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Abstract This article addresses the model- and data-based event-triggered consensus of heterogeneous

leader/follower multi-agent systems (MASs). A dynamic periodic transmission protocol is developed to alle-

viate the communication and computational burden, where the followers can interact locally with neighbors

to approach the dynamics of the leader. Capitalizing on a discrete-time looped-functional, a model-based

consensus condition for the closed-loop MASs is derived as linear matrix inequalities (LMIs), along with a

design method for obtaining distributed event-triggered controllers and the associated triggering parameters.

Upon collecting noise-corrupted state-input measurements in offline open-loop experiments, a data-based

leader/follower MAS representation is derived and employed to address the data-driven consensus control

problem without explicit MAS models. This result is subsequently generalized to guarantee an H∞-consensus

control performance. Finally, a simulation example is given to corroborate the efficiency of the proposed dis-

tributed triggering scheme and the data-driven consensus controller.
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1 Introduction

The consensus of multi-agent systems (MASs) has gained enormous attention over the last two decades
because of the widespread applications of MASs in, e.g., mobile robots, sensor networks, energy systems,
and unmanned air vehicles [1–12]. Consensus control problems can be classified into leader/follower and
leaderless ones, depending on whether there is a leader system. Thus far, both cases have been widely
studied, e.g., [13, 14]. This paper focuses on the leader/follower control of heterogeneous MASs, where
agents have different types of dynamics.

To achieve this goal, information interaction is required between agents through a shared network.
Considering the limited network resources (e.g., the bandwidth and energy of wireless transmission nodes),
an intermittent transmission strategy applies to a digital network. One effective approach is the event-
triggering scheme (ETS), whose remarkable feature is that the times of transmission actions and control
updates are determined by predesigned triggering conditions [15, 16]. Fruitful theoretical achievements
on the event-triggered consensus control of MASs are referred to a survey [17]. Recently, a class of
ETSs known as dynamic ETSs was proposed in [18]. Compared to static ETSs [19] involving constant
thresholds, dynamic ETSs are generally more effective in saving communications by introducing a positive
state-dependent dynamic threshold in a static ETS’s triggering condition. Because of this superiority,
dynamic ETSs have recently been incorporated in MASs, e.g., for continuous-time [20] and discrete-
time [21] MASs. Avoiding continuous state detection, a dynamic periodic distributed ETS was proposed
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in [22] that only needs to execute the trigger generator at periodically sampled times. Particularly,
in the case of [22], the distributed dynamic variables need not to continuously evolve. However, these
contributions are restricted to continuous-time systems. In terms of digital systems, it is of practical
importance to generalize the dynamic ETS to discrete-time systems. Lately, some discrete-time dynamic
distributed ETSs have been developed, e.g., [11,21]. In these schemes, system state detection, as well as
dynamic variable update, still needs to be performed successively at discrete instants, which undermines
the efficacy of ETSs in saving communication resources. This situation has prompted us to devise a
dynamic periodic distributed ETS for discrete-time MASs, where event triggers are only executed at
predetermined points to further save communications.

On the one hand, the abovementioned event-triggered consensus control designs are model-based in
that they require complete knowledge of all agents for controller design and implementation. Nevertheless,
obtaining an accurate model of a real-world system can be computationally expensive, and the obtained
models may be too complex for classic control methods to be employed [23]. Eliminating the requirement
of explicit models of MASs for consensus control, data-driven control directly learns control laws from
data [24–29]. For example, data-driven distributed protocols for MAS synchronization were developed
based on reinforcement learning techniques in [30, 31]. However, these methods usually require many
data and incur high computational overhead. Recently, Ref. [32] suggested an alternative based on the
so-called Fundamental Lemma [24] for output regulation of leader/follower systems. Nevertheless, there is
a limitation with [32], in which the disturbance is assumed to be measurable to implement the distributed
data-driven protocols. On the other hand, a robust data-based event-triggered controller was proposed
in [33], which can address unknown but bounded disturbances. It is, therefore, natural to develop
data-based event-triggered consensus controllers for leader/follower MASs with unknown dynamics and
disturbance.

These recent advances have motivated this work to focus on the data-driven leader/follower consensus
control of event-triggered discrete-time MASs with unknown heterogeneous dynamics and noise. First,
we develop a distributed dynamic periodic ETS for discrete-time MASs. By virtue of a discrete-time
looped-functional (DLF) in [33], a model-based consensus condition is established for leader/follower
MASs, which meanwhile provides a model-based method for codesigning the distributed controllers and
ETS parameters. On top of [33], a simpler DLF without any integral terms of the system states is
designed. On the basis of [33, 34] for single agents, we derive a data-based system parameterization
as quadratic matrix inequalities to account for the measurement noise/disturbance in the offline data-
collecting phase. By joining the data-based representation and the model-based criterion, a data-based
solution for obtaining the consensus controller and the triggering parameters is developed. The results
are further extended to the H∞-synthesis of closed-loop MASs with noise in an online setting.

The main contributions of this paper are concisely listed as follows.
(c1) We develop a novel discrete-time distributed ETS on the basis of periodic sampling for leader/

follower MASs, where event generators and dynamic variables are only executed after a predetermined
time interval to mitigate the computation frequency.

(c2) We derive a model-based consensus criterion for the event-triggered MASs by capitalizing on a
tailored discrete-time DLF, along with a model-based method for obtaining the distributed controllers
and triggering matrices.

(c3) We derive distributed data-driven event-triggered consensus controllers to achieve a prescribed
L2-gain performance.

The remainder of this article is structured as follows. In Section 2, we formulate the data-driven
consensus problem for leader/follower MASs, along with a data-driven MAS representation and a novel
dynamic distributed ETS. Model-based and data-driven methods for obtaining the distributed controller
gains and the triggering matrices are presented in Section 3, along with an extension for achieving a
prescribed L2-gain performance. Section 4 verifies the practicality of our methods using one practical
example. Finally, Section 5 concludes the article.

Notation. Throughout this paper, let N, Rn, and Rn×m denote the sets of all nonnegative integers, n-
dimensional real vectors, and n×m real matrices, respectively. For any integers a, b ∈ N, let N0 := N∪{0}
and N[a,b] := N ∩ [a, b]. The superscripts ‘−1’ and ‘T’ represent the inverse and transpose of a matrix.
Furthermore, we write P ≻ 0 (� 0) if P is a symmetric positive (semi)definite matrix. We use 0 (I)
to denote zero (identity) matrices of appropriate dimensions. Symbol diag{qi}Ni=1 represents a (block)
diagonal matrix with q1, . . . , qN on its main diagonal. 1N (IN ) denotes a column vector whose elements
are 1 (I), ⊗ denotes the Kronecker product, and ‘∗’ represents the symmetric term in (block) symmetric
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matrices. Sym{P} is the sum of PT and P . The space of square-integrable vector functions over [0, ∞] is
given by L2[0, ∞], and for ̟(t) ∈ L2[0, ∞], its norm is given by ‖̟(t)‖L2

= [
∫∞

0 ̟T(t)̟(t)dt]1/2. The
symbol argminx f(x) returns the optimal variable x∗ at which the function f(x) is minimized. Finally,
‖ · ‖ denotes the Euclidean norm of a vector.

2 Problem formulation

2.1 Description of MASs

This article considers MASs consisting of one leader and N followers. A directed graph G := {V , E , C}
is used to represent the communication topology among the agents, where V := {v0, v1, v2, . . . , vN} is
the set of nodes and E ⊆ V × V represents the set of edges. The matrix C := [cij ] ∈ R(N+1)×(N+1)

is the adjacency of G, constructed by setting cij = 1 if node vi can receive information from node vj
via communication channels and cij = 0, otherwise. Self-loops are not taken into consideration, i.e.,
cii = 0 for all i ∈ N[0,N ]. The graph G is said to have a spanning tree, if there is a root node, and there
exists a directed path from the root node to each other node. The neighbor set of node i is defined as
N := {j ∈ N[0,N ]|j 6= i, cij = 1}.

Indexing the leader by 0 and the followers by 1, 2, . . . , N , we model their dynamics using the following
linear discrete-time recursions:

xi(t+ 1) = Aixi(t) +Biui(t), t ∈ N, (1)

where xi(t) ∈ Rn denotes the state vector of agent i, ui(t) ∈ Rm is its control input, and Ai ∈ Rn×n and
Bi ∈ Rn×m are constant system matrices. The MAS in (1) is heterogeneous, because the N + 1 agents
exhibit different dynamics (Ai, Bi).

Let εi(t) := xi(t) − x0(t) denote the leader/follower errors. Upon collecting all the errors along
with the state of the leader to form ε(t) := [εT1 (t) · · · εTN (t) xT

0 (t)]
T, and similarly for the inputs

u(t) := [uT
1 (t) · · · uT

N (t) uT
0 (t)]

T, we have the following entire system expression:

ε(t+ 1) = Aε(t) +Bu(t), t ∈ N, (2)

where

A :=

[

diag{Ai}Ni=1 IN · diag{Ai −A0}Ni=1

0 A0

]

, B :=

[

diag{Bi}Ni=1 IN ⊗ (−B0)

0 B0

]

.

In contrast to existing studies [20–22], this paper focuses on a more challenging situation, where the
system matrices Ai and Bi are all assumed unknown. The objective is to design a distributed control
strategy for unknown MASs (1) with intermittent communications to ensure the leader/follower consensus
asymptotically, i.e., limt→∞ (xi(t)− x0(t)) = 0, ∀i ∈ N[0,N ]. Note that achieving consensus of the MAS
(1) can be reduced to show the stability of the error system (2), i.e., limt→∞ ε(t) = 0.

2.2 Data-driven representation for MASs

The lack of the system matrices poses a challenge in the design of consensus controllers for the MAS.
Building on [34] that addresses single systems, we provide a data-driven parameterization for linear
discrete-time MASs. Suppose one has collected a set of data {{xi(T )}

ρ
T=0, {ui(T )}

ρ−1
T=0} (where ρ ∈ N[1,∞)

represents the number of data) by running the following systems:

xi(T + 1) = Aixi(T ) +Biui(T ) +Diwi(T ), (3)

where matrix Di ∈ Rn×nw is assumed to be known and has full column rank, which models the influence
of some unknown disturbance wi(T ).

Imitating the expression in (2), we can rewrite the system (3) as

ε(T + 1) = Aε(T ) +Bu(T ) +Dw(T ), (4)
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where w(T ) := [wT
1 (T ) · · · wT

N (T ) wT
0 (T )]

T ∈ R(N+1)nw and

D :=

[

diag{Di}Ni=1 IN ⊗ (−D0)

0 D0

]

.

We remark that the assumption on the measurements {{xi(T )}
ρ
T=0, {ui(T )}

ρ−1
T=0} is mild, which can

be easily fulfilled by running the each individual system offline in open-loop experiments. It is practical
to assume the disturbance {wi(T )} is unknown, which accounts for the measurement noise in the data-
collecting process. Certainly, the noise/disturbance is always bounded, which prompts us to pose a bound

on the noise W := [w(0) w(1) · · · w(ρ− 1) ] as follows.

Assumption 1 (Bounded noise). The noise sequence {wi(T )}
ρ−1
T=0 (i ∈ N[0,N ]) belongs to the set

W =







W ∈ R(N+1)nw×ρ
∣

∣

∣

[

WT

I

]T

Qd

[

WT

I

]

� 0







,

where Qd is a known symmetric matrix obeying [ I

0
]TQd[

I

0
] ≺ 0.

Remark 1. Assumption 1 is general for modeling noisy MASs. For example, if the disturbance sequence
{w(T )}ρ−1

T=0 is norm-bounded by ‖w(T )‖ 6 w̄ for all T ∈ N, then Qd can be given by

Qd =

[

−diag{qi}
ρ
i=1 0

0
∑ρ

i=1 qiw̄
2I

]

, qi > 0, (5)

where qis are free scalars. Choosing Qd in (5) is less conservative compared to the ones in [33,35], where
only one free scalar is allowed.

Based on the available data {xi(T )}
ρ
T=0 and {ui(T )}

ρ−1
T=0}, we can compute and collect the leader/

follower errors εi(T ) = xi(T )− x0(T ) that are consistent with the system expression in (2) for all times
T ∈ N[0,ρ]. Let us rearrange these data vectors to construct the following matrices:

E+ := [ε(1) ε(2) · · · ε(ρ)],

E := [ε(0) ε(1) · · · ε(ρ− 1)],

U := [u(0) u(1) · · · u(ρ− 1)].

Since the true noise sequence is unknown, the collected input-state data can belong to a set of systems
[A B] with the residual compensating for the bounded noise. To reflect this fact, we define the set of all
systems [A B] that are consistent with the data and the noise bound, as per (4) and Assumption 1, as
follows:

ΣAB :=
{

[A B]
∣

∣

∣
E+ = AE +BU +BwW, W ∈ W

}

.

In order to ensure the stability of system (2) without knowing the system matrices, it suffices to derive
a stability criterion for all [A B] ∈ ΣAB. For this purpose, a data-based representation of [A B] expressed
as a QMI is introduced as follows.

Lemma 1 (Data-driven system representation). The set ΣAB is equivalent to

ΣAB =







[A B]
∣

∣

∣

[

[A B]T

I

]T

ΘAB

[

[A B]T

I

]

� 0







,

where

ΘAB :=









−E 0

−U 0

E+ Bw









Qd









−E 0

−U 0

E+ Bw









T

.
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Figure 1 (Color online) Data-driven consensus control of MASs under an ETS.

Lemma 1 provides a purely data-driven parameterization of the unknown system (2) using only data
E, E+, and U . Note that such data are collected from the perturbed system (4), while we analyze the
stability of the unperturbed system (2). Introducing the disturbance here is to capture possible noise in
the data-collecting process offline with sensors, rather than to explain the disturbance affecting the system
dynamics. We present the results on obtaining a performance guarantee on the closed-loop L2-gain in
Subsection 3.3. Note also that, in Figure 1, the data are collected offline in an open-loop experiment,
while the leader/follower consensus is realized in closed-loop online, which is separated from the open-loop
sampling. In Subsection 2.3, a distributed control strategy with event-triggered transmissions is proposed
for MAS consensus.

2.3 Distributed event-triggered control

Letting tik denote the kth transmitted instant of agent i, we consider the following linear feedback law
for system (1) during t ∈ N[ti

k
,ti

k+1
−1]:

ui(t) =

{

Kixi(t
i
k), i = 0,

∑

j∈N Kijeij(t
i
k), i > 0,

(6)

where eij(t
i
k) := xi(t

i
k)−xj(t

j
k′(t)) is the state measurement error of agents i and j; k′(t) := argminl∈N:t>tj

l

{t− t
j
l }, where t

j
l is the transmitted instant of agent j; therefore, for each t ∈ N[ti

k
,ti

k+1
−1], t

j
k′(t) is the last

transmitted time of agent j; and the consensus controller gain matrices K0, Kij ∈ Rm×n are designed in
Section 3. Note that in (6) the leader has only access to its own sampled states, and the control inputs of
the followers only contain errors with respect to their neighbors. Specifically, a nonzero coupling matrix
Kij implies that there exists a communication channel through which controller i can utilize eij(t

i
k),

otherwise Kij = 0.

In our distributed control, each follower agent updates its own control input at transmitted times by
capitalizing on all information locally available as well as received from its neighboring agents. Specifically,
for all followers i > 0, the error of the local sampled state xi(t

i
k) and the state xj(t

j
k′(t)) of the neighboring

agent are employed, and its control input is obtained using the law in (6).

Up to date, there are some studies exploring event-triggered control for discrete-time multi-agent
systems [21]. However, in these schemes, sensors are required to operate frequently at every discrete
instant, so are the extra dynamic variables. This results in considerable energy consumption, especially
when the discretized interval of the system is small. This paper introduces a distributed dynamic ETS
with an adjustable sampling interval. It is assumed that during the closed-loop operation, the state of
each agent is periodically sampled with a common period h in a synchronous manner, where h is an
adjustable parameter satisfying 1 6 h 6 h 6 h̄ with given bounds h, h̄ ∈ N. The event generator
determines whether each sampled state is transmitted to local or neighbors’ controllers. In this case,
transmission events are only executed at preset sampling points {0h, 1h, 2h, . . .} instead of each discrete
instant in {0, 1, 2, . . .}. Clearly, the transmitted instants tik take values from {0h, 1h, 2h, . . .}.
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Motivated by [20–22], a distributed periodic ETS is introduced to determine the transmitted instants
{tik}, capitalizing on the following criterion:

ηi(τ
i
k,v) + θiρi(τ

i
k,v) < 0 (7)

with τ ik,v := tik + vh for all v ∈ N[0,mi
k
], where θi > 0 is to be designed, mi

k =
tik+1−tik

h − 1, and

ρ0(τ
0
v ) := σ0x

T
0 (t

0
k)Ω0x0(t

0
k)− eT0 (τ

0
v )Ω0e0(τ

0
v ),

ρi(τ
i
k,v) :=

N
∑

j 6=i

σije
T
ij(t

i
k)Ωieij(t

i
k)− eTi (τ

i
k,v)Ωiei(τ

i
k,v), i > 0,

where Ωi ≻ 0 is a weight matrix, and σ0, {σij}j∈N , θi are parameters, both to be designed (σij = 0 when
there is no transmission path from agents i to j); ei(τ

i
k,v) := xi(τ

i
k,v)− xi(t

i
k) denotes the error of agent i

between the latest transmitted signal xi(t
i
k) and the current sampled signal xi(τ

i
k,v); and, ηi(τ

i
k,v) in the

condition (7) is a discrete-time variable satisfying

ηi(τ
i
k,v+1)− ηi(τ

i
k,v) = −λiηi(τ

i
k,v) + ρi(τ

i
k,v), (8)

where ηi(0) > 0 and λi > 0 are given parameters. To sum up, the event-triggering policy is described as

tik+1 = tik + hmin
v∈N

{

v > 0
∣

∣

∣
ηi(τ

i
k,v) + θiρi(τ

i
k,v) < 0

}

. (9)

In our distributed control strategy, the sampled state xi(τ
i
k,v) is transmitted to the local controller

and neighbors for agent i > 0, as soon as the condition (7) is met. According to the control law (6),
a new control input is computed using the state xi(t

i
k+1) and the received neighbor’s state xj(t

j
k′(t)+1)

(only for the followers), and kept by a zero-order holder (ZOH) during [tik+1, tik+2 − 1]. Meanwhile, the
event-triggering function is renewed using the latest transmitted measurements, and then one periodically
evaluates the function at {tik+1+vh}v∈N to determine the next transmission time tik+2 based on the policy
(9). The following lemma is useful for deriving our results in Section 3.

Lemma 2 (Nonnegativity). For any positive definite matrix Ωi ≻ 0, nonnegative scalar ηi(0) > 0, and
positive constants λi > 0, θi > 0 satisfying 1 − λi −

1
θi

> 0. Then, for all v ∈ N[0,mi
k
], it holds that

ηi(τ
i
k,v) > 0 under the triggering condition (9).

The proof of Lemma 2 is similar to [33, Lemma 3], which is omitted here.

Remark 2. The transmission scheme (9) can be seen as a discrete-time counterpart of the continuous
dynamic ETS in [22]. Besides, our ETS subsumes the dynamic ETS proposed in [21] (cf. (9) with h = 1)
as special cases. In (9), because every event-generator is only executed at sampling times τ ik,v, the variable
does not need to successively evolve at every discrete time in the event-generator. Our triggering scheme
is expected to further reduce data transmissions and computational burden when compared to [21]. Note
that the dynamic thresholds ηi(τ

i
k,v) remain positive definite according to Lemma 2, thus to provide less

transmissions compared to the static ones (cf. (9) with θi → ∞).

2.4 Problem statement

Having introduced MASs with an ETS and the data-driven system representation, the problem considered
is described in this subsection. At the beginning, we put forward the following closed-loop system
expression combining the feedback control law (6) and the open-loop system in (2):

ε(t+ 1) = Aε(t) +BKε(tk), t ∈ N[ti
k
,ti

k+1
−1], (10)

where ε(tk) := [εT1 (t
1
k) · · · εTN(tNk ) xT

0 (t
0
k′(t))]

T, εi(t
i
k) := xi(t

i
k)− x0(t

0
k′(t)),

K :=















∑

j∈N K1j −K12 · · · −K1N 0
...

...
. . .

...
...

−KN1 −KN2 · · ·
∑

j∈N KNj 0

0 0 · · · 0 K0















,
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and the transmission instant tik is determined by the event-triggering law (9). Based on (10), the problem
is given as follows.

Problem 1 (Data-driven consensus). Given state-input measurements {{xi(T )}
ρ
T=0, {ui(T )}

ρ−1
T=0} of

the MASs (1) and a directed graph G, design a control law of the form (6) as well as a triggering strategy
in the form of (9) (cf. system (10)), such that, for any initial states xi(0), limt→∞ (xi(t)− x0(t)) = 0,
∀i ∈ N[0,N ].

3 Main results

This section provides a data-driven consensus control strategy for MASs (1), which solves Problem 1. In
particular, two steps are taken into consideration. A model-based analysis of the MASs under the ETS
is performed in Subsection 3.1, based on the DLF approach in [33]. Next, a data-driven design strategy
for obtaining the control gains and the ETS matrices is studied in Subsection 3.2. In Subsection 3.3, we
further extend the data-driven results in Subsection 3.2 to the case of achieving L2-gain performance.
Before moving on, the following lemma is required to obtain our results.

Lemma 3. For any matrix R ∈ Rn×n ≻ 0, N ∈ Rm×n, vector ϑ ∈ Rm, and a sequence {x(s)}β−1
s=α, it

holds for α 6 β ∈ N that

−

β−1
∑

i=α

yT(i)Ry(i) 6 (β − α)ϑTMR−1MTϑ+ Sym
{

ϑTM [x(β) − x(α)]
}

with y(i) = x(i+ 1)− x(i).

Lemma 3 is a simpler version of the results in [36, Lemma 2] without considering summation terms
on the right side of the inequality. The proof is similar to [36, Lemma 2], which is not omitted here.
Lemma 3 provides the basis for the following results.

3.1 Model-based consensus and controller design

Theorem 1 (Model-based consensus). Consider the system (1) under the triggering condition (9) and
the control law (6). Given positive scalars σ0, σij , h̄, h, and λi, θi satisfying 1 − λi −

1
θi

> 0 for all

i ∈ N[0,N ] and j ∈ N , asymptotic consensus of the system is achieved, and dynamic values ηi(τ
i
k,v)

converge to the origin for any ηi(0) > 0, if there exist matrices R1 ≻ 0, R2 ≻ 0, P ≻ 0, S = ST, M1, M2,
F , and Ωi ≻ 0 for all i ∈ N[0,N ], satisfying the following linear matrix inequalities (LMIs) ∀h ∈ {h, h̄}:

[

Ξ0 + hΞς +Ψ+Q hMς

∗ −hRς

]

≺ 0, ς = 1, 2, (11)

where

Ξ0 := Sym
{

M1(H1 −H3) +M2(H4 −H1)
}

+HT
2 PH2 −HT

1 PH1

+ (H2 −H1)
T(R2 −R1)(H2 −H1)−

[

HT
3 , H

T
4

]

S
[

HT
3 , H

T
4

]T
,

Ξ1 := (H2 −H1)
TR2(H2 −H1)−

[

HT
3 , H

T
4

]

S
[

HT
3 , H

T
4

]T
,

Ξ2 := (H2 −H1)
TR1(H2 −H1) +

[

HT
3 , H

T
4

]

S
[

HT
3 , H

T
4

]T
,

Ψ := Sym
{

F (AH1 +BKH5 −H2)
}

,

Q := HT
5 ΩaH5 −

[

H3

H5

]T [

Ωb −Ωb

∗ Ωb

] [

H3

H5

]

,

Hι :=
[

0n×(ι−1)n, In, 0n×(5−ι)n

]

, ι = 1, . . . , 5, H0 := 0n×7n,

Ωai := σi0Ωi +
∑

j∈N

σijΩi + σjiΩj ,
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Ωa :=















Ωa1 · · · −σ1NΩ1 − σN1ΩN 0

∗
. . .

...
...

∗ ∗ ΩaN 0

∗ ∗ ∗ Ω0















, Ωb :=

[

diag{Ωi}Ni=1 IN · diag{Ωi}Ni=1

∗
∑N

i=0 Ωi

]

.

Proof. Considering the intervals N[τ i
k,v

,τ i
k,v+1

−1] for all v ∈ N[0,mi
k
], we choose a functional candidate for

system (10) as follows:

V (t) = Va(t) + Vd(t) + t

N
∑

i=1

[ηi(τ
i
k,v+1)− ηi(τ

i
k,v)], (12)

where Lyapunov functional Va(t) = εT(t)Pε(t), P ≻ 0; the dynamic variable ηi(τ
i
k,v) is provided as in

(8); and, the DLF Vd(t) is designed as

Vd(t) = (t− τ ik,v)(τ
i
k,v+1 − t)

[

xT(τ ik,v), xT(τ ik,v+1)
]

S
[

xT(τ ik,v), xT(τ ik,v+1)
]T

+ (τ ik,v+1 − t)

[

t
∑

s=τ i
k,v

yT(s)R1y(s)− yT(t)R1y(t)

]

+ (t− τ ik,v)

[ τ i
k,v+1
∑

s=t

yT(s)R2y(s)− yT(t)R2y(t)

]

, (13)

where y(s) := x(s+ 1)− x(s), and S = ST, R1 ≻ 0, R2 ≻ 0.
The forward difference of the functional V (t) is given as

∆V (t) = ∆Va(t) + ∆Vd(t) +

N
∑

i=1

[ηi(τ
i
k,v+1)− ηi(τ

i
k,v)], (14)

where

∆Va(t) = ξT(t)
(

HT
2 PH2 −HT

1 PH1

)

ξ(t),

∆Vd(t) = ξT(t)
[

(H2 −H1)
T(R2 −R1)(H2 −H1)−

[

HT
3 , H

T
4

]

S
[

HT
3 , H

T
4

]T
]

ξ(t)

−
t−1
∑

s=τ i
k,v

yT(s)R1y(s)−

τ i
k,v+1−1
∑

s=t

yT(s)R2y(s),

with ξ(t) := [εT(t), εT(t+ 1), εT(τ ik,v), εT(τ ik,v+1), εT(tk)]
T. By Lemma 3, we have that

−
t−1
∑

s=τ i
k,v

yT(i)Ry(i) 6 ξT(t)
[

(t− τ ik,v)M1R
−1
1 MT

1 +M1(H1 −H3)
]

ξ(t), (15)

−

τ i
k,v+1−1
∑

s=t

yT(s)R2y(s) 6 ξT(t)
[

(τ ik,v+1 − t)M2R
−1
2 MT

2 +M2(H4 −H1)
]

ξ(t). (16)

Through the descriptor method [37], we have the following equation according to the system represen-
tation (10):

0 = 2ξT(t)F
[

Aε(t) +BKε(tk)− ε(t+ 1)
]

= 2ξT(t)F
(

AH1 +BKH7 −H2

)

ξ(t). (17)

Summing up (14)–(17) gives rise to

∆V (t) 6 ξT(t)
[

(t− τ ik,v)(Ξ1 +M1R
−1
1 MT

1 ) + (τ ik,v+1 − t)(Ξ2 +M2R
−1
2 MT

2 ) + Ξ0 +Ψ
]

ξ(t)
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+

N
∑

i=1

[ηi(τ
i
k,v+1)− ηi(τ

i
k,v)]. (18)

In light of the triggering condition (9), Lemma 2 asserts that ηi(τ
i
k,v) > 0 for ηi(0) > 0, Ωi ≻ 0, and

λi > 0, θi > 0 satisfying 1− λi −
1
θi

> 0. Then, according to (8), it holds that

N
∑

i=1

[ηi(τ
i
k,v+1)− ηi(τ

i
k,v)] 6 ξT(t)Qξ(t). (19)

From (18) and (19), the difference ∆V (t) satisfies

∆V (t) 6 ξT(t)

[

t− τ ik,v

h
Υ1(h) +

τ ik,v+1 − t

h
Υ2(h)

]

ξ(t), (20)

where Υς(h) = Ξ0 + hΞς +Ψ+Q+ hMςR
−1
ς MT

ς , ς = 1, 2.
According to the Schur Complement Lemma, inequalities Υ1(h) ≺ 0 and Υ2(h) ≺ 0 are equivalent to

the LMIs in (11), which are convex with respect to h. Therefore, the LMIs in (11) at the vertices of [h, h̄]
certificate ∆V (t) < 0 ∀h ∈ [h, h̄]. By the DLF approach in [33], it holds that ∀ε(τ ik,v) 6= 0,

τ i
k,v+1−1
∑

s=τ i
k,v

∆V (s) = Va(τ
i
k,v+1) + (h− 1)

N
∑

i=1

ηi(τ
i
k,v+1)− Va(τ

i
k,v)− (h− 1)

N
∑

i=1

ηi(τ
i
k,v) < 0, (21)

which implies

Va(τ
i
k,v+1) + (h− 1)

N
∑

i=1

ηi(τ
i
k,v+1) < Va(τ

i
k,v) + (h− 1)

N
∑

i=1

ηi(τ
i
k,v). (22)

Finally, similar to [38], there exists some δ < ∞ satisfying ||ε(t)|| 6 δ||ε(τ ik,v)|| for all t ∈ N[τ i
k,v

,τ i
k,v+1

−1]

from the fact ||Ah +BhKh|| < ∞, where Bh := [Ah−1B Ah−2B · · · B] and Kh := [K K · · · K]. Thus,
we conclude that, on the basis of Va(t) > 0 and ηi(τ

i
k,v) > 0, the errors of system (10) and ηi(τ

i
k,v)

converge to the origin under the triggering condition (9) and the feedback control law (6), which also
implies that MASs (1) achieve asymptotic consensus. This completes the proof.

Remark 3 (DLF). Looped-functional approach proposed in [39,40] has been shown to yield less conser-
vative stability results and recently been employed for sampled-data control of discrete-time systems [33].
We extend this method to address the multi-agent system consensus here. Compared to [33], a simper
DLF that only contains sampled states of the agents is constructed in (25), whose aim is to reduce the
matrices in the resulting consensus condition at the expense of the conservatism. It can be easily proven
that Vd(τ

i
k,v) = Vd(τ

i
k,v+1) = 0, asserting Vd(t) is a DLF in [33]. Besides, obtaining a sampling-dependent

condition (cf. Theorem 1) is another reason for introducing the DLF (25). An allowable sampling inter-
val can be searched for using LMIs in (11), which is beneficial for designing sampling-based triggering
schemes and feedback controllers.

Theorem 1 provides a stability condition for a given ETS. A design method for obtaining the distributed
controllers and the event-triggering parameters, can be derived based on Theorem 1, while guaranteeing
the consensus. To this end, an algebraically equivalent system to system (10) is given as follows by
defining εi(t) = Gizi(t):

z(t+ 1) = G−1AGz(t) +G−1BKcz(tk), t ∈ N[ti
k
,ti

k+1
−1], (23)

where Gi ∈ Rn×n is a nonsingular matrix, z(t) := [zT1 (t) · · · zTN(t) zT0 (t)]
T, Kc := KG, and G :=

diag{Gi}Ni=1. Imitating Theorem 1, the following theoretical result is proposed.

Theorem 2 (Model-based design). Consider the system (1) under the triggering condition (9) and the
control law (6). Given the same scalars as in Theorem 1, there exists a block controller gain K such that
asymptotic consensus of the system is achieved, and ηi(τ

i
k,v) tends to zero for any ηi(0) > 0, if there exist
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matrices R1 ≻ 0, R2 ≻ 0, P ≻ 0, S = ST, M1, M2, G, Kc, and Ω̄i ≻ 0 for all i ∈ N[0,N ], satisfying the
following LMIs ∀h ∈ {h, h̄}:

[

Ξ0 + hΞς + Ψ̄ + Q̄ hMς

∗ −hRς

]

≺ 0, ς = 1, 2, (24)

where

Ψ̄ := Sym
{

D(AGH1 +BKcH5 −GH2)
}

, D := (H1 + 2H2)
T,

Q̄ := HT
5 Ω̄aH5 −

[

H3

H5

]T [

Ω̄b −Ω̄b

∗ Ω̄b

] [

H3

H5

]

,

and Ω̄a and Ω̄b are defined similar to Ωa and Ωb in Theorem 1 by replacing Ωi with Ω̄i. Moreover, the

desired block controller and triggering matrices are co-designed as K = KcG
−1, Ωa = G−1TΩ̄aG

−1, and

Ωb = G−1TΩ̄bG
−1.

Proof. Choose the following functional for the system (23) by replacing ε in (12) with z:

Vz(t) = zT(t)Pz(t) + (t− τ ik,v)(τ
i
k,v+1 − t)

[

zT(τ ik,v), z
T(τ ik,v+1)

]

S
[

zT(τ ik,v), z
T(τ ik,v+1)

]T

+ (τ ik,v+1 − t)

[

t
∑

s=τ i
k,v

yTz (s)R1yz(s)− yTz (t)R1yz(t)

]

+ (t− τ ik,v)

[ τ i
k,v+1
∑

s=t

yTz (s)R2yz(s)− yTz (t)R2yz(t)

]

+ t

N
∑

i=1

[ηi(τ
i
k,v+1)− ηi(τ

i
k,v)], (25)

where yz(s) := z(s+ 1)− z(s).

Based on (19), the following inequality holds with εi(t) = Gizi(t) and ξT(t)Qξ(t) = ξTz (t)Q̄ξz(t):

N
∑

i=1

[ηi(τ
i
k,v+1)− ηi(τ

i
k,v)] 6 ξTz (t)Q̄ξz(t), (26)

where ξz(t) := [zT(t), zT(t+ 1), zT(τ ik,v), zT(τ ik,v+1), zT(tk)]
T.

It can be deduced by imitating (20) that

∆Vz(t) 6 ξTz (t)

[

t− τj

h
Ῡ1(h) +

τj+1 − t

h
Ῡ2(h)

]

ξz(t), (27)

where Ῡς(h) := Ξ0 + hΞς + Ψ̄ + Q̄+ hMςR
−1
ς MT

ς , ς = 1, 2. By Schur Complement Lemma, inequalities
Ῡ1(h) ≺ 0 and Ῡ2(h) ≺ 0 are equivalent to the LMIs in (24). Similar to Theorem 1, MASs (1) achieve
asymptotic consensus under the triggering condition (9) and the feedback control law (6), with the desired
K = KcG

−1, since system (23) exhibits the same dynamic behavior and stability properties as (10), which
completes the proof.

3.2 Data-driven consensus and controller design

We are now ready to provide a data-driven solution for consensus and controller design of the system
(1) with unknown matrix pair [A B] under the triggering condition (9) and the feedback control law (6).
The core idea, inspired by [35, 41], is to replace the matrix pair [A B] in Theorem 2 with a data-driven
system expression using the measurements {{xi(T )}

ρ
T=0, {ui(T )}

ρ−1
T=0}. Following this line, a data-based

design method guaranteeing the consensus is obtained on the basis of Lemma 1 and Theorem 2.



Wang X, et al. Sci China Inf Sci September 2023 Vol. 66 192201:11

Theorem 3 (Data-driven consensus and design). Consider the system (1) under the triggering condition
(9) and the control law (6). Given the same scalars as in Theorem 1, there exists a block controller gain
K such that asymptotic consensus of the system is achieved for any [A B] ∈ ΣAB , and ηi(τ

i
k,v) tends to

zero for any ηi(0) > 0, if there exist matrices R1 ≻ 0, R2 ≻ 0, P ≻ 0, S = ST, M1, M2, G, Kc, and
Ω̄i ≻ 0 for all i ∈ N[0,N ], satisfying LMIs ∀h ∈ {h, h̄}, ς = 1, 2,









T1 F + T2 0

∗ Ξ0 + hΞς + Ψ̂ + Q̄+ T3 hMς

∗ ∗ −hRς









≺ 0, (28)

where

Ψ̂ := Sym
{

−DGH2

}

, F :=
[

HT
1 G

T, HT
5 K

T
c

]T
,

D := (H1 + ǫH2)
T, V1 :=

[

I 0
]

, V2 :=
[

0 D
]

,

T1 := V1ΘABV
T
1 , T2 := V1ΘABV

T
2 , T3 := V2ΘABV

T
2 .

Moreover, K = KcG
−1 is the desired block controller matrix, and the triggering matrices are co-designed

as Ωa = G−1TΩ̄aG
−1, and Ωb = G−1TΩ̄bG

−1.
Proof. Restructure Ῡς(h) in (27) of Theorem 2 as follows:

Ῡς(h) :=

[

[DA DB]T

I

]T [

0 F

∗ Ξ0 + hΞς + Ψ̂ + Q̄+ hMςR
−1
ς MT

ς

][

[DA DB]T

I

]

.

According to Lemma 1, it is met for any [A B] ∈ ΣAB,

[

[A B]T

I

]T

ΘAB

[

[A B]T

I

]

� 0. (29)

Then, the full-block S-procedure [42] ensures Ῡi(h) ≺ 0 for any [A B] ∈ ΣAB if the following LMIs are
satisfied:

[

0 F

∗ Ξ0 + hΞς + Ψ̂ + Q̄+ hMςR
−1
ς MT

ς

]

+

[

V1ΘABVT
1 V1ΘABVT

2

∗ V2ΘABV
T
2

]

≺ 0. (30)

Through Schur Complement Lemma, the inequalities in (30) are equivalent to the LMIs in (28).
Subsequently, we can draw the same conclusion as Theorem 2 that MASs (1) achieve asymptotic consensus
under the triggering condition (9) and the feedback control law (6), with the desired K = KcG

−1, for
any [A B] ∈ ΣAB .

Remark 4 (Data-driven design algorithm). Note that Theorem 3 is a sufficient condition for achieving
consensus of system (1). Any conclusion cannot be reached if the LMIs in (28) are not solvable. Here,
we summarize the data-driven design procedure, assuming that Theorem 3 contains feasible solutions.

Step 1. Collect offline data {{xi(T )}
ρ
T=0, {ui(T )}

ρ−1
T=0} from all agents i, and construct the data

matrices E+, E, and U ;
Step 2. Suppose that noise {w(T )}ρ−1

t=0 is bounded as ‖w(T )‖2 6 w̄ (w̄ > 0) satisfying Assumption 1;
Step 3. Build matrix Qd to form ΘAB of Lemma 1;
Step 4. Choose proper parameters σ0, σij , λi, h, θi, ηi(0), and search for feasible matrices Kc, G, and

Ω̄ for (28). If the eigenvalue eig(G) 6= 0, go to Step 5; otherwise, repeat Step 4;
Step 5. Compute the controller gain K = KcG

−1, and the required triggering matrices Ωa =

G−1TΩ̄aG
−1, Ωb = G−1TΩ̄bG

−1.

Remark 5 (Parameter optimization). There are some parameters embedded in the triggering condition
(9) and the stability criteria (see model-based in (24) and data-driven in (28)). The selection of the
parameters may influence the system performance. Without losing generality, we here provide a method
for optimizing the parameter θi while guaranteeing a desired system performance and minimizing the
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number of transmissions. At the beginning, two kinds of system performance indexes are defined as
follows:

Pi(x) =
1

xT
i (0)xi(0)

T
∑

t=0

xT
i (t)xi(t), Ri =

Number of transmitted data

Number of sampled data
, i ∈ N[0,N ],

where Pi(x) quantities the cost of system performance (see also [18]), T ∈ N is a given simulation time,
and Ri is the ratio of transmitted and sampled data for each agent. Then, the parameter optimization
can be defined as searching for a solution θi solving

minimize Ri

subject to θi > 0, Pi(x) 6 P̄i(x), (24) or (28),
(31)

where P̄i(x) specifies a desired cost of system performance. Similarly, other parameters, such as σ0, σij ,
λi, h, θi, and ηi(0), can be optimized.

3.3 Data-driven H∞ consensus and controller design

This subsection deals with data-driven H∞ consensus of MASs subject to disturbances, whose dynamics
is given as follows:

xi(t+ 1) = Aixi(t) +Biui(t) +Bi
ddi(t), t ∈ N, (32)

where di(t) ∈ Rnw is the external disturbance and belongs to L2[0,∞]; Bi
d ∈ Rn×nd is a known constant

matrix describing the disturbance. We assume that model matrices Ai and Bi are unknown, but the
state-input data {{xi(T )}

ρ
T=0, {ui(T )}

ρ−1
T=0} collected offline are available from (3), and noise sequence

{w(T )}ρ−1
t=0 satisfies Assumption 1.

Under the feedback control law (6), system (32) can be reformed as the following error equation:

ε(t+ 1) = Aε(t) +BKε(tk) +Bdd(t), t ∈ N[ti
k
,ti

k+1
−1], (33)

where d(t) := [dT1 (t) · · · dTN (t) dT0 (t)]
T ∈ R(N+1)nd and

Bd :=

[

diag{Bi
d}

N
i=1 IN ⊗ (−B0

d)

0 B0
d

]

.

The definition of H∞ stabilization for system (33) is given as follows.

Definition 1. Given a scalar γ > 0, the MASs (33) achieve H∞ consensus with the disturbance
attenuation γ if the following conditions hold.

(1) The error system (33) with the controller (6) is asymptotically stable with zero disturbance d(t) = 0;
(2) The following bounded L2-gain condition is satisfied under zero initial condition for all nonzero

di(t) ∈ L2[0,∞]:
+∞
∑

t=0

εT(t)ε(t) 6

+∞
∑

t=0

γ2dT(t)d(t). (34)

Then, based on Theorem 2, we provide a data-driven co-design method for event-triggered MASs with
external disturbance, such that system (32) achieves consensus stability and H∞ performance.

Theorem 4 (Data-driven H∞ consensus and design). Consider the system (32) under the triggering
condition (9) and the control law (6). Given the same scalars as in Theorem 1, there exists a block
controller gain K such that H∞ consensus of the system is achieved with a given disturbance attenuation
γ > 0 for any [A B] ∈ ΣAB, and ηi(τ

i
k,v) tends to zero for any ηi(0) > 0, if there exist matrices R1 ≻ 0,

R2 ≻ 0, P ≻ 0, S = ST, M1, M2, G, Kc, and Ω̄i ≻ 0 for all i ∈ N[0,N ], satisfying LMIs ∀h ∈ {h, h̄},
ς = 1, 2,













T1 F + T2 0 0

∗ Ξ0 + hΞς + Ψ̃ + Q̄+ T3 hMς DBdG

∗ ∗ −hRς 0

∗ ∗ ∗ −γ2GTG













≺ 0, (35)
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where Ψ̃ = Ψ̂ + HT
1 G

TGH1. Moreover, K = KcG
−1 is the desired block controller matrix, and the

triggering matrices are co-designed as Ωa = G−1TΩ̄aG
−1, and Ωb = G−1TΩ̄bG

−1.

Proof. One can observe that Eq. (35) ensures (28) of Theorem 3, which leads to condition (1) of Defi-
nition 1 with d(t) = 0. Now, we consider the case of d(t) 6= 0. The disturbance system model is written
as

z(t+ 1) = G−1AGz(t) +G−1BKcz(tk) +G−1BdGdz(t)

with defining ε(t) := Gz(t) and d(t) := Gdz(t). Then, it follows from Schur Complement Lemma and
Theorem 2 that LMIs in (35) imply

∆Vz(t) + zT(t)GTGz(t)− γ2dTz (t)G
TGdz(t) < 0. (36)

Summing (36) from t = 0 to +∞ yields that

+∞
∑

t=0

zT(t)GTGz(t) <

+∞
∑

t=0

γ2dTz (t)G
TGdz(t)−

+∞
∑

t=0

∆Vz(t). (37)

Finally, with the zero initial condition and Vz(+∞) > 0, it holds that
∑+∞

t=0 x
T(t)x(t) <

∑+∞
t=0 γ

2dT(t)d(t),
which meets the condition (1) of Definition 1 since G is a nonsingular matrix. This completes the proof.

Remark 6. The distributed control strategy (6) and ETS (9) only require local information of the MASs,
i.e., the agent’s and its neighbors’ sampled states. However, our design procedures (cf. Theorems 1–
4) rely on the global information of the network graph, e.g., when constructing the data-driven MAS
representation in Lemma 1. In this sense, the presented data-driven control protocols are not fully
distributed, which may restrict their applications. How to avoid using global information in data-driven
consensus control design motivates our future research.

Remark 7 (Uncertainty). To capture uncertainties in the system matrices, let the unknown system
matrices A and B belong to the convex hull of a set of unknown but fixed system matrices as follows:

[A B] ∈ Co([A1 A2], . . . , [Al Bl]) ⊆ ΣAB, l ∈ N0,

where Co denotes the convex hull operator. That is, the set W of noise in Assumption 1 covers the above
set of uncertainties. In this situation, Theorems 1, 3, and 4 that hold for all [A B] ∈ ΣAB are also
robust to such certainties. However, we cannot conclude anything while Co([A1 A2], . . . , [Al Bl])  ΣAB.
Our future work will be devoted to devising data-driven control of MASs containing general forms of
uncertainties.

4 Example and simulation

A set of four mass-spring-damper systems [43] is employed in this section to examine the proposed data-
driven event-triggered control method. All numerical computations are performed using Matlab, together
with the SeDuMi toolbox [44].

Example 1. The system dynamics is given as ẋi(c) = Āixi(c) + B̄iui(c), t > 0 with

Āi =

[

0 1

− fi
φi

−ϕi

φi

]

, B̄i =

[

0
1
φi

]

, i ∈ N[0,3],

where the state vector xi(c) comprises the displacement and velocity of the mass; ui(c) is the input force;
ϕi, φi, and fi are the mass, damping constant, and spring constant, respectively. Subsystems’ parameters
(fi, φi, ϕi)

i are (1, 1, 2)0, (1, 1.1, 2)1, (1, 1.2, 2)2, and (1, 0.8, 2)3, respectively. The interaction topology
is given in Figure 2 for a pictorial description, where the leader is indexed by 0 and the followers by
1, 2, 3. The adjacency matrix C describes the communication graph. Upon discretization, we arrive at

the discrete-time linear system as in (1) with the matrices Ai = eĀiTk and Bi =
∫ Tk

0 eĀisB̄ids, where
Tk > 0 is the discretization interval. The proposed data-driven ETS (9) and distributed control law (6)
are then applied to this system. The codesigned results are displayed in the following part.

Testing the data-driven method. The matrices Ai and Bi are treated as unknown for our data-
driven controller design. We generate ρ = 40 state-input data {x(T )}ρT=0 and {u(T )}ρ−1

T=0 from the
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Figure 4 (Color online) Trajectories of ηi of each agent under

the data-driven ETS.

Figure 5 (Color online) Triggered instants of each agent.

disturbed system (3) by setting the discretization interval as Tk = 0.01, where the input is generated
and sampled randomly from u(t) ∈ [−1, 1]. Moreover, the collected measurements are corrupted by a
disturbance satisfying ‖w(T )‖ 6 0.001, which fulfills Assumption 1 as in Remark 1. The matrix Bw is
taken as Bw = 0.01I, which has full column rank. Furthermore, set the triggering-related parameters
as σ0 = 0.02, σ10 = σ21 = σ31 = 0.05, θi = 5, and λi = 0.2, and the sampling interval is h = 0.01.
Solving the data-based LMIs of Theorem 3 as in Remark 4, the distributed controller gains and the
event-triggering matrices are given as

K0 = [−683.75 − 71.79],K10 = [−719.00 − 93.34],K21 = [−233.74 − 35.53],K31 = [−203.98 − 23.03],

Ω0 = 105

[

8.6465 0.8485

0.8485 0.0854

]

, Ω10 =

[

851.31 100.07

100.07 13.15

]

, Ω21 =

[

485.44 61.70

61.70 9.21

]

, Ω31 =

[

716.87 78.29

78.29 8.95

]

.

The proposed dynamic triggering scheme (9) is numerically tested with the initial conditions x0(0) =
[0.1 0.1]T, x1(0) = [1 0.1]T, x2(0) = [1 − 1]T, and x3(0) = [0.2 − 0.1]T over a time interval of [0, 1].
The trajectories of all agents and the dynamic variables ηi are shown in Figures 3 and 4, respectively.
Obviously, all followers approach the trajectory of the leader asymptotically, and the dynamic variables
converge to zero, demonstrating the correctness of the proposed distributed data-driven triggering and
control schemes. Notably, in Figure 5, only 37 out of 100 measurements for leader 0, and 46, 31, and
34 for followers 1–3, respectively, are broadcast to distributed controllers and their neighbors, while 100
samples of data are collected for each subsystem. This result proves that the proposed data-driven ETS
helps reduce transmissions when achieving the consensus of MASs.
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model-based ETS.

Figure 7 (Color online) Trajectories of ηi of each agent under

the model-based ETS.

Table 1 Cost of system performance Pi(x) and ratio of transmissions Ri under the data-driven ETS for different θi over t ∈ [0, 1]

Agent
θi

2 3 4 5 10 20 50 500 1000 104 105

Leader 0
P0(x) · 10

−3 0.36 0.36 0.36 0.37 0.38 0.38 0.45 0.52 0.52 0.52 0.52

R0 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

Follower 1
P1(x) · 10

−3 0.46 0.46 0.46 0.46 0.45 0.45 0.46 0.45 0.45 0.45 0.45

R1 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41

Follower 2
P2(x) · 10

−3 0.29 0.32 0.31 0.31 0.32 0.39 0.38 0.32 0.39 0.39 0.39

R2 0.21 0.20 0.21 0.21 0.20 0.20 0.20 0.20 0.20 0.20 0.20

Follower 3
P3(x) · 10

−3 0.32 0.30 0.28 0.34 0.29 0.30 0.27 0.31 0.34 0.34 0.34

R3 0.80 0.78 0.78 0.77 0.82 0.78 0.80 0.72 0.71 0.71 0.71

Total

∑
3

i=0
Pi(x) · 10

−3 1.43 1.44 1.41 1.48 1.44 1.52 1.56 1.60 1.70 1.70 1.70
∑

3

i=0
Ri 1.67 1.64 1.65 1.64 1.70 1.66 1.67 1.59 1.59 1.59 1.59

Comparison with the model-based method. Assume that the system matrices are known. We compute
the controller gains and triggering matrices as follows, by Theorem 2 and using the same parameters as
in the data-driven case,

K0 = [−0.14 − 0.50], K10 = [−2.28 − 3.69], K21 = [−1.14 − 2.15], K31 = [−0.69 − 1.31],

Ω0 =

[

0.0028 −0.0012

−0.0012 0.0036

]

,Ω10 =

[

0.0041 0.0031

0.0031 0.0052

]

,Ω21 =

[

0.0025 0.0022

0.0022 0.0042

]

,Ω31 =

[

0.0025 0.0022

0.0022 0.0041

]

.

The state trajectories of the MAS are depicted in Figure 6 under the same initial condition as for plotting
Figure 3, and the evolution of each ηi is shown in Figure 7. The leader/follower consensus problem is
also solved using the model-based method (cf. Theorem 2). Moreover, compared to Figure 3, where the
consensus settling time is before t = 1, the steady-state instant of Figure 6 is near t = 4. The main
reason is that Theorem 2 has less conservatism than Theorem 3 (with an introduced disturbance) at the
expense of losing system performance.

Simulations for different parameter θi values. This part centers on searching for the value of θi that
minimizes the number of transmitted data while maintaining the desired system performance. According
to the parameter optimization method in Remark 5, the simulation results, including the cost of system
performance Pi(x) and the ratio of transmissions Ri under data-driven and model-based ETSs with
different θi (and other abovementioned parameters) values, are listed in Tables 1 and 2, respectively.

From Table 1, the minimum sum of agents’ transmission ratios is
∑3

i=0 Pi(x) = 1.41 when θi = 4 for
the data-driven case. Meanwhile, under the model-based ETS (cf. Table 2), if θi = 2, the minimum
∑3

i=0 Pi(x) is 1.17. Obviously, the system performance index Ri of each agent remains at the same level
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Table 2 Cost of system performance Pi(x) and ratio of transmissions Ri under the model-based ETS for different θi over t ∈ [0, 6]

Agent
θi

2 3 4 5 10 20 50 500 1000 104 105

Leader 0
P0(x) · 10

−3 0.25 0.25 0.25 0.26 0.26 0.27 0.27 0.28 0.28 0.28 0.28

R0 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13

Follower 1
P1(x) · 10

−3 0.21 0.21 0.21 0.21 0.22 0.22 0.23 0.23 0.23 0.23 0.23

R1 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13

Follower 2
P2(x) · 10

−3 0.34 0.33 0.35 0.36 0.34 0.36 0.38 0.37 0.37 0.37 0.37

R2 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Follower 3
P3(x) · 10

−3 0.37 0.39 0.40 0.40 0.42 0.40 0.41 0.42 0.42 0.42 0.42

R3 0.64 0.64 0.64 0.64 0.63 0.64 0.63 0.63 0.63 0.63 0.63

Total

∑
3

i=0
Pi(x) · 10

−3 1.17 1.18 1.21 1.23 1.24 1.25 1.29 1.30 1.30 1.30 1.30
∑

3
i=0

Ri 0.97 0.96 0.96 0.96 0.96 0.96 0.95 0.96 0.96 0.96 0.96

even for different θi values. Another finding from these tables is that as θi increases from 2 to 105, the
ratio Pi(x) as well as the index Ri tends to a constant value because our triggering scheme (9) degenerates
to a static ETS if θi → ∞.

5 Concluding remarks

This paper considered the distributed event-triggered consensus control of leader/follower MASs from
a data-driven perspective. The asymptotic consensus of the MASs under the proposed dynamic peri-
odic distributed ETS was analyzed leveraging a novel looped-functional, allowing a model-based method
for obtaining the distributed controller and ETS matrices. Combining the data-based leader/follower
MAS representation and the model-based condition, a data-driven codesign approach was provided and
extended to the case of achieving an H∞ performance. Finally, a practical example was provided to
corroborate the efficacy of the proposed ETS in reducing transmissions as well as the validity of our
model- and data-driven codesigning methods. Our future work will address understanding the relation-
ship between the performance and the noise-corrupted data-driven controller design.
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