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Appendix A Proof of Theorem 1

Proof. Let δxk(t) = xd(t) − xk(t) and δuk(t) = ud(t) − uk(t). From Assumption 2 and system (1), one can obtain

ek(t) = yd(t)− yk(t) = Cδxk(t) +Dδuk(t), δxk(t+ 1) = Aδxk(t) +Bδuk(t).

With Assumption 1, one obtains

δxk(t) = Aδxk(t− 1) +Bδuk(t− 1)

= A2δxk(t− 2) +ABδuk(t− 2) +Bδuk(t− 1)

= · · · · · ·

=

t−1∑
i=0

AiBδuk(t− 1− i), t > 1. (A1)

From ILC strategy (7) with K2 = O, one has

δuk+1(t) = ud(t)− uk(t) + uk(t)− uk+1(t)

= δuk(t)− [uk+1(t)− uk(t)]

= δuk(t)−K1[yd(t)− y̌k(t)]. (A2)

Linking with (6) and (A1), Eq. (A2) becomes

δuk+1(t) = δuk(t)−K1[yd(t)− (1− αk,t)yk(t)− αk,tβk,tξk(t)− αk,tyd(t)]

= δuk(t)−K1[(1− αk,t)ek(t)− αk,tβk,tξk(t)]

= δuk(t)−K1[(1− αk,t)(Cδxk(t) +Dδuk(t))− αk,tβk,tξk(t)]

= [I − (1− αk,t)K1D]δuk(t)− (1− αk,t)K1Cδxk(t) +K1αk,tβk,tξk(t)

= [I − (1− αk,t)K1D]δuk(t)− (1− αk,t)K1C

t−1∑
i=0

AiBδuk(t− 1− i) +K1αk,tβk,tξk(t).

(A3)

Taking norm on both sides of (A3), one has

∥δuk+1(t)∥ 6 ∥I − (1− αk,t)K1D∥∥δuk(t)∥+ (1− αk,t)

t−1∑
i=0

∥K1CA
iB∥∥δuk(t− 1− i)∥

+αk,tβk,t∥K1∥∥ξk(t)∥.

Further, it is not difficult to get

E(∥δuk+1(t)∥) 6 E(∥I − (1− αk,t)K1D∥)E(∥δuk(t)∥) + (1− ᾱ)

t−1∑
i=0

∥K1CA
iB∥E(∥δuk(t− 1− i)∥)

+ᾱβ̄∥K1∥E(∥ξk(t)∥). (A4)
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Since αk,t is Bernoulli stochastic variables, ∥I − (1 − αk,t)K1D∥ = 1 if αk,t = 1, ∥I − (1 − αk,t)K1D∥ = ∥I − K1D∥ if

αk,t = 0. Thus, E(∥I − (1 − αk,t)K1D∥) = ᾱ × 1 + (1 − ᾱ) × ∥I − K1D∥. Note ∥I − K1D∥ < 1, one knows E(∥I − (1 −
αk,t)K1D∥) := ψ < 1. Linking with ∥ξk(t)∥ 6 ξb, (A4) becomes

E(∥δuk+1(t)∥) 6 ψE(∥δuk(t)∥) + (1− ᾱ)

t−1∑
i=0

∥K1CA
iB∥E(∥δuk(t− 1− i)∥) + ᾱβ̄∥K1∥ξb. (A5)

According to (A5), one gets 
E(∥δuk+1(0)∥)
E(∥δuk+1(1)∥)

.

..

E(∥δuk+1(l)∥)


︸ ︷︷ ︸

Ek+1

≺ Ψ1


E(∥δuk(0)∥)
E(∥δuk(1)∥)

.

..

E(∥δuk(l)∥)


︸ ︷︷ ︸

Ek

+


ᾱβ̄∥K1∥ξb
ᾱβ̄∥K1∥ξb

.

..

ᾱβ̄∥K1∥ξb


︸ ︷︷ ︸

Mξ

, (A6)

where the matrix Ψ1 is

Ψ1 =


ψ 0 · · · 0

(1− ᾱ)∥K1CB∥ ψ · · · 0

..

.
..
.

. . .
..
.

(1− ᾱ)∥K1CAl−1B∥ (1− ᾱ)∥K1CAl−2B∥ · · · ψ

 . (A7)

From (A6), by using induction, one gets

Ek+1 ≺ Ψ1Ek +Mξ ≺ Ψ2
1Ek−1 + (Ψ1 + I)Mξ ≺ · · ·

≺ Ψk+1
1 E0 +

k∑
i=1

Ψi
1Mξ, (A8)

where Ψi
1 = Ψ1 × · · · ×Ψ1︸ ︷︷ ︸

i

. Due to ψ < 1, one knows ρ(Ψ1) < 1. This implies lim
k→∞

Ψk+1
1 E0 = 0, 0 represents the zero

vector. Meanwhile, the matrix series
∑k

i=1 Ψ
i
1 is absolute convergence according to the matrix theory. It means that∑∞

i=1 Ψ
i
1Mξ = Ψ̃1Mξ. Hence, lim

k→∞
Ek+1 ≺ Ψ̃1Mξ, i.e. ∀ t ∈ T , lim

k→∞
E(∥δuk(t)∥) 6 Mδu, Mδu is the maximum element

in vector Ψ̃1Mξ. For t ∈ T \ {0}, from (A1), one obtains

lim
k→∞

E(∥δxk(t)∥) 6 lim
k→∞

t−1∑
i=0

∥AiB∥E(∥δuk(t− 1− i)∥)

6
t−1∑
i=0

∥A∥i∥B∥Mδu 6 MA∥B∥Mδu

where MA =
1−∥A∥l
1−∥A∥ as ∥A∥ ̸= 1 or MA = l + 1 as ∥A∥ = 1. Therefore,

lim
k→∞

E(∥ek(t)∥) 6 ∥C∥ lim
k→∞

E(∥δxk(t)∥) + ∥D∥ lim
k→∞

E(∥δuk(t)∥)

6 (MA∥C∥∥B∥+ ∥D∥)Mδu. (A9)

Let σ = (MA∥C∥∥B∥+ ∥D∥)Mδu, according to Definition 1, the σ-secure is achieved.

Remark 1. Theorem 1 illustrates our ILC strategy can effectively achieve the system security. Compared with the lifting

technique in [1], the partial order relation approach is used in the theoretical analysis, which can reduce the conservatism of

convergence results. As a result, the convergence condition in Theorem 1 is simpler than that in [1]. Moreover, Theorem 1

is the same as the traditional result when αk,t = 0. That is, our strategy is an extension of the traditional lifting technique.

Appendix B Proof of Theorem 2

Proof. According to the fourth equality of (A3), one can derive

E(∥δuk+1(t)∥) 6 ψE(∥δuk(t)∥) + ϕk(t), (B1)

where ψ := E(∥I − (1 − αk,t)K1D∥) < 1 and ϕk(t) = (1 − ᾱ)∥K1C∥E(∥δxk(t)∥) + ᾱβ̄∥K1∥ξb. The induction method of

Theorem 1 in [2] is applied in the following.

Step 1. Let t = 0, we have E(∥δxk(t)∥) = 0 6 bx(0), bx(0) > 0 from Assumption 1, and ϕk(0) = ᾱβ̄∥K1∥ξb. According

to the Lemma 2 in [2], then sup
k∈Z+

E(∥δuk(0)∥) 6 bu(0), bu(0) > 0. The desired input ud(t) is bounded, then E(∥uk(0)∥) 6

E(∥δuk(0)∥) + E(∥ud(0)∥) is also bounded. As a result, sup
k∈Z+

E(∥uk(0)∥) 6 bu(0) + sup
k∈Z+

E(∥ud(0)∥) := Bu(0). Similarly, it

is not difficult to get E(∥xk(0)∥) 6 Bx(0).
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Step 2. For any t > 0, we assume that sup
k∈Z+

E(∥δxk(t)∥) 6 bx(t) and sup
k∈Z+

E(∥δuk(t)∥) 6 bu(t) for some bounds bx(t) > 0

and bu(t) > 0. Since E(∥uk(t)∥) 6 E(∥δuk(t)∥) + E(∥ud(t)∥), one obtains sup
k∈Z+

E(∥uk(t)∥) 6 bu(t) + sup
k∈Z+

E(∥ud(t)∥) :=

Bu(t). Further, one can get sup
k∈Z+

E(∥xk(t)∥) 6 Bx(t) according to system (1).

Next, we prove E(∥xk(t + 1)∥) 6 Bx(t + 1) and sup
k∈Z+

E(∥uk(t + 1)∥) 6 Bu(t + 1) for some bounds Bx(t + 1) > 0 and

Bu(t+ 1) > 0. From system (1) and Assumption 2, one derives that

E(∥δxk(t+ 1)∥) 6 ∥A∥E(∥δxk(t)∥) + ∥B∥E(∥δuk(t)∥)
6 ∥A∥bx(t) + ∥B∥bu(t)
:= bx(t+ 1), ∀ k ∈ Z+. (B2)

Combing (B1) with (B2), one has

E(∥δuk+1(t+ 1)∥) 6 ψE(∥δuk(t+ 1)∥) + (1− ᾱ)∥K1C∥E(∥δxk(t+ 1)∥) + ᾱβ̄∥K1∥ξb
6 ψE(∥δuk(t+ 1)∥) + ϕk(t+ 1), (B3)

where ϕk(t + 1) = (1 − ᾱ)∥K1C∥E(∥δxk(t + 1)∥) + ᾱβ̄∥K1∥ξb. According to the result of Lemma 2 in [2], one knows

sup
k∈Z+

E(∥δuk(t+ 1)∥) 6 bu(t+ 1). Then, one derives sup
k∈Z+

E(∥uk(t+ 1)∥) 6 bu(t+ 1) + sup
k∈Z+

E(∥ud(t+ 1)∥) := Bu(t+ 1),

and sup
k∈Z+

E(∥xk(t + 1)∥) 6 Bx(t + 1). By induction, one can conclude sup
k∈Z+

E(∥uk(t)∥) 6 Bu(t), ∀ t ∈ T \ {l} and

sup
k∈Z+

E(∥xk(t)∥) 6 Bx(t), ∀ t ∈ T for some bounded Bu(t) > 0 and Bx(t) > 0. Thus, one can see the result in Theorem 2

holds as Bu = max
t∈T −

Bu(t) and Bx = max
t∈T

Bx(t).

Furthermore, according to system (1) and the result in Theorem 2, one has

E(∥yk(t)∥) 6 ∥C∥E(∥xk(t)∥) + ∥D∥E(∥uk(t)∥)
6 ∥C∥Bx(t) + ∥D∥Bu(t)

6 ∥C∥Bx + ∥D∥Bu := By , (B4)

which means sup
k∈Z+,t∈T

E(∥yk(t)∥) 6 By . In addition, according to ek(t) = yd(t)− yk(t) = Cδxk(t) +Dδuk(t), one can get

sup
k∈Z+,t∈T

E(∥ek(t)∥) 6 Be. Thus, Theorem 2 is proved.

Remark 2. Compared with Theorem 1 in [2], Theorem 2 provides the boundedness results under the deception and

DoS attacks, which has a wilder application. Also, the convergence condition of Theorem 2 is easier to be satisfied than

condition (5) of Theorem 1 in [2].

Appendix C Proof of Theorem 3

Proof. From system (1), one has

ek+1(t) = yd(t)− yk+1(t)

= yd(t)− yk(t)− [yk+1(t)− yk(t)]

= ek(t)− C[xk+1(t)− xk(t)]. (C1)

Then, we tackle with ∆xk(t) := xk+1(t)− xk(t).

∆xk(t) = A[xk+1(t− 1)− xk(t− 1)] +BK2[yd(t)− yk(t) + yk(t)− y̌k(t)]

= A∆xk(t− 1) +BK2ek(t) +BK2[yk(t)− y̌k(t)]. (C2)

Substituting (C2) into (C1), one has

ek+1(t) = [I − CBK2]ek(t)− CA∆xk(t− 1)− CBK2[yk(t)− y̌k(t)]. (C3)

From (6), one knows yk(t)− y̌k(t) = −αk,tβk,tξk(t)− αk,tek(t). Then (C3) becomes

ek+1(t) = [I − (1− αk,t)CBK2]ek(t)− CA∆xk(t− 1) + αk,tβk,tCBK2ξk(t). (C4)

By using induction analysis, (C4) is rewritten as

ek+1(t) = [I − (1− αk,t)CBK2]ek(t)−
t−1∑
i=0

(1− αk,t−1−i)CA
i+1BK2ek(t− 1− i)

+
t∑

i=0

αk,t−iβk,t−iCA
iBK2ξk(t− i). (C5)

On both sides of (C5), one can get

E(∥ek+1(t)∥) 6 E(∥I − (1− αk,t)CBK2∥)E(∥ek(t)∥)
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+

t−1∑
i=0

(1− ᾱ)∥CAi+1BK2∥E(∥ek(t− 1− i)∥) +
t∑

i=0

ᾱβ̄∥CAiBK2∥ξb. (C6)

Similarly, since αk,t is Bernoulli stochastic variables, one has E(∥I − (1−αk,t)CBK2∥) := ϕ < 1 if ∥I −CBK2∥ < 1. From

(C6), one can get 
E(∥ek+1(0)∥)
E(∥ek+1(1)∥)

..

.

E(∥ek+1(l)∥)


︸ ︷︷ ︸

E′
k+1

≺ Ψ2


E(∥ek(0)∥)
E(∥ek(1)∥)

..

.

E(∥ek(l)∥)


︸ ︷︷ ︸

E′
k

+


ᾱβ̄∥CBK2∥ξb

ᾱβ̄
∑1

i=0 ∥CAiBK2∥ξb
..
.

ᾱβ̄
∑l

i=0 ∥CAiBK2∥ξb


︸ ︷︷ ︸

M′
ξ

, (C7)

where the matrix Ψ2 is

Ψ2 =


ϕ 0 · · · 0

(1− ᾱ)∥CABK2∥ ϕ · · · 0

.

..
.
..

. . .
.
..

(1− ᾱ)∥CAlBK2∥ (1− ᾱ)∥CAl−1BK2∥ · · · ϕ

 . (C8)

The remainder of the proof is omitted because it is the same as Theorem 1. Analogously, one knows that the σ-secure can

be achieved according to Definition 1.

Appendix D Proof of Theorem 4

Proof. From system (1) and ILC (7) with K1 = O, one has

uk+1(t) = uk(t) +K2[yd(t+ 1)− y̌k(t+ 1)]

= uk(t) +K2[(1− αk,t+1)yd(t+ 1)− (1− αk,t+1)Cxk(t+ 1)− αk,t+1βk,t+1ξk(t+ 1)]

= uk(t) +K2[(1− αk,t+1)yd(t+ 1)− αk,t+1βk,t+1ξk(t+ 1)]

−(1− αk,t+1)K2C[Axk(t) +Buk(t)]

= [I − (1− αk,t+1)K2CB]uk(t) + φk(t), (D1)

where φk(t) = K2[(1− αk,t+1)yd(t+ 1)− αk,t+1βk,t+1ξk(t+ 1)− (1− αk,t+1)CAxk(t)].

According to Eq. (D1), it is easy to get

E(∥uk+1(t)∥) 6 E(∥I − (1− αk,t+1)K2CB∥)E(∥uk(t)∥) + E(∥φk(t)∥), (D2)

and E(∥φk(t)∥) 6 ∥K2∥[(1− ᾱ)∥yd(t+1)∥+ ᾱβ̄ξb+(1− ᾱ)∥CA∥E(∥xk(t)∥)]. One can derive E(∥I−(1−αk,t+1)K2CB∥) < 1

if ∥I−K2CB∥ < 1. Next, the boundedness in the sense of expectation needs to be clarified. The rest of the proof is omitted

here since the results can be obtained by using the similar proof of Theorem 1 in [2].

Remark 3. Compared with [3], our strategies provide a more reasonable method to analyze the system security. And our

obtained conditions are simpler and easier to be checked. Compared with [4], the deception and DoS attacks are considered

simultaneously, which is more general in the real application.

Appendix E Illustrative example

To illustrate the validity of our results, a numerical example is presented in the following. Consider system (1) with

the single-input and single-output, and define A =

[
1 0.4

−0.4 0.8

]
, B =

[
−0.5

1

]
, C =

[
0.5 0.5

]
. Let t ∈ T = [0, l], l = 10,

xk+1(0) = xk(0) =

[
1

−1

]
. In addition, ᾱ = 0.5 and β̄ = 0.3 denote respectively the success probabilities of the attacks. And

let ξb be the boundary of ξk(t), i.e., ∥ξk(t)∥ 6 ξb = 1. Further, set the desired trajectory of output as yd(t) = 2 sin(0.2πt).

Case 1. The deception and DoS attacks occur randomly.

i) System (1) with D = 0.5. In strategy (7), define K1 = 0.5 and K2 = 0. Set the initial input u0(t) = 0. With a simple

calculation, one knows that ∥I −DK1∥ = 0.75 < 1, then the conditions of Theorems 1 and 2 hold.

ii) System (1) with D = 0. In strategy (7), define K1 = 0 and K2 = 0.5. Set the initial input u0(t) = 0. With a simple

calculation, one knows the ∥I − CBK1∥ = ∥I −K1CB∥ = 0.875 < 1, then the conditions of Theorems 3 and 4 hold.

The tracking trajectories and errors of Case 1 are shown in Figs. E1 and E2. Fig. E1 shows the tracking trajectories at

the 100th iteration. Fig. E2 shows the tracking error from the first iteration to the 150th iteration. According to Figs. E1

and E2, one knows the result of our algorithm can be satisfied since the chattering of the tracking error is small. Further,

from Fig. E2, one can see that the purple line has the smallest fluctuation. That is, the convergence effect of Theorem 1

in this paper is the best than those in Theorem 3 and Theorem 2 of [1]. The possible reason is that the control term in
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Figure E6 The situation of βk,t = 1 in each iteration.

the observer is used to reduce the impact of cyber-attacks. From Figs. E3 and E4, one knows all variables’ trajectories are

bounded. Furthermore, Figs. E5 and E6 show the attack profile of αk,t and βk,t.

Case 2. The deception or DoS attacks occur individually.

i) Only DoS attack exists, i.e. βk,t ≡ 0 or ξk(t) ≡ 0. Figs. E7 and E8 show the tracking trajectories and errors in this

situation. One knows that the tracking error ek can asymptotically tend to zero. Compared with the ILC algorithm (4)

of [1], ILC strategy in Theorem 1 has the smaller transient tracking error. Moreover, the ILC algorithm in Theorem 1 has

the faster convergence speed than that in Theorem 3. The reason is that those control terms in the observer can help to

resist the impact of the DoS attack.

ii) Only deception attack exists, i.e. βk,t ≡ 1. Figs. E9 and E10 show the tracking trajectories and errors in this

situation. According to these figures, one has that the chattering range of the tracking error trajectories is bigger than case

1. It demonstrates that a deception attack has a worse negative impact on the system security. From Fig. E10, one can
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Figure E8 The tracking error under the DoS attack.

0 2 4 6 8 10

time(s)

-5

0

5

va
lu

e

The output y
k
(t) at 100th iteration

yk(t) of Theorem 1

yk(t) of Theorem 3

yk(t) of (4) in [1]

yd(t)

Figure E9 The tracking trajectories under the deception

attack.
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Figure E10 The tracking error under the deception at-

tack.

also see that ILC algorithm in Theorem 1 has a good tracking result.

According to the above analysis, one knows that the ILC strategy in this paper can effectively achieve the σ-security. And

our algorithm can guarantee the boundedness of the trajectory of each variable of systems. Malicious attacks, especially

deception attacks, can make the tracking error fluctuate greatly. The control term in the observer can help to reduce the

impact of cyber-attacks. Additionally, the convergence conditions in this paper are simpler than those in some previous

literature. According to the above figures, one can see that the deception attack is the primary factor to affect the system

security. As a result, one has to pay attention on deception attacks in the real application.

References

1 Liu J, Ruan X E. Networked iterative learning control design for nonlinear systems with stochastic output packet

dropouts. Asian J. Control, 2018, 20: 1077-1087

2 Meng D Y, Moore K L. Robust iterative learning control for nonrepetitive uncertain systems. IEEE Trans Auto Contr,

2017, 62: 907-913

3 Zhao D, Wang Z D, Ho D W C, et al. Observer-based PID security control for discrete time-delay systems under

cyber-attacks. IEEE Trans Syst Man Cybern Syst, 2021, 51: 3926-3938

4 Xiong W J, Gong K, Wen G H, et al. Security analysis of discrete nonlinear systems with injection attacks under

iterative learning schemes. IEEE Trans Syst Man Cybern Syst, 2022, 52: 927-935


