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Abstract Catastrophic and major disasters in real-world systems ranging from financial markets and

ecosystems, often show generic early-warning signals that may indicate a collapse. Hence, understanding

the collapse mechanism of a complex network and predicting its process are of uttermost importance. How-

ever, these challenges are often hindered by the extremely high dimensionality of the underlying system.

We present here the concept of the fractional core (F-core) that considers the contribution of the network

topology and dynamics to systematically analyze the collapse process in such networks, and encompass a

broad range of dynamical systems, from mutualistic ecosystems to regulatory dynamics. We offer testable

predictions on the tipping point, and, in particular, prove that the extinction of the maximum F-core of a

network is an efficient indicator of whether a system completely collapses. The results show that the death

of species or cells in a low-order F-core may improve the average density and have little influence on the

tipping point. Generally, the principle of the F-core demonstrates how complex systems collapse and opens

an innovative optimization strategy to uncover the optimal structure of systems.
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1 Introduction

Understanding how complex systems, ranging from ecosystems and climate to economic, social, and
infrastructure systems, collapse is a pressing scientific challenge [1–5]. The breakdown of a complex
system is always induced by a rather small perturbation from the system itself [6–8] to the external
environment [4, 9]. Examples of such collapse are the crash of financial markets, the degradation of
coral reefs caused by regional stressors, and massive jamming in urban traffic systems. In fact, these
collapses are the consequence of gradual changes in systems, which often cause disastrous consequences
for humans, and are rarely predictable and often irreversible. The collapse mechanism is caused by the
dynamical and structural parameters in complex networked systems. However, the collapse mechanism is
hard to identify, due to the difficulties encountered in quantifying the contribution of nodes on the system
performance and, in particular, considering the self-dynamics of each node and the dynamic interactions
between them. Hence, it remains a challenging problem. A good understanding of the collapse mechanism
in complex networked systems can effectively support the prediction of the collapse process, the tipping
point, and the structural optimization of systems.

To capture the collapse mechanisms in such systems, early-warning signals [10–14], which are generic
symptoms, may occur when complex dynamical systems approach a critical point. The critical slowing
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down [13] is the most important clue in predicting that a system is getting close to a tipping point.
Skewness and flickering before transitions are also indicators of whether a system is getting close to a
catastrophic bifurcation as tipping [15–17]. However, these indicators are far from being able to predict
thresholds in most complex systems [18]. Simpson-Porco et al. [19] found that voltage collapse and
related instabilities are identified as contributing factors in several recent large-scale blackouts of power
grids, including those in Scandinavia (2003), the Northeastern United States (2003), Athens (2004), and
Brazil (2009). Obura et al. [20] found that the coral reef state is globally based on one key indicator,
namely, live coral cover, that is conceptually straightforward and accessible to measure, making it a
leading indicator of ecosystem health in the ocean. To overcome the analytical framework of resilience
multi-dimensional systems, a dimension reduction process to derive effective one-dimensional dynamics
for multi-dimensional systems was proposed to predict the systems’ tipping point [4].

Indeed, previous approaches have not provided exact analytical results that relate network properties
to the collapse mechanism in complex networked systems. Recently, Morone et al. [21] revealed that the
maximum k-core of a network is the root of collapse with regard to the collapse mechanism in complex
networked systems. The method presented an analytic solution of the fixed point for a nonlinear model
of mutualistic dynamical systems in terms of a topological invariant of the network, the k-core number.
To capture the effectiveness of the k-core, some studies have applied the k-core to different networks and
achieved promising results. Zhang et al. [22] found the key users regarding the stability of a whole network
through the collapsed coreness problem in social networks. Burleson-Lesser et al. [23] proposed a new
k-core-based robustness that is based on theory rather than individual examinations of discrete networks,
and a method of determining a network’s tipping point of collapse in ecological and financial networks.
Although the k-core is simple and amenable to analysis, it is limited in the following aspects: (1) Certain
features of the most fundamental dynamical property of the original network are lost in the analytical
results, particularly weighted interactions. (2) The process of species extinction becomes inaccurate as
the mutualistic interaction strength weakens. (3) The structure of the ecosystem is non-optimal.

To address these problems, a piecewise function is introduced to capture the value of a node’s contri-
bution resulting from the alteration of the most fundamental dynamical property. Then, a fresh concept,
i.e., fractional core (F-core), is proposed to provide evidence for node classification, considering its struc-
ture feature and dynamical behavior. For different dynamics, the F-core structure would be different in
revealing the collapse mechanism. The effectiveness of the F-core is tested in real mutualistic and biolog-
ical networks. The results show that the F-core is very effective in the prediction of the collapse process,
tipping point, and structural optimization of the system. We offer a general predictive framework for the
collapse mechanism using the F-core that can treat a broad range of dynamical models from ecological
and biological networks to finance systems. The main contributions of our work are as follows:

• A fresh concept, i.e., F-core is proposed. The F-core could provide evidence for a classification of
the species or cells from ecological to biological networks, considering the contribution of the network
topology and dynamics. For different dynamics, one node would fall in a different Fshell by the F-core,
but it always falls in a fixed kshell by the k-core.

• The F-core could allow accurate monitoring of the species or cell extinction process as the mutualistic
interaction strength weakens, but the results by the k-core cause larger errors.

• The extinction of some species or cells in a low F-shell may improve the average density of a system,
but there is no difference in the tipping point of the system. However, we could not find these phenomena
through the k-core method.

The remaining parts of this paper are organized as follows: Section 2 briefly summarizes related work.
Section 3 defines the F-core and establishes the relationship between the F-core and fixed points in
mutualistic ecosystems and gene regulatory dynamics. Section 4 validates the results of the F-core in
the prediction of the collapse process, tipping point, and structural optimization of the system. We also
perform a comparison with the k-core in Section 4. Section 5 discusses the limitations of this work.
Finally, Section 6 presents the conclusion of our work.

2 Related work

Considering that the tipping point can capture the system’s sudden shifts to the irrecoverable state,
the point that can be a function of the dynamical and structural parameters of the system should be
derived [21]. May [24] discussed how alternate stable states can arise in simple one-dimensional systems.
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Scheffer et al. [7] proposed a minimal model of ecosystem catastrophic shifts to predict how smooth
changes can be interrupted by sudden drastic switches to a contrasting state by diverse events. Mumby
et al. [25] combined ecosystem thresholds and stochastic disturbance models to evaluate targets for the
restoration of ecosystem processes through the coral reef model. Xiong et al. [26] modeled the cell fate
induction process using the ordinary differential equation to explain the irreversibility of maturation.
Gardner et al. [27] proposed a synthetic, bistable gene-regulatory network considering a double-negative
feedback loop to predict the conditions necessary for bistability.

In the real world, as systems with a high dimensionality property, such as ecosystems, biological
systems, social systems, and critical infrastructure systems, have several components and interactions,
the tipping point cannot be easily determined [28]. Gao et al. [4] proposed a dimension reduction method
to derive an analytical solution to compute the tipping point. Laurence et al. [29] enhanced the dimension-
reduction method through a weighted spectrum of the adjacency matrix, extending the application to
networks of arbitrary degree distributions with high accuracy. To analyze the influence of mutualistic
interactions, i.e., the most fundamental dynamical property of the original bipartite network on the
tipping point of a system, a 2D dimension reduction model was proposed to capture its bipartite and
mutualistic nature [30]. However, these proposed models still cannot easily identify the contribution
of each node in weighted networks, and then predict the collapse process in a changeable environment.
Hence, it is necessary to relate the network properties to the fixed point of a dynamical system to reveal
the root cause of a system collapse.

3 Materials and methods

3.1 F-core

We illustrate the concept of the F-core by focusing on the dynamics of an ecosystem with N species,
where each species i is characterized by a density, i.e.,

ẋi (t) = −dxi − sx2
i +

N
∑

j=1

Aijγij
xixj

α+
∑N

k=1 Aikxk

, (1)

which provides a rather general deterministic description of an ecosystem governed by mutualistic interac-
tions. Here, d is the death rate of species, s > 0 is the self-limitation parameter modeling the intraspecific
competition that limits a species’ growth once xi exceeds a certain value, a is the half-saturation constant,
Aij is the adjacency matrix of the system, and γij is the mutualistic interaction strength between species
i and j.

Next, we explain the definition of the Fcore = T , which is the maximal sub-graph, not necessarily
globally connected, consisting of a node with strength greater than T (Figure 1(b)). The nodes fall in
Fshell = T , which means that their contribution to the system will transit from a finite value to 0 in
Figure 1(c). In an ecosystem, each species has a value w which represents the strength of species [31].

Here, wi could be calculated by wi =
∑N

j=1 AijΨ(wj − T ). The process of obtaining the F-core structure
is as follows: (i) For a given value T , we eliminate the variables w which satisfies w 6 T , and keep other
variables w for which w > T . (ii) The contribution of w for which T < w 6 T + ∆T is (w − T )/∆T ,
and the contribution of others is 1, as shown in (2). (iii) After (i) and (ii), species have a smaller value
w′, and if w′ 6 T or T < w′ 6 T + ∆T , (i) or (ii) is repeated until the contribution of each remaining
species is constant. This process is identical to the algorithm for extracting the F-core of the network.
The pseudocode of the F-core is presented in Algorithm 1.

Ψ (w − T ) =















0, w 6 T,
w−T
∆T , T < w 6 T +∆T,

1, w > T +∆T.

(2)

Remark 1. Note that Eq. (2) was required to get the F-core of a network. A schematic representation
of a network as successive enclosed F-cores is listed in Figure 1(b), and here ∆T in (2) is equal to 1. For
different dynamical systems, the optimal ∆T is needed to be derived by the minimum mean square error
method.
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Figure 1 (Color online) Illustration of the fractional core (F-core) in a network. The network includes 28 nodes and 59 links.

(a) Schematic representation of a network as the k-core. (b) Schematic representation of the network as the F-core. (c) Process

of finding the node which is in Fs = 1.51. First, we find that the strength of the nodes belongs to 1.51 < w 6 2.51, and the

contribution of these nodes is (w − 1.51)/1, so the links of nodes 14, 22, and 27 are red. The strength of node i is calculated by

wi =
∑

N
j=1

AijΨ(wj − T ). Then, the strength of each node is updated, and the process is repeated until the contribution of each

remaining species is constant. Finally, the contribution of node 14 is 0, but the contribution of others is a finite value, so node 14

is in Fs = 1.51. (d) Schematic representation of the network that includes the nodes in Fs > 1.51.

Algorithm 1 F-core

Require: Network G = (V,E), death rate d, the interaction strength γ;

1: for i ⇐ 1 to length(γ) do

2: Calculate ys through (8) at step i;

3: w(1, :) = degree(G);

4: for t ⇐ 1 to 100 do

5: ∆T = 0.01 · t · Kγ ;

6: for j ⇐ 2 to 200 do

7: Calculate w through (2) at step j;

8: if w(j, :) == w(j − 1, :) then

9: y(t, :) = w(j, :);

10: Calculate the mean square error between ys at step i and y(t, :);

11: Break;

12: end if

13: end for

14: end for

15: Determine the optimal ∆T through LSM in (2);

16: y∗(i, :) = y(t1, :); //t1 is the optimal ∆T through LSM.

17: end for

18: Return y∗. //y∗ is the F-core of the network.

3.2 Analysis of the fixed-point of mutualistic ecosystems

To test the relationship between the F-core and mutualistic interaction strength in mutualistic ecosystems,
the fixed-point equations for this system can be written in terms of the Hill function,

y∗i =

N
∑

j=1

AijH1

(

y∗j −
αds

(γ − d)
2 ,

αγs

(γ − d)
2

)

, (3)

where y∗i = s/(γ−d)

∑N
j=1 Aijx

∗
j . To determine the analytical solution for this fixed point, we use the

logic approximation of the Hill function Hn(x, T ) ≈ Ψ(x − T ) in (3). The fixed-point equations can be
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written as






















y∗i =
N
∑

j=1

AijΨ
(

y∗j −Kγ

)

,

Kγ =
αs (γ + d)

(γ − d)
2 .

(4)

The optimal ∆T for this piecewise function should be found. The objective function of the optimal
∆T can be written as

min

N
∑

j=1

(

(γ − d)2ysj − ads

(γ − d)
2
ysj − ads+ aγs

−Ψ

(

y∗j − as(γ + d)

(γ − d)
2

))2

, (5)

where ysj can be solved as follows.
Through the dimension reduction method, the dynamical equation of (1) when it reaches the steady

state could be written as

f (βeff , xeff) = −dxeff − sx2
eff + γβeff

x2
eff

α+ βeffxeff
= 0. (6)

The dynamical equation of (1) when it reaches the steady state could be written as

− dxi − sx2
i + γki

xixeff

α+ kixeff
= 0. (7)

The activity of node i can be obtained as xi = γkixeff/(1 + kixeff)− d, so we have

ysj =
sα (sxi + d)

(γ − d− sxi) (γ − d)
. (8)

Remark 2. Eq. (3) is derived from (1) in the steady state. Through a logic approximation of the
Hill function in (3), the analytical solution for mutualistic ecosystems can relate the F-core to the fixed
point. The minimum mean square error method is required to derive the optimal ∆T for mutualistic
ecosystems.

3.3 Analysis of the fixed-point of gene regulatory dynamics

Next, we explore it in gene regulatory networks governed by the Michaelis-Menten equation,

ẋi (t) = −dxf
i + γ

N
∑

j=1

Aij

xn
j

an + xn
j

. (9)

The first term on the right-hand describes the degradation (f = 1) or dimerization (f = 2), and d is
the mortality rate of the genes. The second term captures the genetic activation between genes, where
the Hill coefficient n describes the cooperation level in gene regulation and γ is the maximal interaction
strength between a pair of genes.

To test the relationship between the F-core and the mutualistic interaction strength in the gene regu-
latory dynamics, the fixed-point equations for this system can be written in terms of the Hill function,

y∗i =

N
∑

j=1

AijHn

(

y∗j ,Kγ

)

, (10)

where y∗j =
xjd
γ . To identify the analytical solution for this fixed point we use the logic approximation of

the Hill function in (10). The optimal ∆T for this piecewise function should be found. The fixed-point
equations can be written as















y∗i =

N
∑

j=1

AijΨ
(

y∗j −Kγ

)

,

Kγ = (ad)/γ.

(11)
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The objective function of the optimal ∆T can be written as

min
N
∑

j=1

(

(

γysj
)n

(da)n +
(

γysj
)n −Ψ(yj

∗ −Kγ)

)2

, (12)

where ysj can be solved as follows.

Through the dimension reduction method, the dynamical equation of (9) when it reaches the steady
state could be written as

f (βeff , xeff) = −dxeff + γβeffHn (xeff , α) = 0. (13)

The dynamical equation of (9) when it reaches the steady could be written as

xi =
γ

d
ki

xn
eff

αn + xn
eff

= 0, (14)

so we have

ysj = ki
xn
eff

αn + xn
eff

. (15)

Remark 3. Eq. (10) was derived from (9) in the steady state. Through a logic approximation of the
Hill function in (10), the analytical solution for the gene regulatory dynamics can relate the F-core to
the fixed point. The minimum mean square error method is required to obtain the optimal ∆T for gene
regulatory dynamics.

4 Results

4.1 Collapse mechanism of complex systems

Here we argue that the contribution of each node is not 0 or 1 in each shell and it will decrease as
the mutualistic interaction strength weakens. For illustration, as mutualistic interactions caused by the
phenological change weaken [32], e.g., the contribution from bees to the overall pollen transfer within the
network decreases, the density of plants decreases [33]. To capture the contribution of each node and test
the relationship between the F-core and mutualistic interaction strength, we use a weighted mutualistic
ecosystem that includes five bees and four flowers (Figure 2 and (1)). The weighted mutualistic ecosystem
collapses as the mutualistic interaction strength weakens. The fixed-point equation for this system is
discussed in Section 3. The analytical results in the perspectives of the F-core in Figures 2(j)–(m) show
that the number 2 bee and the number 2 flower are always in Fshell = 2.3, but their contribution decreases
as the mutualistic interaction strength weakens. The same phenomenon was found in the number 1 bee
and the number 3 flower. Of note, the analytical results in the perspectives of the k-core in Figures 2(f)–
(i) could not capture these phenomena. However, the analytical results by the F-core can predict the
beginning of the collapse in Figures 2(d) and (l), and the total collapse in Figures 2(e) and (m). However,
the prediction of the analytical results by the k-core is overoptimistic.

Performance in the Erdos Renyi (ER) and scale-free (SF) networks. In ER networks, the topological
structure is homogeneous. Here we use 〈k〉 to replace βeff in (6). Below, we discuss the influence of the
average degree 〈k〉 on the collapse process of mutualistic ecosystems in Figures 3(a)–(c). We also test
the influence of the weight on the collapse process of mutualistic ecosystems. Three weight patterns are
considered in Figures 3(d)–(f): (1) the weight of the link obeys the uniform distribution (U), (2) the
weight of a link is correlated to its degree, and (3) the weight of the link obeys the power-law distribution
(λ).

The degree distribution of the SF network obeys a power law, and it is drawn from a probability
distribution p(ki) = Cki

−λ; here [34],

λ = 1+ n

[

n
∑

i=1

ln ki/(kmin − 0.5)

]−1

. (16)
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average activity 〈x〉 and Kγ based on the weighted ER networks. (d) The weight of the link obeys the uniform distribution; the

dots mean that the weight of the link obeys U(0, 3), while the blocks mean that the weight of the link obeys U(0, 6). (e) The weight

of the link is correlated to its degree; the dots mean that the weight of the link obeys (kikj)
0.1, while the blocks mean that the

weight of the link obeys (kikj)
0.3. (f) The weight of the link is correlated to the power-law distribution (λ); the dots mean that

the weight of the link obeys λ(3), while the blocks mean that the weight of the link obeys λ(6).
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weighted SF networks, where the power exponent is 3. (a) The weight of the link obeys the uniform distribution; the dots mean

that the weight of the link obeys U(0, 3), while the blocks mean that the weight of the link obeys U(0, 6). (b) The weight of the

link is correlated to its degree; the dots mean that the weight of the link obeys (kikj)
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to the power-law distribution (λ); the dots mean that the weight of the link obeys λ(3), while the blocks mean that the weight of

the link obeys λ(6). (d)–(f) Similar to (a)–(c), here the power exponent is 2.1.

The key is how to confirm kmin. A variety of measures are used for quantifying the distance between
two probability distributions, but for non-normal data, the most common measure is the Kolmogorov-
Smirnov (KS) statistic, which is the maximum distance between the cumulative distribution functions
(CDFs) of the data and the fitted model,

D = max
k>kmin

|S(k)− P (k)| , (17)

where S(k) is the CDF of the degree for the observations with value at least kmin, P (k) is the CDF for

the power-law model that best fits the data in the region k > kmin. Our estimate
⌢

kmin is then the value
of kmin that minimizes D. For different positive interaction strengths, we use the KS statistic to confirm
kmin.

Below, we discuss the influence of weight on the collapse process of mutualistic ecosystems in SF
networks. Three weight patterns are considered in Figure 4: (1) the weight of the link obeys the uniform
distribution (U), (2) the weight of the link is correlated to its degree, and (3) the weight of the link obeys
the power-law distribution (λ).

Performance in real networks. The above example shows that the F-core could determine nodes’
contribution as the mutualistic interaction strength weakens. In addition, the F-core is effective in
predicting species extinction in a mutualistic ecosystem. In real ecosystems, the decline of the system with
anemone fish and host sea anemones is an important issue of great concern [35–37]. We use mutualistic
interactions which include 10 anemone fish and 26 host sea anemones, as shown in Figure 5(a) [38],
to compare the usefulness between the F-core and k-core in predicting the collapse of real mutualistic
ecosystems, as the mutualistic interaction strength weakens. To illustrate the universality of the F-core
for complex systems, we apply the gene regulatory dynamics in (9) with d = 0.5, f = 1, and n = 2 to the
transcription networks of S. cerevisiae in Figure 5(d) [39].

We selected two points, where the first indicates when the system begins to collapse (Figures 5(b) and
(e)) and the other indicates when the system collapses completely (Figures 5(e) and (f)), to map out the
collapse process. The F-core can capture the beginning of a collapse, but there is no species or cell by
the k-core, as shown in Figures 5(b) and (e). Meanwhile, the prediction of the tipping point, i.e., the



Si S B, et al. Sci China Inf Sci September 2023 Vol. 66 192202:9

S. cerevisiae

0

0.5

1

0

2

4

}

}

Host sea anemones

Anemone fish 0

0.4

0.8

0

0.2

0.4

Error: 0.09 } Error: 0.13

Error:  0
} Error: 0.31

M
u
tu

al
is

ti
c 

ec
o
sy

st
em

G
en

e 
re

g
u
la

to
ry

 d
y
n
am

ic

Error: 0.71

Error:  0

Error: 1.25

Error: 0.36

(a)
(b) (c)

(d) (e) (f)

Simulation

F-core k-core F-core

F-core

k-core

k-core

x
x

Figure 5 (Color online) Collapse process in two complex systems. Here, the stars represent the simulation results, and the

histogram is the theoretical result by the F-core and k-core. (a) The ecosystem includes 10 anemone fish and 26 host sea anemones.

The blue circles represent the host sea anemones, and the green circles represent the anemone fish. (b) The system begins to

collapse by the F-core, but there is no species being extinct by the k-core. (c) The system completely collapses by the F-core

when γ = 0.8, but there are species being survived by the k-core. (d) We ran the Michaelis-Menten dynamics on the transcription

regulatory networks of S. cerevisiae [39] to model the dynamics of genetic regulation. (e) The system begins to collapse by the

F-core, but there is no species being extinct by the k-core when γ = 0.5. (f) The system completely collapses by the F-core when

γ = 0.4, but there are species being survived by the k-core.

complete collapse by the F-core is more reliable (Figures 5(c) and (f)). The error between the analytical
and simulation results (Figures 5(b)–(c) and (e)–(f)) shows that the analytical results by the F-core are
reliable. In sum, the theoretical results of the F-core approach are universal and precise in the prediction
of the system collapse process. The F-core is helpful for monitoring the process and is able to perform
measurements before the system totally collapses.

4.2 Tipping point of complex systems in three perturbations

Many factors, such as climate change, nutrient enrichment, habitat fragmentation, overhunting, exotic
species introductions, or loss of third species, may cause a change in the network structure, particularly
the link weight, or mutualistic interaction strength [40]. Here, we introduce three kinds of perturbations:
(i) A fraction fn of nodes is removed in a random way, capturing species extinctions or cell death.
(ii) A fraction fl of links is removed in a random way, capturing the interaction between species or
cell disappearance. (iii) All weights of Aij are reduced by a fraction fw to mimic global environmental
changes. Next, the influence of the three perturbations’ strength and mutualistic interaction strength on
the process is analyzed. Using the same mutualistic network in Figure 5(a) and the regulatory network in
Figure 5(d), similarly, three perturbations are introduced, and the death rate d = 0.5 is set. To quantify
the influence of the perturbation strength, Figures 6(a)–(c) and (h)–(j) show that the average density
and average expression level of the system 〈x〉 decrease as the mutualistic interaction strength weakens,
where a similar fraction is considered in the three perturbations, i.e., f = 0.01, f = 0.2, f = 0.4, and
f = 0.6.

As the interaction strength decreases, once γ reaches γc (Kγc
reaches the max F-core of the system),

the system completely collapses, indicating the occurrence of a tipping point. Obviously, if γ < γc, or
yi < Kγc

, one obtains

Kγc
= kmax

F-core =
αsβ

(

2dβ + 2
√
dβ + 1

)

(

2
√
dβ + 1

)2 , (18)

where β = 〈k2〉
〈k〉 , no mutualistic benefit is exchanged among species or genes, because the corresponding
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Figure 6 (Color online) Tipping point of a mutualistic ecosystem under three perturbations. We tested the relation between the

average density or activity 〈x〉 and Kγ against (1) the extinction of a fraction fn of species or cells in a random way; (2) a fraction

fl of interactions between species or cells disappearing in a random way; (3) all weights on average to a fraction fw decreasing

to their original value, simulating a global change in the environmental conditions on the system when d = 0.5. Here the same

strengths of perturbations f = 0.01, f = 0.2, f = 0.4, and f = 0.6 are considered. (a) Dots and solid lines are used for indicating

the simulation results and analytical solutions against node loss, respectively. (b) and (c) A similar diversity characterizes the

system’s response to the link perturbation fl and global perturbation fw. (d)–(f) Tipping point against three perturbations when

d = 0.5. (g) Phase diagram for mutualistic dynamics in the γ-Kγ plane. In the resilient state phase, the system has a single stable

fixed point. In the collapsed system phase, the system completely collapses. (h)–(n) Similar diversities characterized in the gene

regulatory network.

critical threshold is too large, and the system collapses.
In Figures 6(d)–(f) and (k)–(m), as the removed fraction increases, or as the fraction of all weights

decreases, the tipping point forwards, i.e., the resilience of the system becomes low. These considerations
lead to the phase diagram of feasible and stable mutualistic ecosystems and the gene regulatory network
depicted in Figures 6(g) and (n) in the space (γ,Kγ). The phase diagram features the predicted tipping
line of instability defined by (18). The point is the relation between γc and Kγc

. Our finding is not
specific to the network shown in Figures 5(a) and (d). We also analyzed the influence of the perturbation
strength on the system resilience in other mutualistic networks, such as weighted scale-free networks, and
obtained similar conclusions, as presented in Appendix B.

4.3 Structural optimization of complex systems

Once the collapse mechanism is revealed through the F-core, we can derive the tipping point (18) and
average density (19) for each structure of the ecosystem,

〈x〉 =
N
∑

i=1

x∗
i

N
=

N
∑

i=1

∑N
j=1 AijΨ

(

y∗j −Kγ

)

(γ − d)
2 − asd

N(s2a+ s
∑N

j=1 AijΨ
(

y∗j −Kγ

)

(γ − d))
, (19)

where y∗j can be obtained by (8) and (15). In a real ecosystem, some redundant species that do not
influence the system are removed from the system [41–43]. However, these species cannot be easily
identified. Here, we propose a method to retrieve the influence of species on system resilience including
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Table 1 Mutualistic networks

Network ID Species N 〈s〉

Net 1 Anemones fish 36 4

Net 2 Plants ants 92 14

Net 3 Plants pollinators 371 4.97

Net 4 Plants pollinators 141 5.4

Net 5 Plants pollinators 47 2.5

Net 6 Plants pollinators 209 6.8

Net 7 Plants pollinators 772 6.2

Net 8 Plants pollinators 76 5

Net 9 Parasite host 31 83

Net 10 Plants pollinators 45 23

Net 11 Plants ants 64 87

the tipping point and average density. It could also provide an idea to determine the optimal structure of
a system for limited resources. The results on gene regulatory networks are discussed in Subsection 3.3.

Remark 4. The statistics of the datasets used in this study are shown in Figure 5(d) and Table 1.
All real mutualistic networks of plant-pollinator and plant-seed dispersers are publicly available at the
Interaction Web database [21]. The biological network is publicly available in the BioModels database1).

The analysis of resilience in the real network in Figure 7(a) reveals three patterns concerning the
influence of species on system resilience: (1) The species below kF = 1.01 are negative in terms of the
density of the system and have no influence on the tipping point (as shown in Figures 7(b), (d), and (j)).
(2) The species below kF = 2.51 are negative for the density of the system but beneficial for the tipping
point (as shown in Figures 7(b), (e), (f), and (j)). (3) Other species are beneficial for the density of the
system and the tipping point (as shown in Figures 7(b), (g), (h), (i), and (j)). The results show that the
average density is optimal when the species below kF = 2.51 are extinct, and the corresponding network
structure is shown in Figure 7(f). Meanwhile, the tipping point of the network with no species extinction
is the same as the tipping point of removing the species below kF = 1.01.

We analyzed 11 real networks in Table 1, and determined the tipping point and average density for each
ecosystem structure (Appendix B). This approach is further supported by our finding that redundancy
can be disadvantageous in a local ecosystem. The average density of Nets 1–8 and 11 in Figure 7(k)
first rises and then descends, similar to the results in Figure 7(b). The average density of Nets 9 and 10
has a slight fluctuation when species below kF = 2 are removed; i.e., these species are redundant. The
optimal network structure for each network is shown in Figure 7(k). The tipping point decreases, when
the species go extinct as its F-core extinction (Figure 7(l)).

4.4 Comparison with the k-core

Thus far, we have studied the effectiveness of the F-core on the prediction of the collapse process, the
tipping point, and the optimization of ecosystems and regulatory systems. Hence, it is important to
perform a comparison with the k-core to predict the collapse process, the tipping point, and optimization
in ecosystems.

Here we compared our theoretical solution with the k-core that has been used to predict the tipping
point. Figure 8 shows how the maximum F-core and maximum k-core correlate with Kγc

. R2 which is
the coefficient of determination, was used to evaluate the validity of the tipping point prediction. The
larger the R2 is, the better the method is. The results in different ecosystems listed in Table 1 show that
the value of R2 by the F-core is larger than the value of R2 by the k-core. Hence, the F-core is more
effective in the prediction of the tipping point. Intriguingly, the tipping point obtained by the k-core is
always an integer, but the tipping point by the F-core can be fractional.

Then, we compared our theoretical solution with the k-core for optimization. Figure 9 shows how the
average activity 〈x〉 as the F-core extinction fluctuates from low to high. The results of the F-core show
that the species in the low F-shell are negative for the average density of the system, and there is an
optimal structure for the average density as the F-core extinction fluctuates from low to high. However,
the results by the k-core show that the average density is optimal until the species in the maximum
F-core survive, and it does not match the numerical integration results. In addition, the results of the

1) ftp://ftp.ebi.ac.uk/pub/databases/biomodels/.
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Figure 7 (Color online) Optimal network structure as the fractional core (F-core) extinction. (a) F-core structure of the ecosystem.

The table lists the F-core of each species. (c)–(i) Network structures as the F-core extinction. (b) When the species below kF = 2.51

are extinct, the average density is best; i.e., the network structure is optimal. (j) When the species goes extinct as its F-core

extinction, the tipping point decreases. (k) 11 mutualistic ecosystems (Appendix B) are considered, where the yellow pentacles

refer to the optimal network structure for each network. (l) The orange arrow of each line represents the tipping point of the

mutualistic ecosystem (Appendix B).

F-core show that the species in the low F-shell have little influence on the tipping point of the system,
and there is an optimal structure for the tipping point as the F-core extinction fluctuates from low to
high (Appendix B). However, the results by the k-core show that the tipping point is fixed until the
species in the maximum F-core survive, and it does not match the numerical integration results. In a
word, the extinction of some species may improve the average density, and there is no difference in the
tipping point of the system. The F-core method can help recognize these species and explore the optimal
structure of systems. Meanwhile, the k-core method would lead to a large error.

Remark 5. In the numerical results, we numerically integrated the dynamic equations ((1) and (9))
using a fourth-order Runge-Kutta algorithm until all the variables xi(t) reach the steady state. In the
Runge-Kutta algorithm, we set the truncation error as 0.00001 and initialized the activity xi(0) = 1 at
time t = 0. For mutualistic ecosystems, we used s = 1, α = 1 in (1). For the gene regulatory dynamic,
we used f = 1, and n = 1 in (9). The influence of the mutualistic interaction strength is discussed in
Figures 3 and 4. The influence of the death rate is discussed in Appendix B.
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Figure 8 (Color online) Comparison between the tipping point Kγc by the fractional core (F-core) and Kγc by the k-core for

different ecosystems in Table 1. In each panel, each pink point represents the result of the tipping point by the F-core vs. the

result of the tipping point by numerically integrating for a specific network under perturbation. Each green point represents the

result of the tipping point by the k-core vs. the result of the tipping point by numerically integrating for a specific network under

perturbation. Then, we plot the line representing Kγc = Kγc . The coefficient of determination R2 is used to evaluate the validity

of tipping point prediction. Overall, the results show that Kmax

F-core
correlates better with Kγc than Kmax

k-core
.

5 Limitations of this work

Because the logic approximation is used to test the relationship between the F-core and mutualistic
interaction strength in this work, our theoretical results are applicable to a large class of systems governed
by the nonlinear Hill, logistic or sigmoidal interactions. These interactions are widely distributed in neural
circuitry, financial and banking ecosystems, microbial ecosystems, and gene regulatory networks.

An important condition for the applicability of the F-core solution is that the system must be mutu-
alistic. However, this work did not examine the collapse mechanism and structural optimization of the
systems which considers the condition of positive and negative interactions. These interactions are com-
mon in real networks, such as activations and inhibitions in neuronal or gene regulatory networks, and
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Figure 9 (Color online) Comparison between the 〈x〉 as the fractional core (F-core) extinction and 〈x〉 as the F-core extinction

for different ecosystems in Table 1. We test the relation between the average activity 〈x〉 as the F-core extinction from low to

high. In each panel, each square dot represents the network structure when species that belong to the corresponding F-core go

extinct vs. the result of the average density by the F-core. Each triangular dot represents the network structure when the species

belonging to the corresponding F-core go extinct vs. the result of the average density by the k-core. Each circular dot represents

the numerical results. Overall, the F-core method and numerical integration results show the same tendency, i.e., increasing first

and then decreasing, but the average activity by the k-core method always rises.

cooperation and competition or even conflicts in social and ecological networks. The interplay between
positive and negative interactions is crucial in affecting the evolution pattern and final steady states or
oscillations of network dynamics, which determine the network resilience. Only a few models support the
two interactions to analyze a complex system’s tipping point. Therefore, the application of the proposed
scheme on systems, where positive and negative interactions co-exist, can be performed in the future.

6 Conclusion

Here we have presented the concept of the F-core to predict the structural collapse of weighted mutu-
alistic ecosystems and gene regulatory networks. In terms of understanding the concept of the F-core
and comparison with the k-core, our results lead to three key findings: (i) We provide evidence for a
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classification of species or cells in networks and accurately monitor the species or cell extinction process,
as the mutualistic interaction strength weakens, while considering that the prediction of the analytical
results by the k-core is overoptimistic. (ii) An analytic solution of the tipping point under three realistic
perturbations is presented. The findings show that the tipping point would forward as the increase of the
perturbation fraction; i.e., the resilience of the system is worse. (iii) We explore the optimal structure of
systems as the F-core extinction, but the k-core method helps find these phenomena. Our results identify
three patterns concerning the effect of species or cells on system resilience. In particular, the extinction
of some species or cells may improve the average density of a system, but there is no difference in the
tipping point of the system. Hence, the maintenance of a proper structure in systems is necessary to
promote system density.

The role of the F-core is a key factor affecting systems’ collapses, and accurately dividing the systems to
find potential keystone species [44,45]. It provides testable predictions for the collapse process of system
responses to different perturbations from climate change and other factors [46]. It also suggests potential
intervention strategies to avoid the collapse of systems, and optimal removal strategies to make systems
keep the maximum density under different perturbations [47, 48]. The proposed scheme is applicable
to a large class of dynamics such as mutualistic coupling, gene regulation, and neural networks. These
dynamics are widely distributed in neural circuitry systems, financial and banking ecosystems, microbial
ecosystems, and gene regulatory systems.
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