INnx

Ci
] ∈ R

(Nnx+Nny)×Nnx . Note that MT
i Mi is nonsingular, M+

i = (MT
i Mi)

−1MT
i . Zi is

an arbitrary matrix, and the general solution to (6) is provided as

[

Ti Hi

]

= M+
i − Zi(INnx+Nny

−MiM
+
i ), (7)

where

Ti = (M+
i − Zi(INnx+Nny

−MiM
+
i ))

[

INnx

0Nny×Nnx

]

,

Hi = (M+
i − Zi(INnx+Nny

−MiM
+
i ))

[

0Nnx×Nny

INny

]

.

Let e(k) = x(k) − x̂(k) = Tix(k) − z(k) and r(k) = y(k) − ŷ(k) = Cie(k) denote the estimation error
and the residual signal, respectively. The error dynamic is proposed as

e(k + 1) =Tix(k + 1)− z(k + 1)

=Ti(Aix(k) + Biu(k) +Diη(k) + Eif(k))

− (Fi(x̂(k)−Hiy(k)) + TiBiu(k) + Liy(k))

=Fie(k) + (TiAi − Fi + (FiHi − Li)Ci)x(k) + TiDiη(k) + TiEif(k). (8)

If TiAi − Fi + (FiHi − Li)Ci = 0 holds and the following equations can be derived as

Fi = TiAi + (FiHi − Li)Ci, Li = FiHi − Ji, (9)

then according to (8) and (9), the error dynamic is written as

{

e(k + 1) = Fie(k) + TiDiη(k) + TiEif(k),

r(k) = Cie(k).
(10)

3.2 Stability analysis and disturbance robustness

The sufficient conditions for stability and disturbance robustness are given in Theorem 1. Assuming that
η(k) = 0 and f(k) = 0 are satisfied, the first part is the stability analysis. Letting f(k) = 0, the second
part is provided to establish the mixed L2 − L∞/H∞ performance, and the performance index can be
calculated.

Theorem 1. Given any i 6= j, 0 < λ1 < 1, λ2 > 1, there are matrices Gi, symmetric positive definite
matrices Pηi = PT

ηi > 0, Pηj = PT
ηj > 0, and scalars a1, a2 such that the following conditions hold:

τ > τ∗ = −
lnλ2

lnλ1
, Pηi < λ2Pηj , (11)

[

−λ1Pηi + a1He{GiTiAi +WiCi} −a1Gi +AT
i T

T
i GT

i + CT
i W

T
i

∗ Pηi −Gi −GT
i

]

< 0, (12)
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







Ξ11 Ξ12 Ξ13

∗ Ξ22 Ξ23

∗ ∗ Ξ33









< 0, (13)

[

−Pηi CT
i

Ci − 1
b I

]

< 0, (14)











































Ξ11 = −Pηi + (1− b)CT
i Ci +He{a2(GiTiAi +WiCi)},

Ξ12 = a2GiTiDi,

Ξ13 = −a2Gi +AT
i T

T
i GT

i +CT
i W

T
i ,

Ξ22 = −µ2I,

Ξ23 = DT
i T

T
i GT

i ,

Ξ33 = Pηi −Gi −GT
i .

Proof. (1) Assuming that f(k) = 0 and η(k) = 0, the Lyapunov function is chosen as

V1i(k) = eT(k)Pηie(k). (15)

The difference of (15) is taken as

∆V1i(k) = V1i(k + 1)− V1i(k) = eT(k)((Fi)
TPηiFi − Pηi)e(k). (16)

Assume that ∆V1i(k) < 0 makes the stability condition hold. Then, 0 < λ1 < 1, ∆V1i(k) < 0 is
proposed as

∆W1i(k) = V1i(k + 1)− λ1V1i(k)

= eT(k)((Fi)
TPηiFi − λ1Pηi)e(k)

= eT(k)H1ie(k) < 0, (17)

which is equivalent to the following inequality:

(Fi)
TPηiFi − λ1Pηi < 0. (18)

Let M1i = a1Gi. A sufficient condition of (18) is proposed as

[

−λ1Pηi +M1iFi + (Fi)
TMT

1i −M1i + (Fi)
TGT

i

∗ Pηi −Gi −GT
i

]

< 0. (19)

On the basis of Fi = TiAi + JiCi and Wi = GiJi, Eq. (19) is rewritten as (13), and we obtain

∆V1i(k) = eT(k)((Fi)
TPηiFi − Pηi)e(k) < (λ1 − 1)V1i(k), (20)

i.e., V1i(k + 1) < λ1V1i(k). Suppose the condition V1i(k) < λk−ks

1 V1i(ks) holds for the interval [ks, k).
Considering that Pηi < λ2Pηj and σ(ks−1) = j, we have

V1i(ks) < λ2V1σ(ks−1)(ks−1). (21)

After combining (20) with (21), we obtain

V1i(k) < λk−ks

1 V1i(ks)

< λ
k−ks−1

1 λ2V1σ(ks−1)(ks−1)

< λ
k−ks−1

1 λ2
2V1σ(ks−2)(ks−1)

< λ
k−ks−2

1 λ2
2V1σ(ks−2)(ks−2)

< · · · < λk
1λ

Nσ(0,k)

2 V1σ(0)(0)
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< λ2
k( 1

τ
+

lnλ2
lnλ1

)
V1σ(0)(0). (22)

It is clear to establish the condition that

γ1e
T(k)e(k) 6 V1i(k) 6 γ2e

T(k)e(k), (23)

where γ1 = minλmin(Pηi) and γ2 = maxλmax(Pηi). We can obtain eT(k)e(k) 6 γ2

γ1
λk
1λ

k
τ

2 e
T(0)e(0). It is

proposed as

‖e(k)‖2 6
γ2
γ1

λk
1λ

k
τ

2 ‖e(0)‖
2
6

γ2
γ1

(λ2)
k( 1

τ
+

lnλ2
lnλ1

)‖e(0)‖2. (24)

On the basis of the above inequality, limk→∞ ‖e(k)‖ = 0 is satisfied. Assuming that f(k) = 0 and
η(k) = 0, the stability of the error system is clearly guaranteed.

(2) When η(k) 6= 0 and f(k) = 0, Eq. (10) is rewritten as

{

e(k + 1) = Fie(k) + TiDiη(k),

r(k) = Cie(k).
(25)

Let the Lyapunov function

V2i(k) = eT(k)Pηie(k). (26)

On the basis of (26), the difference can be taken as

∆V2i(k) = V2i(k + 1)− V2i(k)

= eT(k)(Fi)
TPηi(Fi)e(k) + eT(k)(Fi)

TPηiTiDiη(k)− eT(k)Pηie(k)

+ ηT(k)DT
i T

T
i Pηi(Fi)e(k) + ηT(k)DT

i T
T
i PηiTiDiη(k). (27)

Define J1i(k) as

J1i(k) = ∆V2i(k) + (1− b)rT(k)r(k) − µ2ηT(k)η(k)

=

[

e(k)

η(k)

]T

H2i

[

e(k)

η(k)

]

< 0, (28)

which is equivalent to

H2i =

[

(Fi)
T
Pηi(Fi)− Pηi + (1− b)CT

i Ci ∗

DT
i T

T
i PηiFi DT

i T
T
i PηiTiDi − µ2I

]

< 0. (29)

On the basis of (29) and Finsler’s Lemma [51], it follows that

Ψ1i +ΦT
1iPηiΦ1i < 0, (30)

where Ψ1i = [
−Pηi + (1 − b)CT

i Ci 0

0 −µ2I
], Φ1i = [Fi TiDi ], and M2i = [ a2Gi

0
].

A sufficient condition of (30) is provided as

[

Ψ1i +M2iΦ1i +ΦT
1iM

T
2i −M2i +ΦT

1iG
T
i

∗ Pηi −Gi −GT
i

]

< 0. (31)

Substituting Ψ1i, Φ1i, and M2i into (31), this condition is deduced as









Ξ̂11 Ξ̂12 Ξ̂13

∗ Ξ̂22 Ξ̂23

∗ ∗ Ξ̂33









< 0, (32)



Guo S H, et al. Sci China Inf Sci September 2023 Vol. 66 192204:8

where










































Ξ̂11 = −Pηi + (1 − b)CT
i Ci +He{a2GiFi},

Ξ̂12 = a2GiTiDi,

Ξ̂13 = −a2Gi + (Fi)
TGT

i ,

Ξ̂22 = −µ2I,

Ξ̂23 = DT
i T

T
i GT

i ,

Ξ̂33 = Pηi −Gi −GT
i .

On the basis of Fi = TiAi + JiCi and Wi = GiJi, Eq. (32) is rewritten as (13). Note that J1i(k) < 0
is satisfied, and the following inequality holds:

∞
∑

k=0

{(1− b)rT(k)r(k) − µ2ηT(k)η(k)} < −V2i(k). (33)

Because of (14), we obtain

brT(k)r(k) − V2i(k) = beT(k)CT
i Cie(k)− eT(k)Pηie(k)

= eT(k)(bCT
i Ci − Pηi)e(k) < 0. (34)

According to (33) and (34), the following inequality can be established:

∞
∑

k=0

{(1− b)rT(k)r(k) − µ2ηT(k)η(k)} + brT(k)r(k) < 0. (35)

3.3 Fault sensitivity

Note that the sufficient conditions of H− fault sensitivity when fault signals are considered to belong to
a finite-frequency domain are given in Theorem 2.

Theorem 2. Given any i 6= j, 0 < λ1 < 1, and λ2 > 1, there are matrices K and Gi, symmetric
positive definite matrices Pfi = PT

fi > 0, Pfj = PT
fj > 0, Qfi = QT

fi > 0, and scalars a3, a4 such that the
following conditions hold:

Pfi < λ2Pfj , (36)
[

−λ1Pfi + a3He{GiTiAi +WiCi} −a3Gi +AT
i T

T
i GT

i + CT
i W

T
i

∗ Pfi −Gi −GT
i

]

< 0, (37)









Σ11 Σ12 Σ13

∗ Σ22 Σ23

∗ ∗ Σ33









< 0, (38)











































Σ11 = −λ1Pfi − 2 cos(ωl)Qfi − CT
i Ci +He{a4(GiTiAi +WiCi)},

Σ12 = (AT
i T

T
i GT

i + CT
i W

T
i )K + a4GiTiEi,

Σ13 = −a4Gi +Qfi +AT
i T

T
i GT

i + CT
i W

T
i ,

Σ22 = β2I +He{KTGiTiEi},

Σ23 = ET
i T

T
i GT

i −KTGi,

Σ33 = Pfi −Gi −GT
i .

Proof. When η(k) = 0, system (10) is proposed as

{

e(k + 1) = Fie(k) + TiEif(k),

r(k) = Cie(k).
(39)

The Lyapunov function is given as
V3i(k) = eT(k)Pfie(k). (40)
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Based on the above function, the difference can be taken as

∆V3i(k) = V3i(k + 1)− V3i(k)

= (Fie(k) + TiEif(k))
TPfi(Fie(k) + TiEif(k))− eT(k)Pfie(k). (41)

According to inequality (37), V3i(k + 1) < λ1V3i(k) is satisfied. Thus, V3i(k) < λk−ks

1 V3i(ks). Consid-
ering that Pfi < λ2Pfj and σ(ks−1) = j, we have

V3i(ks) < λ2V3σ(ks−1)(ks−1). (42)

By combining V3i(k + 1) < λ1V3i(k) with (42), this function can be obtained as

V3i(k) < λk−ks

1 V3i(ks)

< λ
k−ks−1

1 λ2V3σ(ks−1)(ks−1)

< λ
k−ks−1

1 λ2
2V3σ(ks−2)(ks−1)

< λ
k−ks−2

1 λ2
2V3σ(ks−2)(ks−2)

< · · · < λk
1λ

Nσ(0,k)

2 V3σ(0)(0)

< λ2
k( 1

τ
+

lnλ2
lnλ1

)V3σ(0)(0). (43)

Note that
γ3e

T(k)e(k) 6 V3i(k) 6 γ4e
T(k)e(k), (44)

where γ3 = minλmin(Pfi), γ4 = maxλmax(Pfi).

According to (43), eT(k)e(k) 6 γ4

γ3
λk
1λ

k
τ

2 e
T(0)e(0) is obtained, which can be described as

‖e(k)‖
2
6

γ4
γ3

λk
1λ

k
τ

2 ‖e(0)‖
2
6

γ4
γ3

(λ2)
k( 1

τ
+

lnλ4
lnλ3

)‖e(0)‖
2
. (45)

On the basis of the above inequality, limk→∞ ‖e(k)‖ = 0 is satisfied. Assuming that f(k) belongs to a
low-frequency domain, i.e., |ω| 6 ωl, the following inequality is clearly satisfied:

∞
∑

k=0

((e(k + 1)− e(k))(e(k + 1)− e(k))
T
) <

(

2 sin
(ωl

2

))2 ∞
∑

k=0

e(k)eT(k). (46)

Inequality (46) is proposed as

∞
∑

k=0

((e(k + 1)− e(k))(e(k + 1)− e(k))
T
) < (2− 2 cos(ωl))

∞
∑

k=0

e(k)eT(k). (47)

According to inequality (45) and limk→∞ ‖e(k)‖ = 0, the following condition holds:

∞
∑

k=0

e(k + 1)eT(k + 1) =

∞
∑

k=0

e(k)eT(k).

Assuming that the zero initial condition holds, Eq. (47) is equivalent to
∑∞

k=0 S < 0, where S =
−e(k + 1)eT(k)− e(k)eT(k + 1) + 2 cos(ωl)e(k)e

T(k). Let ∆W2i(k) = V3i(k + 1)− λ1V3i(k) and

tr(QfiS) = tr[Qfi(−e(k + 1)eT(k)− e(k)eT(k + 1) + 2 cos(ωl)e(k)e
T(k))]

= −eT(k + 1)Qfie(k)− eT(k)Qfie(k + 1) + 2 cos(ωl)e
T(k)Qfie(k).

(48)

According to (48), J2i(k) can be defined as

J2i(k) = ∆W2i(k) + β2fT(k)f(k)− rT(k)r(k) − tr(QfiS)

= (Fie(k) + TiEif(k))
TPfi(Fie(k) + TiEif(k))− λ1e

T(k)Pfie(k)

+ β2fT(k)f(k)− eT(k)CT
i Cie(k) + (Fie(k) + TiEif(k))

TQfie(k)

+ eT(k)Qfi(Fie(k) + TiEif(k))− 2 cos(ωl)e
T(k)Qfie(k)

=

[

e(k)

f(k)

]T

H3i

[

e(k)

f(k)

]

.
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Assume that J2i(k) < 0, meaning that H3i < 0. Equivalently,

Ψ2i +Φ2i
TQ̄T

i + Q̄iΦ2i +Φ2i
TPfiΦ2i < 0, (49)

where Ψ2i = [
−λ1Pfi − 2 cos(ωl)Qfi − CT

i Ci 0

∗ β2I
], Φ2i = [ Fi TiEi ], and Q̄i = [

Qfi

0
].

The sufficient condition of (49) is provided as

[

Ψ2i +M3iΦ2i +Φ2i
TMT

3i −M3i + Q̄i +Φ2i
TGT

i

∗ Pfi −Gi −GT
i

]

< 0. (50)

Substituting Ψ2i, Φ2i, Q̄i, and M3i = [ a4Gi

KTGi
] into (50), the following inequality holds:









Σ̂11 Σ̂12 Σ̂13

∗ Σ̂22 Σ̂23

∗ ∗ Σ̂33









< 0, (51)

where










































Σ̂11 = −λ1Pfi − 2cos(ωl)Qfi − CT
i Ci + a4He{GiFi},

Σ̂12 = (Fi)
TGT

i K + a4GiTiEi + (Fi)
TTiEi,

Σ̂13 = −a4Gi +Qfi + (Fi)
TGT

i ,

Σ̂22 = β2I +He{KTGiTiEi}+ (TiEi)
TTiEi,

Σ̂23 = (TiEi)
TGT

i −KTGi,

Σ̂33 = Pfi −Gi −GT
i .

On the basis of (51), we obtain

J2i(k) = ∆W2i(k) + β2fT(k)f(k)− rT(k)r(k) − tr(QfiS) < 0.

It can be deduced that

∆V3i(k) + β2fT(k)f(k)− rT(k)r(k) − tr(QfiS) < 0. (52)

Note that

∞
∑

k=0

{∆V3i(k) + β2fT(k)f(k)− rT(k)r(k) − tr(QfiS)}

= V3i(∞)− V3i(0) + β2
∞
∑

k=0

fT(k)f(k)−

∞
∑

k=0

rT(k)r(k) −

∞
∑

k=0

tr(QfiS). (53)

The zero initial condition clearly holds. Obviously, V3i(0) = 0. Based on (45), limk→∞ ‖e(k)‖ = 0 and
V3i(∞) = 0 are satisfied. On the basis of

∑∞
k=0 S < 0 and Qfi > 0, we obtain

∞
∑

k=0

tr(QfiS) = tr

(

∞
∑

k=0

(QfiS)

)

< 0. (54)

According to (53) and (54), it can be deduced that J3i(k) < 0, meaning that β2
∑∞

k=0 f
T(k)f(k) <

∑∞
k=0 r

T(k)r(k).

3.4 Detection strategy

In this subsection, the following theorem is proposed to make the proposed method hold. We calculate
matrices to complete the observer design such that conditions (3) and (4) are satisfied.

Theorem 3. Given any i 6= j, 0 < λ1 < 1, and λ2 > 1, there are matrices Gi, K, symmetric positive
definite matrices Pηi = PT

ηi > 0, Pηj = PT
ηj > 0, Pfi = PT

fi > 0, Pfj = PT
fj > 0, Qfi = QT

fi > 0, and
scalars a1, a2, a3, a4 such that inequalities (11)–(14), (36)–(38) hold.
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Proof. Similar to Theorems 1 and 2, the process of proof is performed by setting Fi = TiAi + JiCi and
Wi = GiJi, which is omitted here.

In solving the following optimization problem, performance indexes µ and β are obtained:

min µ+ β,

s.t. Eqs. (11)–(14), (36)–(38).

After Wi and Gi are obtained, matrices Ji, Fi, and Li are calculated using the following equalities:

Ji = G−1
i Wi, Fi = TiAi + JiCi, Li = FiHi − Ji.

Remark 4. Based on Theorem 3, the conditions of the proposed method, which guarantee the system’s
stability and performance analysis as LMIs, are proposed by introducing parameters a1, a2, a3, a4, Gi,
and K, which need to be designed beforehand under the ADT method.

As shown in the above discussion, the switched system is affected by the fault in the finite-frequency
domain and the disturbance with a known bound. To assess whether the fault occurs, the residual
evaluation function is determined as Jr = ‖r(k)‖. Moreover, the corresponding threshold Jth is chosen
as Jth = supf(k)=0 Jr when the system has no fault.

When the residual exceeds the threshold, the fault detection is clearly achieved. The detection scheme
gives the alarm rule by adopting the following detection logic, which compares the evaluation function
with the corresponding threshold:

{

Jr 6 Jth ⇒ the system with no alarm,

Jr > Jth ⇒ the system with alarm.

4 Fault isolation scheme

4.1 Observer design

System (2) is rewritten as

{

x(k + 1) = Aix(k) + Biu(k) +Diη(k) + Ēitf̄t(k) + Eitft(k),

y(k) = Cix(k),
(55)

where ft(k) is the t-th (t = 1, . . . , N) row vector of f(k), and Eit is the t-th column component of Ei.
f̄t(k) is a column vector that is derived after removing ft(k), and Ēit is the matrix obtained by removing
the t-th column of Ei. The notations are provided as

f̄t(k) =
[

fT
1 (k) · · · fT

t−1(k) fT
t+1(k) · · · fT

N(k)
]T

∈ R
(N−1)nf ,

Ei =
[

Ei1 · · · EiN

]

∈ R
Nnx×Nnf ,

Ēit =
[

Ei1 · · · Ei(t−1) Ei(t+1) · · · EiN

]

∈ R
Nnx×(N−1)nf .

Let x̄(k) = [ x(k) f̄t(k) ], and system (55) is rewritten as

{

N̄tx̄(k + 1) = Āitx̄(k) + Biu(k) +Diη(k) + Eitft(k),

ȳ(k) = C̄itx̄(k),
(56)

where

Āit =
[

Ai Ēit

]

, C̄it =
[

Ci 0Nny×(N−1)nf

]

,

N̄t =
[

INnx
0Nnx×(N−1)nf

]

.
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On the basis of Assumption 1, given matrices T̄it and H̄it, the following equation holds:

[

T̄it H̄it

]

[

N̄t

C̄it

]

= INnx+(N−1)nf
. (57)

The general solution to (57) is provided as

[

T̄it H̄it

]

= M̄+
it − Z̄it(INnx+(N−1)nf

− M̄itM̄
+
it ), (58)

where

M̄it =

[

N̄t

C̄it

]

, M̄+
it = (M̄T

itM̄it)
−1M̄T

it ,

T̄it = (M̄+
it − Z̄it(INnx+(N−1)nf

− M̄itM̄
+
it ))

[

INnx

0Nny×Nnx

]

,

H̄it = (M̄+
it − Z̄it(INnx+(N−1)nf

− M̄itM̄
+
it ))

[

0Nnx×Nny

INny

]

.

By defining x̄(k) = z̄(k) + H̄itȳ(k), Eq. (56) was rewritten as

{

z̄(k + 1) = T̄itĀitz̄(k) + T̄itBiu(k) + T̄itDiη(k) + T̄itEitft(k) + T̄itĀitH̄itȳ(k),

ȳz(k) = C̄itz̄(k).
(59)

According to (59), the t-th observer is designed as

{

ˆ̄zt(k + 1) = T̄itĀit ˆ̄zt(k) + T̄itBiu(k) + T̄itĀitH̄itȳ(k)− L̄it(ȳz(k)− C̄it ˆ̄zt(k)),

ˆ̄yz(k) = C̄it ˆ̄zt(k),
(60)

where L̄it is the gain matrix.
Let ēzt(k) = z̄(k)− ˆ̄zt(k) and r̄(k) = ȳz(k)− ˆ̄yz(k) = C̄itēzt(k) denote the state estimate error and the

residual signal, respectively. Then, the error dynamic is derived as

ēzt(k + 1) = z̄(k + 1)− ˆ̄zt(k + 1)

= (T̄itĀit + L̄itC̄it)ēzt(k) + T̄itDiη(k) + T̄itEitft(k).
(61)

Remark 5. This section provides a scheme for determining the subsystem that suffers from a fault,
and N observers are designed. If f̄t(k) = 0, the t-th subsystem suffers from a fault; if there exists a fault
in another subsystem, ft(k) = 0.

The following theorem is presented to facilitate the design method. There exist matrices such that the
design condition can be guaranteed.

Theorem 4. For any i 6= j, 0 < λ1 < 1, λ2 > 1, there exist matrices Ḡit, K̄, symmetric positive definite
matrices P̄ηi = P̄T

ηi > 0, P̄ηj = P̄T
ηj > 0, P̄fi = P̄T

fi > 0, P̄fj = P̄T
fj > 0, Q̄fi = Q̄T

fi > 0, and scalars a5,
a6, a7, and a8 such that following inequalities hold:

P̄ηi < λ2P̄ηj , P̄fi < λ2P̄fj , (62)

[

−λ1P̄ηi + a5He{ḠitT̄itĀit + W̄itC̄it} −a5Ḡit + ĀT
itT̄

T
it Ḡ

T
it + C̄T

itW̄
T
it

∗ P̄ηi − Ḡit − ḠT
it

]

< 0, (63)









Ω11 Ω12 Ω13

∗ Ω22 Ω23

∗ ∗ Ω33









< 0, (64)
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[

−P̄ηi C̄T
it

C̄it − 1
b I

]

< 0, (65)

[

−λ1P̄fi + a7He{ḠitT̄itĀit + W̄itC̄it} −a7Ḡit + ĀT
itT̄

T
it Ḡ

T
it + C̄T

itW̄
T
it

∗ Pfi − Ḡit − ḠT
it

]

< 0, (66)









Π11 Π12 Π13

∗ Π22 Π23

∗ ∗ Π33









< 0, (67)











































Ω11 = −P̄ηi + (1− b)C̄T
it C̄it +He{a6(ḠitT̄itĀit + W̄itC̄it)},

Ω12 = a6ḠitT̄itD̄i,

Ω13 = −a6Ḡit + ĀT
itT̄

T
it Ḡ

T
it + C̄T

itW̄
T
it ,

Ω22 = −µ̄2I,

Ω23 = D̄T
i T̄

T
it Ḡ

T
it,

Ω33 = P̄ηi − Ḡit −GT
it,











































Π11 = −λ1P̄fi − 2 cos(ωl)Q̄fi − C̄T
it C̄it +He{a8(ḠitT̄itĀit + W̄itC̄it)},

Π12 = (ĀT
itT̄

T
it Ḡ

T
it + C̄T

itW̄
T
it )K̄ + a8ḠitT̄itEit,

Π13 = −a8Ḡit + Q̄fi + ĀT
itT̄

T
it Ḡ

T
it + C̄T

itW̄
T
it ,

Π22 = β̄2I +He{K̄TḠitT̄itEit},

Π23 = ET
it T̄

T
it Ḡ

T
it − K̄TḠit,

Π33 = P̄fi − Ḡit − ḠT
it.

Proof. After W̄it and Ḡit are obtained, matrix L̄it is calculated by L̄it = Ḡ−1
it W̄it. The proof is obtained

by the similar approaches to those of Theorem 3 and is omitted here.
The following optimization problem is solved:

min µ̄+ β̄ s.t. Eqs. (62)–(67).

4.2 Isolation scheme

To discuss which subsystem has the fault, residual evaluation functions are determined as Jr = ‖r̄(k)‖
and Jrt = ‖r̄t(k)‖. The corresponding threshold Jth is chosen as Jth = supf(k)=0 Jr when the system has
no fault.

The isolation scheme gives the alarm rule by adopting the following detection logic that compares the
evaluation function of the t-th subsystem with the corresponding threshold. The logic is adopted as

{

Jrt 6 Jth ⇒ the t-th system with no alarm,

Jrt > Jth ⇒ the t-th system with alarm.

We determine that the t-th subsystem suffers from the fault when the residual exceeds the threshold,
i.e., Jrt > Jth, and the t-th subsystem has no fault when Jrt 6 Jth.

5 Simulation examples

5.1 System model

In this subsection, the traffic density model [52, 53] is used to prove the feasibility of the proposed
method. We assume that l cells are involved in a link. The connection relationship between links is
shown in Figure 1, and we obtain the dynamic equation of each cell. The dynamic of a link is proposed as
(1), and the traffic density vector is defined as xt(k) = [xt1, . . . , xtnx

]. The entire urban freeway network
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is designed as (2), where x(k) = [xT
1 (k), . . . , x

T
N (k)] and u(k) = [uT

1 (k), . . . , u
T
N(k)] are the traffic density

vector and the traffic demand of the interconnected system, respectively.
Several model parameters of the switched system are provided as

A1 =









−0.5 0 0

0.6 −0.2 0.1

0 0.2 −0.2









, B1 =









−0.3

0.25

0









, D1 =









−0.3

0.4

−0.5









,

A2 =









−0.4 0.2 0

0 −0.4 0.2

0.2 0 −0.2









, B2 =









0

0.5

1.5









, D2 =









−0.2

0.3

−0.3









,

C1 = C2 =

[

0.4 0 0

0 −0.4 −0.4

]

, Λ =









0.5 0

0 0.5

0 0









,

G =













2 −1 −1 0

−1 3 −1 −1

−1 −1 3 −1

0 −1 −1 2













.

On the basis of (11), let λ1 = 0.6 and λ2 = 2.5, and we can determine that τ∗ = 1.7937. Hence, τ = 2,
and Figure 2 shows the switching signal.

Let

u(k) =

{

3cos(0.3k) + 1.6k < 80,

3.6sin(0.5k)k > 80,

and the disturbance ηt(k) is proposed as

ηt(k) =

{

0.035k < 150,

0.06k > 150.

Several parameters are given as a = 0.1, b = 0.4, a1 = −0.5, a2 = −0.4, a3 = −0.75, a4 = −0.8,
a5 = 0.6, a6 = −0.73, a7 = −0.7, and a8 = 0.65, and matrices are provided as

K = −5×













0.5 0.4 0.5 0.5 0.4 0.5 0.5 0.4 0.5 0.5 0.4 0.5

1 0.5 0.45 1 0.5 0.45 1 0.5 0.45 1 0.5 0.45

1 0.4 0.3 1 0.4 0.3 1 0.4 0.3 1 0.4 0.3

0.5 1 0.3 0.5 1 0.3 0.5 1 0.3 0.5 1 0.3













T

,

K̄ = −0.5×
[

2 3 4 4 2.5 1 1 2 1 1 2 2.5 3 2 3
]

,

and
Z1 = Z2 =

[

012×8 I12

]

, Z̄11 = Z̄21 = Z̄14 = Z̄24 = 0.05×
[

015×5 I15

]

.

5.2 State estimation and fault detection

(1) Assume that f(k) = 0, and initial values are proposed as

x0 =
[

1 2.5 1.4 1.6 2.5 2 1.4 2 1.5 1.4 1.6 2
]T

,

x̂0 = −1×
[

3.5 1.75 2.25 1.75 3 3.5 3.5 1.75 2.25 1.75 3 3.5
]T

.
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Figure 1 Topology of the system.
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Figure 2 (Color online) Switching signal.

The simulation results are depicted in Figures 3(a)–(d), where the solid lines denote the actual states,
and the dashed lines denote the estimation states. Clearly, the estimation performance of the provided
method is guaranteed for a system with unknown input.

(2) Assume that the frequency range of f(k) satisfies |ω| 6 0.2, and the values of f(k) are chosen as
f2(k) = f3(k),

f1(k) =

{

0.5, k < 150,

0, else,
f4(k) =

{

0.35, 50 < k < 100,

0, else.

Consider that x(k) = x̂(k) = 0. Figure 4 shows the detection results, where the solid line denotes the
residual signal generated by the proposed method, and the dashed line denotes the threshold. The dotted
line denotes the residual generated by the method using H∞ in [36]. When k > 150 and 50 < k < 100, the
residuals generated by both methods can exceed the threshold. On the basis of the proposed detection
strategy, the system is clearly affected by faults. According to Figure 4, the proposed method generates
the residual with a larger value, making the residuals more sensitive than those of the method using H∞.

5.3 Fault isolation

According to the above section, faults are detected when k > 150 and 50 < k < 100 without knowing
which subsystem has a fault signal. Figures 5(a)–(d) show the relationship between the residual signals
and the threshold. Figures 5(a) and (d) clearly show that Jrt exceeds the threshold when k > 150 in
subsystem 1, and Jrt exceeds the threshold when 50 < k < 100 in subsystem 4. The solid lines denote Jrt
generated by the proposed method, and the dashed lines denote the threshold. Figures 5(b) and (c) show
that all residuals of subsystems 2 and 3 always fall below the thresholds, while those of subsystems 1



Guo S H, et al. Sci China Inf Sci September 2023 Vol. 66 192204:16

100 120 140 160 180 200

Time (step)

−4

−2

0

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

x
1

0
x

1
1

x
1

2

−2

0

2

−5

0

5

−4

−2

0

−2

0

2

−5

0

5

−4

−2

0

−2

0

2

−5

0

5

−4

−2

0

−2

0

2

−5

0

5

0 20 40 60 80 100 120 140 160 180 200

Time (step)

0 20 40 60 80

100 120 140 160 180 200

Time (step)

0 20 40 60 80100 120 140 160 180 200

Time (step)

0 20 40 60 80

100 120 140 160 180 200

Time (step)

0 20 40 60 80 100 120 140 160 180 200

Time (step)

0 20 40 60 80

100 120 140 160 180 200

Time (step)

0 20 40 60 80

100 120 140 160 180 200

Time (step)

0 20 40 60 80

100 120 140 160 180 200

Time (step)

0 20 40 60 80100 120 140 160 180 200

Time (step)

0 20 40 60 80

100 120 140 160 180 200

Time (step)

0 20 40 60 80

100 120 140 160 180 200

Time (step)

0 20 40 60 80

(a) (b)

(c) (d)

Actual state Estimation state

Figure 3 (Color online) State estimation of (a) subsystem 1, (b) subsystem 2, (c) subsystem 3, and (d) subsystem 4.
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Figure 4 (Color online) Residuals and the generated threshold.

and 4 can exceed the threshold quickly after the fault signal. In conclusion, the fault is imposed on
subsystems 1 and 4, respectively.
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Figure 5 (Color online) Residuals and generated thresholds of (a) subsystem 1, (b) subsystem 2, (c) subsystem 3, and (d)

subsystem 4.

6 Conclusion

In this paper, the problem of FDI for the switched CPS is addressed, and the ADT method is adopted
to guarantee stability analysis. Assuming that faults belong to a low-frequency range, the observer
is designed to guarantee that the generated residual is sensitive to faults and robust against unknown
bounded disturbances. Based on the proposed detector, an isolation strategy is provided by comparing the
t-th generated residual with the threshold. The simulation results finally demonstrated the effectiveness
of the proposed method. Compared with the method using the H∞ technique, the proposed detection
method is obviously more sensitive to faults.
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