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Over the last few decades, urban traffic congestion has been

an out-of-control issue globally. Several well-known mi-

cromodeling traffic control strategies have been developed

for traffic light control. Previous work [1] proposed a dis-

tributed feedback controller motivated by back-pressure to

maximize the network throughput. However, these model-

based control methods may not realize the specified per-

formance if the traffic model is not precise enough. As nu-

merous valuable traffic data are generated daily, data-driven

control [2–5] would be more suitable for urban traffic control

than model-based control.

For multi-intersection networks, a deep reinforcement

learning method is used [2] for large-scale traffic signal con-

trol, but its computational speed and reliability may not

be satisfied. Compared with this method, the proposed ap-

proach in this study, distributed estimation and distributed

model-free adaptive predictive control (DED-MFAPC) al-

gorithm, has a faster computational speed and is computa-

tionally tractable. Some groups [3, 4] proposed data-driven

distributed adaptive coordination control algorithms for the

calculation of the green time for each phase by balancing the

multidirectional queuing length. Different from the method

used elsewhere [3, 4], the proposed DED-MFAPC approach

embeds predictive control into the data-driven method to

control the interconnected multi-intersection networks. Pre-

dictive control is an advanced control method where the con-

trol inputs are derived by model predicting and solving the

optimization problem. However, predictive control for large-

scale systems is difficult to implement, specifically in large-

scale interconnected systems, due to the difficulty in deter-

mining the interconnected influences at the prediction mo-

ments. Different from the existing decentralized estimation

and decentralized model-free adaptive control method [5],

DED-MFAPC as a distributed predictive control method

requires the neighboring subsystems to share some infor-

mation for each subsystem to optimize its objective func-

tion. After the subsystems solve their optimization prob-

lems, they share the intermediate solutions with their neigh-

boring subsystems, which then solve the optimization prob-

lems with the received information.

In this study, the multi-intersection network is regarded

as a group of one-way road systems. First, the multi-

intersection network is divided into N interconnected sub-

systems, each of which comprises one intersection and two

incoming links with traffic streams entering it. Thus, each

subsystem i has a local state yi ∈ R
2 with the density of

vehicles on two roads at the intersection and a local control

input ui ∈ R
2 with the green time for each phase. Subsys-

tem j is a neighbor of subsystem i if the outflow of j is the

inflow of i. Let Ni be the set of the neighbors of subsystem

i. After the traffic network decomposition, the outflow of

each subsystem is controllable and considered as the control

input, while the inflow of subsystem i is uncontrollable, but

controlled by the neighboring subsystems, and considered

the interconnected influence.

From the dynamics of multiple interconnected subsys-

tems detailed in Appendix A, one has

yi(k + 1) = fi(yi(k), Vi(k)), (1)

where yi(k) ∈ R
2 represents the density of vehicles of sub-

system i, Vi(k) =
[

uT
i (k), z

T
i (k)

]T
refers to the augmented

control input vector with ui(k) = [ui1(k), ui2(k)]T ∈ R
2 be-

ing the control input and zi(k) = [zj1i(k), . . . , zj|Ni|
i(k)]

T ∈

R
|Ni| being the interconnected influences from neighboring

subsystems, |Ni| refers to the cardinality of Ni, and fi(·) is

an unknown nonlinear function relating the vehicle density

and the augmented control input with the output.

Theorem 1 ([5]). For nonlinear system (1) satisfying As-

sumptions 1 and 2 given in Appendix B, when ∆Vi(k) 6= 0,

there exists a pseudogradient φi(k) such that the subsys-

tem (1) can be transformed into the compact-form dynamic

linearized (CFDL) data model,

yi(k + 1) = yi(k) + φT
i (k)∆Vi(k), (2)
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where ∆Vi(k) = Vi(k)−Vi(k−1), φi(k) =
[

Φi(k), ϕT
i (k)

]T
,

and Φi(k), ϕi(k) = [ϕj1i(k), . . . , ϕj|Ni|
i(k)]T, jh ∈ Ni, are

the pseudogradients caused by ui(k) and the interconnected

influences zi(k), respectively.

Next, the MFAPC data model can be obtained by em-

bedding the M -step ahead rolling horizon framework into

the CFDL data model (2),

yi(k + 1) = E(k)yi(k) + Ai(k)∆Vi(k), (3)

where yi(k + 1) = [yiT(k + 1), . . . , yiT(k +M)]T,∆Vi(k)

= [∆Vi(k), . . . ,∆Vi(k +M − 1)]T, E(k) =[1, . . . , 1]T ∈ R
M ,

and

Ai(k) =

















φT
i (k) 0 · · · 0

φT
i (k) φT

i (k + 1) · · · 0

...
...

. . .
...

φT
i (k) φT

i (k + 1) · · · φT
i (k +M − 1)

















. (4)

Notably, the variation of the output of subsystem i can

be ascribed to the variation of ui(k) and the interconnected

influences from neighboring subsystems,

Ai(k)∆Vi(k) = Bi(k)∆Ui(k) + Ci(k)∆Zi(k), (5)

where

∆Ui(k) = [∆ui(k),∆ui(k + 1), . . . ,∆ui(k +M − 1)]T,

∆Zi(k) = [∆zi(k),∆zi(k + 1), . . . ,∆zi(k +M − 1)]T,

∆ui(k) = ui(k)− ui(k − 1),

∆zi(k) = zi(k)− zi(k − 1),

Bi(k) =
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,

Ci(k) =


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ϕT
i (k) 0 · · · 0

ϕT
i (k) ϕT
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As seen elsewhere (4), the system pseudogradients in

Ai(k) are unknown. The estimate of Ai(k) and the flow

chart of the DED-MFAPC scheme can be found in Ap-

pendixes C and D, respectively.

DED-MFAPC traffic light controller design. To avoid un-

even traffic flow distribution with severely congested roads

and to balance the traffic flow, a cost function for each sub-

system i to optimize is adopted as follows:

min
Ui(k)

Pi =
M
∑

j=1

‖y∗i (k + j)− yi(k + j)‖22

+

M−1
∑

j=0

ξλi

∥

∥∆u2
i (k + j)

∥

∥

2

2
, (6)

s.t. yi(k + 1) = yi(k) + φT
i (k)∆Vi(k), ∀i ∈ N, (7)

uim(k + j) ∈ [umin
im , umax

im ],m = 1, 2, j = 0, . . . ,M − 1, (8)

ui1(k + j) + ui2(k + j) + Li = T, j = 0, . . . ,M − 1, (9)

where y∗i (k+ j) denotes the expected vehicle density of sub-

system i at the prediction step j, which relies on the received

information from neighboring subsystems, Ui(k) = [uT
i (k),

uT
i (k + 1), . . . , uT

i (k +M − 1)]T, λi > 0 is a weighting con-

stant to punish the excessive changes of the green time, ξ

is a factor such that the two items in (6) are of the same

order of magnitude, Li is the yellow light time at subsystem

i, and we assume that all the intersections have the same

cycle time T . Note that ‖x‖2 is the 2-norm of a vector x.

Applying the optimization condition ∂Pi

∂Ui(k)
= 0, where

∂Pi

∂Ui(k)
represents the partial derivative of Pi with respect

to Ui(k),

∆Ui(k) =
[

BT
i (k)Bi(k) + ξλiI

]−1
BT

i (k)

× [y∗
i (k + 1)− E(k)yi(k)− Ci(k)∆Zi(k)] ,

where y∗
i (k + 1) =

[

y∗Ti (k + 1), . . . , y∗Ti (k +M)
]T

. Subse-

quently, the control input can be obtained,

ui(k) = ui(k − 1) + gT∆Ui(k), (10)

where g = [1, 0, . . . , 0]T. Considering the cycle time and the

minimum and maximum green time constraints on the con-

trol input, the following equation is needed to be calculated

alternately until constraints (8) and (9) are satisfied:

uim(k + j) =















umin
im , if uim(k + j) < umin

im ,

uim(k + j), if umin
im 6 ui(k + j) 6 umax

im ,

umax
im , if uim(k + j) > umax

im ,

uim(k + j) =
uim(k + j)

ui1(k + j) + ui2(k + j)
(T − Li), m = 1, 2.

Case study. A nine-intersection network is exploited for

illustration of the validity and superiority of the proposed

DED-MFAPC method in VISSIM. Appendix E presents the

details of the experiment results.

Conclusion. In this study, a novel data-driven approach,

DED-MFAPC, was proposed for traffic light control of multi-

intersection networks. In the future, the fuel economy and

emissions of vehicles and the case when the traffic lights and

vehicle dynamics are simultaneously optimized are worthy

of investigation. Another future direction would be calcu-

lating the offset of the signals and the cycle time by the

data-driven method.
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