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Abstract This paper addresses a distributed dynamic state estimation problem in large-scale systems

characterized by a cyclic network graph. The objective is to develop a distributed estimation algorithm for

each node to generate local state estimations, based on the coupled measurements and boundary information

exchanged with neighboring nodes. Our proposed approach is grounded in the maximum a posteriori (MAP)

estimation method, which yields suboptimal results in acyclic network graphs compared with the centralized

MAP approach. We extend this approach to systems with a cyclic network graph. Furthermore, we provide

an accuracy analysis by deriving bounds for the differences in estimation error covariance and state estimation

between the proposed distributed algorithm and the suboptimal centralized MAP method. These bounds

apply to a specific category of systems that satisfy certain conditions, including cyclic topology and sparse

connections. We demonstrate that these bounds converge asymptotically, with the rate of convergence

determined by the loop-free depth of the graph. The loop-free depth of the graph refers to the maximum

number of nodes that can be traversed in a cycle without revisiting any node. Finally, we demonstrate the

validity of the algorithm through numerical examples.
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1 Introduction

Lately, there has been a growing fascination with large-scale systems, especially the networked systems
comprising multiple sensors. This interest stems from their potential applications in diverse domains, in-
cluding environmental monitoring, healthcare, and collaborative information processing [1–4]. Large-scale
systems are susceptible to various uncertainties, such as measurement and communication uncertainties,
which can adversely affect their stability and control efficiency. State estimation approaches can deal with
multiple uncertainties in large-scale systems. State estimation algorithms are employed to obtain system
estimations from noisy measurements that are not directly monitored due to various factors. Therefore,
state estimation algorithms have gained the attention of researchers in multiple fields [5–8].

State estimation algorithms for large-scale systems can be classified into three main types: centralized,
hierarchical, and distributed algorithms. The traditional centralized state estimation algorithm relies on a
fusion center and experiences computational and communication burdens that scale with the system’s size,
making it unsuitable for large-scale systems. In hierarchical state estimation, information is sequentially
processed from lower to higher levels, with the top-level nodes integrating fusion information from the
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lower-level nodes. This approach requires a centralized coordinator to obtain global estimation, leading to
high communication burdens. Furthermore, due to the characteristics of information fusion, centralized
and hierarchical estimation methods can encounter communication bottlenecks and reliability issues.
Consequently, distributed estimation algorithms that impose minimal computational and communication
burdens are urgently required [9–12].

The existing distributed state estimation methods can be categorized into two types: static and dy-
namic. A quasi-static system refers to a system where the state changes smoothly over time with minor
changes. Many studies have been conducted on the estimation problem for quasi-static systems [13–15].
Xie et al. [13] introduced a distributed state estimation algorithm where the local state estimation con-
verges asymptotically to the global state estimation. To improve the convergence speed, Pasqualetti
et al. [14] presented a distributed static estimation algorithm employing kernel projection, where each
node obtains a global state estimate in finite time. Tai et al. [15] introduced a distributed weighted
least-squares approach with the property that only a low communication load is required.

However, static estimation is insufficient to capture dynamic changes in a system, leading to the de-
velopment of distributed dynamic estimation algorithms. One commonly used approach for dynamic
estimation approaches is the average consensus strategy [16–18]. Despite its simplicity, this approach
has several drawbacks. Firstly, achieving asymptotic convergence with average consensus requires infinite
iterations. Secondly, it is challenging to determine a practical stopping criterion. Thirdly, the approach
usually provides suboptimal estimations. Another limitation of existing distributed state estimation algo-
rithms is their reliance on a fusion center, making them not fully distributed [19,20]. Furthermore, these
algorithms do not consider the effect of communication topology on state estimation [20, 21]. Hence, a
requirement exists for a completely distributed state estimation algorithm that offers favorable optimality
characteristics while maintaining low computational, communication, and storage complexities.

This study addresses the distributed dynamic state estimation problem in large-scale systems with
cyclic network graphs while considering finite-time convergence, which is crucial for such systems. Specif-
ically, we examine the fully distributed algorithm proposed in [22], which only requires local computation
and communication. Moreover, this algorithm ensures convergence in a finite number of steps for commu-
nication networks consisting of acyclic graphs. However, the algorithm cannot generate optimal results
for cyclic network graphs, even though it often converges quickly and provides satisfactory solutions.
Based on these observations, we investigate the accuracy of the estimation provided by [22] in large-scale
systems with cyclic network graphs. The main contributions of this study are outlined as follows.

(1) This study provides the accuracy analysis for distributed dynamic state estimation algorithm, where
the system satisfies certain conditions, including cyclic topology and sparse connections. The research
shows that the distributed dynamic estimator achieves high accuracy and convergence.

(2) We demonstrate that the result of the distributed dynamic estimator asymptotically converges to
that of the suboptimal centralized MAP method, which is a widely used method for estimating the system
state. Furthermore, the convergence rate of the distributed algorithm is dependent on the loop-free depth.

The paper is structured as follows: Section 2 introduces the problem formulation. Section 3 explores
the transformation of a given graph into other types, and Section 4 presents the preliminaries. The
accuracy analysis for the estimation error covariance is presented in Section 5. Section 6 focuses on
accuracy analysis for the state estimation. In Section 7, numerical examples are provided to illustrate
the efficacy of the proposed method. Finally, Section 8 concludes the paper.

Notations. Rn is n-dimensional Euclidean space. N refers to the set of natural numbers. N de-
notes the Gaussian distribution. E(·) denotes the expectation of random variables. Let ||x|| denote
the Euclidean norm for a matrix or vector x. The transpose operation is represented by xT or x′.
diag(x1, . . . , xm) denotes a diagonal matrix with the elements on its diagonal. Let Sn+ denote the set of
n by n positive definite matrices, and when x ∈ Sn+, we have x > 0. Let dim x denote the dimension of
the vector x. Let σi(x) denote the ith singular value of the matrix X , and σmin(x) denote the smallest
singular value of the matrix x.

2 Problem formulation

The state-space model of a system with I nodes is represented by

xik+1 = Aix
i
k + ωik, (1)
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where xik ∈ Rni denotes the state of node i at time k, i ∈ 1, 2, . . . , I. Here, Ai is a known time-invariant
real matrix, and ωik represents the process noise with covariance Fi > 0. The initial state xi0 is a zero-mean
Gaussian random vector.

Node i can perform self-measurements and joint measurements with neighboring nodes. The self-
measurement of node i is given by

zik = Cix
i
k + vik, (2)

where zik is the self-measurement of node i, and vik is the measurement noise with covariance Ri > 0.
The matrix Ci is a known time-invariant real matrix.

Joint measurements between nodes i and j are expressed as

zi,jk = Bi,jx
i
k +Bj,ix

j
k + vi,jk , (3)

where zi,jk is the joint measurement between nodes i and j, and vi,jk is the measurement noise with
covariance Ri,j > 0. The matrices Bi,j and Bj,i are both known time-invariant real matrices. We assume
that the pair (i, j) is unordered, implying that zi,j = zj,i and vi,j = vj,i. Therefore, the communication

graph composed of nodes is undirected. The notation zi,jk indicates that node i can communicate with
node j, and j ∈ Ni represents node j as a neighbor of node i. Additionally, we assume that the noise
terms ωik, v

i
k, v

i,j
k , and xi0 are uncorrelated.

By individually combining the state and measurement vectors of all subsystems, the following outcome
is obtained:

xk = [(x1k)
T, (x2k)

T, . . . , (xIk)
T]T, zk = [. . . , (zik)

T, . . . , (zi,jk )T, . . .]T.

Thus, the state and measurement equations for the entire system are represented as

xk+1 = Axk + ωk, (4)

zk = Hxk + vk, (5)

where A = diag{A1, . . . , AI}. The mean value of the initial state is x0 = [(x̄10)
T, (x̄20)

T, . . . , (x̄I0)
T]T with

the variance Σ0 = diag{Σ1
0, . . . ,Σ

I
0}.

H =



















· · ·
· · · 0 Ci 0 · · ·

· · ·
· · · 0 Bi,j 0 Bj,i 0 · · ·

· · ·



















is composed of the corresponding measurement matrix of each subsystem. 0 represents a zero matrix with
proper dimensions. The covariance of ωk = [(ω1

k)
T, . . . , (ωIk)

T]T and vk = [. . . , (vik)
T, . . . , (vi,jk )T, . . .]T is

F = cov(ωk) = diag{F1, . . . , FI} and R = cov(vk) = diag{. . . , Ri, . . . , Ri,j}, respectively.
This section explains the combination of state and measurement vectors from individual subsystems

to represent the entire system. Eqs. (4) and (5) provide the state and measurement equations for the
complete system, with the matrix A being a diagonal matrix composed of the individual subsystem
matrices A1, . . . , AI . Let x0 ∼ N (x0,Σ0) denote the initial state of the system.

This study presents definitions for expressing state estimations and the estimation error covariance of
a system. Specifically, we define the predicted estimation of xk as x̂k|k−1, along with the corresponding
estimation error covariance Σk|k−1. Furthermore, we define x̂k|k as the posterior estimation of xk, along
with the corresponding estimation error covariance Σk|k. These values are provided below:

x̂k|k , E[xk|Zk], Σk|k , E[(xk − x̂k|k)(xk − x̂k|k)
T|Zk],

x̂k|k−1 , E[xk|Zk−1], Σk|k−1 , E[(xk − x̂k|k−1)(xk − x̂k|k−1)
T|Zk−1],

where Zk = {z0, z1, . . . , zk}.
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Algorithm 1 Distributed dynamic state estimation algorithm

(1) Initialization: For each node i ∈ 1, 2, . . . , I, k = 0,

x̂i
0|0 = x̄(0),Σi

0|0 = Σ(0); (6)

(2) Main iteration: At time k = 1, 2, . . . , do

(2.1) Prediction:

x̂i
k|k−1 = Aix̂

i
k−1|k−1, (7)

Σi
k|k−1 = AiΣ

i
k−1|k−1A

T

i + Fi; (8)

(2.2) Data fusion: At iteration n = 1, 2, . . ., for each node i,

(a) Local estimation:

ᾰi
k(0) = CT

i R
−1

i Zi
k + (Σi

k|k−1)
−1x̂i

k|k−1, (9)

Q̆i
k(0) = CT

i R
−1

i Ci + (Σi
k|k−1)

−1, (10)

αj→i
k (0) = 0, Qj→i

k (0) = 0; (11)

(b) Each node i calculates:
αi

k(n) = ᾰi
k(0) +

∑

j∈Ni

αj→i
k (n− 1), (12)

Qi
k(n) = Q̆i

k(0) +
∑

j∈Ni

Qj→i
k (n− 1), (13)

and x̂i
k|k(n) = Q−i

k (n)αi
k(n), Σi

k|k(n) = Q−i
k (n); (14)

(c) Information transmission to neighbor nodes j ∈ Ni:

αi→j
k (n) = BT

j,i(S
i→j
k (n))−1yi→j

k (n), (15)

Qi→j
k (n) = BT

j,i(S
i→j
k (n))−1Bj,i, (16)

yi→j
k (n) = zi.jk − Bi,j(Q

i
k(n) −Qj→i

k (n− 1))−1(αi
k(n) − αi→j

k (n− 1)), (17)

Si→j
k (n) = Ri,j +Bi,j(Q

i
k(n) −Qj→i

k (n− 1))−1BT

i,j . (18)

We aim to design a distributed dynamic state estimation algorithm that enables each subsystem to
estimate its local state. In an acyclic network graph, the distributed maximum a posteriori (MAP)
estimation algorithm, as introduced in [22], can minimize the following objective function:

J1(xk) = (zk −Hxk)
TR−1(zk −Hxk) + (xk − x̂k|k−1)

TΣ̆−1
k|k−1(xk − x̂k|k−1), (19)

where Σ̆k|k−1 = diag{Σ1
k|k−1, . . . ,Σ

I
k|k−1}. Σik|k−1 denotes the estimation error covariance for subsystem

i, corresponding to state estimation x̂ik|k−1. According to [22], the result of this distributed approach

converges to the estimation as x̂Sk|k = argminxk
J1(xk). The modification of the objective function

concerning the optimal case, where the error covariance is non-diagonal, results in suboptimal local state
estimations for each node. Nevertheless, as reported by [23], this suboptimal solution remains close to
the optimal solution.

We apply the distributed MAP approach proposed in [22] to the system with cyclic network graphs, and
summarize the method in Algorithm 1. In this algorithm, each node calculates the local state estimation
x̂ik|k(N) and the corresponding error covariance Σik|k(N) utilizing the local information vector αik(N) and

information matrix Qik(N) at time k and step N . Next, node i constructs the information vector αi→j
k (N)

and the information matrix Qi→j
k (N), which are transmitted to neighbor j in the current iteration. At

the same time, node i removes αj→i
k (N − 1) and Qj→i

k (N − 1) obtained from neighbor j in the previous
iteration. In Algorithm 1, each node computes the local state estimation via its local measurements and
the messages conveyed by neighbors.

In this study, we establish the following assumptions.

Assumption 1. The communication network among the nodes constitutes a cyclic graph defined by G.
Assumption 2. H is of full column rank.

Assumption 3. For each i = 1, 2, . . . , I, CT
i R

−1
i Ci > 0.

It is important to note that communication networks between nodes often exhibit looped graph struc-
tures [24, 25]. Assumption 2 assumes that measurements in the system are collectively available, which
is generally valid and ensures the nonsingularity of H ′R−1H [23]. Furthermore, Assumption 3, along
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with Σ(0) > 0, guarantees the invertibility of Qik(N) − Qj→i
k (N − 1). When N = 1, it is evident that

Qik(1)−Qj→i
k (0) = CT

i R
−1
i Ci+Σ(0). If this condition is not satisfied, Algorithm 1 cannot yield accurate

results.

Ref. [22] has shown that Algorithm 1 converges to local estimations in finite time, assuming the network
topology is acyclic. However, a significant challenge arises when Algorithm 1 is applied to cyclic graphs.
This study intends to analyze the accuracy of Algorithm 1 when the communication topology is cyclic, i.e.,
to quantify the mismatch of the estimation error covariance and state estimate between Algorithm 1 and
suboptimal centralized MAP algorithms, respectively. In the forthcoming sections, without compromising
generalizability, our analysis focuses on evaluating the accuracy of an arbitrary node, indicated by the
label “node 1”. The results of the accuracy analysis can be extended from node 1 to other nodes.

3 Representation of graphs

The communication network in this study is a cyclic graph G. Due to the difficulty of directly analyzing
a cyclic graph, we demonstrate converting the cyclic graph G into an acyclic graph in Subsection 3.1.
We show the equivalence of two graphs using Algorithm 1; i.e., Algorithm 1 yields the same result for
node 1 in both graphs. Subsequently, in Subsection 3.2, we convert this acyclic graph into an equivalent
line graph whose communication topology can be characterized by a single line.

3.1 Representation of the acyclic graph

This subsection presents the process for converting a cyclic graph G to an acyclic graph.

The acyclic graph is obtained by converting the cyclic graph G into a root-tree graph, as illustrated
in [26–28]. Since the accuracy for node 1 is investigated, we label any node i in the acyclic graph as
node 1 and select it as the root node. The acyclic graph has the property that when Algorithm 1 is
executed in the initial cyclic graph G and the transformed acyclic graph, it produces the same result at
node 1. For nodes in the cyclic graph G, let G(j) denote the node associated with node j in the acyclic
graph. Graph A is the limit of the following iterative process. A0 is defined as the empty graph. A1 is
defined as the graph of a single node, and this node is associated with node 1 in graph G. After N > 2,
the following iterations are performed.

(1) Seek out all the leaf nodes j in the root-tree graph AN−1.

(2) For each leaf node j in AN−1, seek out all neighbors nodes of G(j) in G, not including the parent
node in the AN−1, and add these nodes as the children to this leaf node.

The summary of the leaf node, parent node, and child node can be found in [29]. Graph AN represents
N iterations of the above procedure. The states and observations for each node in the root-tree graph
AN are replicated from the corresponding nodes in the cyclic graph G. To illustrate this equivalent
conversion, we give an example, as shown in Figure 1. Notice that 1′, 1′′, 1′′′, 1‘, 1“, 1“‘ all carry the same
values.

In the sequel, we associate (1)–(3) of the system with the acyclic graph AN ,

x̄ik+1 = Āix̄
i
k + ω̄ik, (20)

z̄ik = C̄ix̄
i
k + v̄ik, (21)

z̄i,jk = B̄i,j x̄
i
k + B̄j,ix̄

j
k + v̄i,jk , (22)

for all i ∈ AN and j ∈ di (di denotes the child nodes of node i), v̄ik ∼ N (0, R̄i), v̄
i,j
k ∼ N (0, R̄i,j). By

substituting (1)–(3) in the cyclic graph G, we get the values of the associated nodes in the acyclic graph
AN , as follows:

x̄ik = x
G(i)
k , ω̄ik = ω

G(i)
k , Āi = AG(i), F̄i = FG(i), v̄

i
k = v

G(i)
k , C̄i = CG(i), Σ̄

i
k|k−1 = Σ

G(i)
k|k−1,

R̄i = RG(i), z̄
i,j
k = z

G(i),G(j)
k , v̄i,jk = v

G(i),G(j)
k , B̄i,j = BG(i),G(j), R̄i,j = RG(i),G(j), z̄

i
k = z

G(i)
k .

Remark 1. G and AN are equivalent graphs in terms of Algorithm 1; i.e., Algorithm 1 yields the same
result at node 1 in both graphs.
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Figure 1 (a) The cyclic graph and (b) the acyclic graph with

seven layers (N = 7).

Figure 2 (a) The acyclic graph and (b) the line graph.

3.2 Representation of the line graph

The previous subsection shows that AN is an acyclic graph with N layers, and its root node is 1.
This subsection presents the equivalent conversion of AN to the line graph LN from the perspective
of Algorithm 1, wherein both graphs produce identical results at node 1. The construction of LN is a
straightforward process. For all n = 1, 2, . . . , N , the nodes in AN that are located at a distance of n− 1
steps from node 1 are grouped into a single node defined as τn. To clarify this transformation, we provide
an example illustrated in Figure 2. Note that the nodes enclosed in the dashed box are merged into a
single large node.

Then the key is to associate (20)–(22) of the system with the line graph LN , which we explain in detail
subsequently. Define the size of any finite set τ as |τ | whose elements are τ(1), τ(2), . . . , τ(|τ |). For n ∈ N,
the state of τn at time k is provided by

x̃nk = [(x̄
τn(1)
k )T, (x̄

τn(2)
k )T, . . . , (x̄

τn(|τn|)
k )T]T. (23)

Also, the equations of τn are presented by

x̃nk+1 = Ãnx̃
n
k + ω̃nk , (24)

z̃nk = C̃nx̃
n
k + ṽnk , (25)

z̃n,n+1
k = B̃n,n+1x̃

n
k + B̃n+1,nx̃

n+1
k + ṽn,n+1

k . (26)

That is, z̃nk is composed of the measurements z̄ik in the acyclic graph, with i ∈ τn. The elements of z̃n,n+1
k

are obtained by aggregating the measurements z̄i,jk corresponding to nodes i ∈ τn and j ∈ τn+1 in the

acyclic graph. Notice that ṽnk ∼ N(0, R̃n) and ṽn,n+1
k ∼ N(0, R̃n,n+1). The parameters C̃n, R̃n, B̃n,n+1

and R̃n,n+1 are all associated with C̄i, R̄i, B̄i,j and R̄i,j . Then, we have

Ãn = diag{Āτn(1), Āτn(2), . . . , Āτn(|τn|)}, F̃n = diag{F̄τn(1), F̄τn(1), . . . , F̄τn(|τn|)},
z̃nk = [(z̄

τn(1)
k )T, (z̄

τn(2)
k )T, . . . , (z̄

τn(|τn|)
k )T]T, C̃n = diag{C̄τn(1), C̄τn(2), . . . , C̄τn(|τn|)},

R̃n = diag{R̄τn(1), R̄τn(2), . . . , R̄τn(|τn|)}, Σ̃nk|k−1 = diag{Σ̄τn(1)k|k−1, Σ̄
τn(2)
k|k−1, . . . , Σ̄

τn(|τn|)
k|k−1 }.

In addition, we get

z̃n,n+1
k = [(z̀

τn(1)
k )T, (z̀

τn(2)
k )T, . . . , (z̀

τn(|τn|)
k )T]T, B̃n,n+1 = diag{B̀τn(1), B̀τn(2), . . . , B̀τn(|τn|)},

B̃n+1,n = diag{B́τn(1), B́τn(2), . . . , B́τn(|τn|)}, R̃n,n+1 = diag{R̀τn(1), R̀τn(2), . . . , R̀τn(|τn|)},
with

z̀ik = [(z̄
i,di(1)
k )T, (z̄

i,di(2)
k )T, . . . , (z̄

i,di(|di|)
k )T]T, B̀i = [B̄T

i,di(1)
, B̄T

i,di(2)
, . . . , B̄T

i,di(|di|)]
T,

B́i = diag{B̄T
di(1),1

, B̄T
di(1),2

, . . . , B̄T
di(|di|),i}, R̀i = diag{R̄i,di(1), R̄i,di(2), . . . , R̄i,di(|di|)}.

Remark 2. Notably, Algorithm 1 is applicable to both graphs and produces the same results at node 1.
Thus, the dynamic estimation problem at node 1 in the cyclic graph, addressed by Algorithm 1, can be
simplified to the estimation problem in the linear graph.
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4 Preliminaries

In this section, we present the concept of Riemann distance for positive definite matrices. In addition,
we provide several related properties of this metric.

Definition 1 ([30]). The Riemann distance between two n× n positive definite matrices B and D can
be represented as

δ(B,D) =

√

√

√

√

n
∑

i=1

log2σi(BD−1),

where σ1(BD
−1) > · · · > σn(BD

−1).

In [24], several properties of the Riemann distance for positive definite matrices are presented.

Proposition 1 ([24]). For any two n× n matrices B > 0 and D > 0, it follows that
(1) δ(B−1, D−1) = δ(D,B) = δ(B,D).
(2) δ(FBFT, FDFT) 6 δ(B,D) if F is a matrix with full row rank. Moreover, if F is invertible, the

equality holds.
(3) If B > D and E > 0, then δ(B + E,D) > δ(B,D).
(4) For any positive matrix E ∈ Rm×m, and matrix F ∈ Rm×n, we obtain

δ(E + FB−1FT, E + FD−1FT) 6
α

α+ β
δ(B,D),

where α = max{||FB−1FT||, ||FD−1FT||} and β = σmin(E).
(5) ||B −D|| 6 (eδ(B,D) − 1)min{||B||, ||D||}.
Here, we present the notations necessary for this study.

Notation 1. In the given graph C, we define the information vector αik(C), information matrix Qik(C),
and state estimation x̂ik(C) for node i at time k, which are obtained by executing Algorithm 1 on C.
Notation 2. Let {Ok = Qj→i

k (0) : i = 1, . . . , I, j ∈ Ni} denote the information received by neighbor
node j, for each i at time k and step 0. In the cyclic network graph G, we execute Algorithm 1 and obtain
the state estimation and information matrix for node 1 at time k and step N , denoted by x̂1k(N,Ok) and
Q1
k(N,Ok), respectively.

Notation 3. In a graph, a path is a sequence of edges that connect two vertices, where each edge
connects two adjacent vertices in the sequence. The length of a path is the number of edges in the
sequence. A circle is a path that starts and ends at the same vertex. The distance between two vertices
is the length of the shortest path connecting them. We define S1(f1) as the subgraph of G consisting of
nodes that are at most a distance of f1 away from node 1. The loop-free depth f1 is the largest value
such that the subgraph S1(f1) is acyclic, meaning that there are no cycles in the subgraph.

Notation 4. ē
∆
= maxi |Ni| − 1, n̄

∆
= maxi dimxi, m̄

∆
= max{maxi dim zik,maxi,j dim zi,jk }.

5 Accuracy analysis for the estimation error covariance

This section is dedicated to accuracy analysis for the estimation error covariance at node 1. Our primary
contribution is outlined in Subsection 5.1, where we present the findings concerning the accuracy of the
estimation error covariance. Subsequently, we provide the proof for this result in Subsection 5.2.

5.1 Main outcome

Theorem 1. Let CovM1 (k) be the error covariance acquired by node 1 at time k using the suboptimal
centralized MAP method on G. If ϕ < 1, it can be established that a constant θ̄ exists, which depends
on various parameters including ē, n̄, Ci, Bi,j , Ri, and Ri,j . Then for any N > f1 + 1,

||CovM1 (k)− (Q1
k(N))−1|| 6 θ̄ϕf1 , (27)

with

ϕ = λ
√
ē, λ =

µ1

µ1 + υ1

µ2

µ2 + υ2
, µ1 = ēmax

i,j
||BT

i,jR
−1
i,jBi,j ||,
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υ1 = max
i
σmin(C

T
i R

−1
i Ci), µ2 = max

i,j
||Bi,j(CT

i R
−1
i Ci)B

T
i,j ||, υ2 = max

i,j
σmin(Ri,j).

Remark 3. If ϕ < 1, the error covariance acquired by node 1 using Algorithm 1 converges exponentially
to that obtained by the suboptimal centralized MAP method. The loop-free depth f1 of node 1 determines
the convergence rate.

Remark 4. Since ϕ = λ
√
ē, the result is applicable to a category of graphs characterized by sparse con-

nections (small ē) and the small signal-to-noise ratio of both local measurements and joint measurements
(small λ).

5.2 Proof of Theorem 1

The equivalence between Q1
k(N), Q1

k(AN ), and Q1
k(LN ) can be established through the conversions of

the graph detailed in Section 3. To prove Theorem 1, it is essential to obtain the following lemmas.

Lemma 1. For any N ∈ N, let O1
k and O2

k be the sets of initial values of Qj→i
k (0) that satisfy the

condition 0 6 Qj→i
k (0) 6 BT

i,jR
−1
i,j Bi,j for all Q

j→i
k (0) ∈ Oak and a ∈ 1, 2, i.e., the message sent from node

j to i at time k as an initial transmission. Then, it holds that

δ(Q1
k(N,O

1
k)−Q1

k(N,O
2
k)) 6 ζ̄ϕN−1, (28)

where ζ̄ =
√

n̄(ē+ 1)maxi log ||I + (
∑

j∈Ni
BT
i,jR

−1
i,j Bi,j)(C

T
i R

−1
i Ci)

−1||.
Proof. See Appendix A.

Notation 5. Let Omax
k = {Qj→i

k (0) = BT
i,jR

−1
i,j Bi,j : i = 1, . . . , I and j ∈ Ni}, Omin

k = {Qj→i
k (0) = 0 :

i = 1, . . . , I and j ∈ Ni}.
Similar to Lemma 16 in [24], we present the following result.

Lemma 2 ([24]). For any N > f1 + 1 (f1 is defined in Notation 3), we have

||CovM1 (k)− (Q1
k(N))−1|| 6 ||(Q1

k(f1 + 1, Omax
k ))−1 − (Q1

k(f1 + 1, Omin
k ))−1||.

The proof of Theorem 1 relies on Lemmas 1 and 2. These lemmas facilitate the derivation of an upper
bound on the difference between CovM1 (k) and (Q1

k(N))−1.
Proof of Theorem 1. By satisfying the condition of Lemma 2 with Omax

k and Omin
k , we obtain

||CovM1 (k)− (Q1
k(N))−1|| 6 ||(Q1

k(f1 + 1, Omax
k ))−1 − (Q1

k(f1 + 1, Omin
k ))−1||.

According to Lemma 1, δ(Q1
k(f1 + 1, Omax

k )−Q1
k(f1 + 1, Omin

k )) 6 ζ̄ϕf1 . From Proposition 1,

||(Q1
k(f1, O

max
k ))−1 − (Q1

k(f1, O
min
k ))−1|| 6 (eζ̄ϕ

f1 − 1)||(Q1
k(f1, O

min
k ))−1||

6 (eζ̄ϕ
f1 − 1)||(CT

1 R
−1
1 C1)

−1|| 6 υ1(e
ζ̄ − 1)ϕf1 .

Since υ1(e
ζ̄ − 1) only depends on ē, n̄, Ci, Bi,j , Ri, Ri,j , inequality (27) holds.

6 Accuracy analysis for the state estimation

In this section, we present the accuracy analysis for state estimation at node 1. The main result is
provided in Subsection 6.1, while the proof of the result is given in Subsection 6.2.

6.1 Main outcome

Theorem 2. We apply the suboptimal centralized MAP algorithm on G to obtain the state estimation
x̂M1 (k) for node 1 at time k. If γ < 1, it can be established that a constant b̄ exists, which depends
on various parameters, including ē, n̄, Bi,j , Ci, Ri,j , Ri, Fi, and z̄. For any N > f1 + 1, the following
inequality holds:

||x̂1k|k(N)− x̂M1 (k)|| 6 b̄γf1+1, (29)
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where γ = max{ē√φ,
√
ēι1/ς}, φ = α1

α1+β1

α2

α2+β2
, α1 = r−1ēmaxi,j ||Ci,j ||2, α2 = maxi,j ||Ci,j ||2 ēr̄ε2 , β1 =

r̄−1ε2, β2 = r, ι =
√
q̄−√q√
q̄+

√
q
, q̄ = ε̄2r−1 + Σ̄, q = ε2r̄−1, ς = 2 + log 1√

φ
(q̄/q), r̄ = maxi{||Ri||, ||Ri,j ||}, Σ̄ =

maxi6I ||F−1
i ||, r = mini{σmin(Ri), σmin(Ri,j)}, ε̄ = maxi,j

√

||Ci||2 + 4ē||Bi,j ||2, ε = mini σmin(Ci), z̄ =

maxi,j{||zik||∞, ||zi,jk ||∞}.
Remark 5. If the condition γ < 1 is satisfied, the state estimation obtained by node 1 utilizing
Algorithm 1 converges exponentially to that acquired by the suboptimal centralized MAP method. The
convergence rate relies on the loop-free depth f1 of node 1.

Remark 6. Since γ is defined as {ē√φ,
√
ēι1/ς}, the outcome is applicable to a category of graphs that

exhibit sparse connections (small ē), small φ, and small ι. Moreover, the magnitude of φ is affected by
the signal-to-noise ratio of both local measurements and joint measurements. The characteristics of the
system parameters affect the magnitude of ι.

6.2 Proof of Theorem 2

The proof of Theorem 2 is divided into three parts. Firstly, we derive a bound for x̂1k|k(LN+1)− x̂1k|k(LN )
in the line graph. Secondly, we extend this outcome to an arbitrary graph. Finally, we provide an
accuracy analysis.

6.2.1 Bound of the augmentation in the line graph

An analysis is conducted on the line graph LN using (24)–(26). Consider

yik = [(z̃ik)
T, (z̃i,i+1

k )T]T, Ψik = [(ṽik)
T, (ṽi,i+1

k )T]T,

Gi,i =

[

C̃i

B̃i,i+1

]

, Gi,i+1 =

[

0

B̃i+1,i

]

, Si =

[

R̃i 0

0 R̃i,i+1

]

,

for i = 1, 2, . . . , N − 1, and yNk = z̃Nk ,Ψ
N
k = ṽNk , GN,N = C̃N , SN = R̃N . Eqs. (24)–(26) become x̃ik+1 =

Ãix̃
i
k+ ω̃

i
k, y

i
k = Gi,ix̃

i
k+Gi,i+1x̃

i+1
k +Ψik with Ψik ∼ N (0, Si). The estimate of x̃ik|k−1 is defined as ˆ̃xik|k−1.

We also define AN = diag{Ã1, . . . , ÃN}, ̟N
k = [(ω̃1

k)
T, . . . , (ω̃Nk )T],xNk = [(x̃1k)

T, . . . , (x̃Nk )T]T,yNk =
[(y1k)

T, . . . , (yNk )T], ΨN
k = [(Ψ1

k)
T, . . . , (ΨNk )T],

[GN ]i,j =

{

Gi,j , 0 6 j − i 6 1,

0, otherwise.

Subsequently, we have

xNk+1 = ANxNk +̟N
k , (30)

yNk = GNx
N
k +ΨN

k , (31)

where ̟N
k ∼ N (0, TN), TN = diag[F̃1, . . . , F̃N ], ΨN

k ∼ N (0,SN), and SN = diag[S1, . . . , SN ]. Moreover,

Σ̌Nk|k−1 = diag{Σ̃1
k|k−1, . . . , Σ̃

N
k|k−1}.

The suboptimal centralized MAP estimation x̂Nk|k of xNk is expressed as

x̂Nk|k = (QN
k )−1qNk ,

where qNk = (GN )TS−1
N yNk + (Σ̌Nk|k−1)

−1x̂Nk|k−1 = [(q1k)
T, . . . , (qNk )T]T with

qik =

{

GT
i,iS

−1
i yik + (Σ̃ik|k−1)

−1 ˆ̃xik|k−1, i = 1,

GT
i,iS

−1
i yik +GT

i−1,iS
−1
i−1y

i−1
k + (Σ̃ik|k−1)

−1 ˆ̃xik|k−1, i > 1.
(32)

The (i, j)-th entry of QN
k = (GN )TS−1

N GN + (Σ̌Nk|k−1)
−1 is provided by

Qi,ik =

{

GT
i,iS

−1
i Gi,i + (Σ̃ik|k−1)

−1
, i = 1,

GT
i,iS

−1
i Gi,i +GT

i−1,iS
−1
i−1Gi−1,i + (Σ̃ik|k−1)

−1
, i > 1,

Qi,i+1
k = GT

i,iS
−1
i Gi,i+1, Q

i+1,i
k = (Qi,i+1

k )T,

Qi,jk = 0, |i− j| > 2.

(33)
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Define PNk = (QN
k )−1 and [PNk ]i,j as the (i, j)-th block. Applying the inverse equation from Theo-

rem 3.1 in [31], we get the first block row of PNk as follows:

[PNk ]1,j =

(

j−1
∏

l=1

(∆l
k)

−1
Ql,l+1
k

)

Φjk(N) (34)

with

Φjk(N) = Γjk(N)−Qj,j−1
k (∆j−1

k )−1Qj−1,j
k , (35)

Γlk(N) =

{

Ql,lk , l = N,

Ql,lk −Ql,l+1
k (Γl+1

k (N))
−1
Ql+1,l
k , l < N,

∆l
k =

{

Ql,lk , l = 1,

Ql,lk −Ql,l−1
k (∆l−1

k )
−1
Ql−1,l
k , l > 1,

for j = 1, 2, . . . , N . The first entry [x̂Nk|k]1 can be given by

[x̂Nk|k]1 =

N
∑

j=1

[PNk ]
1,j
qjk. (36)

According to [22], we have x̂1k|k(LN ) = [x̂Nk|k]1, representing the estimation at node 1. Using (36), we find

||x̂1k|k(LN+1)− x̂1k|k(LN )|| 6
N
∑

j=1

||[PN+1
k ]

1,j−[PNk ]1,j||||qjk||+ ||[PN+1
k ]1,N+1||||qN+1

k ||. (37)

To establish the bound for ||x̂1k|k(LN+1)− x̂1k|k(LN )||, we introduce a result in Lemma 6. The proof of
this lemma depends on various intermediate results. We begin by providing bounds for certain quantities,
i.e., (Σ̌Nk|k−1)

−1, x̂Nk|k−1,GN ,Q
N
k ,∆

l
k,Γ

l
k(N). The bounds for these quantities are provided below.

Lemma 3. For any k = 1, 2, . . ., we can derive the following inequality:

||(Σ̌Nk|k−1)
−1|| 6 ˜̄Σ, (38)

where ˜̄Σ = maxi6N ||F̃−1
i ||.

Proof. See Appendix B.

Lemma 4. For any k = 1, 2, . . ., and N ∈ N, there exists a positive scalar ˜̄X such that

||x̂Nk|k−1|| 6 ˜̄X. (39)

Proof. See Appendix C.

Lemma 5 ([24]). For any k = 1, 2, . . ., N ∈ N, 1 6 l 6 N , and 1 6 j 6 N , we have

ε̃I 6 GN 6 ˜̄εI, (40)

q̃ 6 ||QN
k ||, ||∆l

k||, ||Γlk(N)|| 6 ˜̄q, (41)

||[PNk ]1,j || 6 c̃ι̃j , max
n6N

||qn|| 6 η̃N , (42)

||[PN+1
k ]1,j − [PNk ]1,j || 6 ˜̄q

−1
r̃j(eψ̃N λ̃

N−j
N − 1), (43)

with ˜̄ε = maxi(||C̃i||2+2max{||B̃i−1,i||2, ||B̃i,i−1||2}+2max{||B̃i,i+1||2, ||B̃i+1,i||2})1/2, ε̃ = mini σmin(C̃i).

q̃ = ε̃2

˜̄r
, ˜̄r = maxi{||R̃i||, ||R̃i,i+1||}, ˜̄q = ˜̄ε2

r̃ + ˜̄Σ, r̃ = mini{σmin(R̃i), σmin(R̃i,i+1)}, i = 1, 2, . . . , N. ψ̃N =
√

n̄|τN | ˜̄ξN , ˜̄ξN = maxi6N log σmax[I + (B̃T
i,i+1R̃

−1
i,i+1B̃i,i+1)(C̃

T
i R̃

−1
i C̃i)

−1], c̃ = r̃−1
2˜̄qι̃

, ι̃ =
√
r̃−1√
r̃+1

, λ̃N =
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µ̃1,N

µ̃1,N+υ̃1,N

µ̃2,N

µ̃2,N+υ̃2,N
, η̃N = maxi6N

23/2 ˜̄ε
√
m̄|τi|˜̄zN
r̃ + ˜̄Σ ˜̄X, ˜̄zN = maxk∈N,i6N{||z̃ik||∞, ||z̃i,i+1

k ||∞}, r̃ = ˜̄q/q̃,

where

µ̃1,N = maxi6N ||B̃T
i,i+1R̃

−1
i,i+1B̃i,i+1||, µ̃2,N = maxi6N ||B̃i+1,i(C̃

T
i+1R̃

−1
i+1C̃i+1)

−1B̃T
i+1,i||,

υ̃1,N = mini6N σmin(C̃
T
i R̃

−1
i C̃i), υ̃2,N = mini6N σmin(R̃i,i+1).

By combining Lemmas 3–5, we obtain the following result.

Lemma 6. For any k = 1, 2, . . ., and 1 6 U 6 N ,

||x̂1k|k(LN+1)− x̂1k|k(LN )|| 6 η̃N+1

(

r̃U

(r̃ − 1)˜̄q
(eψ̃N λ̃

N−U
N − 1) +

2c̃

1− ι̃
ι̃U
)

.

Proof. Using (37) and Lemmas (3–5), it follows that

||x̂1k|k(LN+1)− x̂1k|k(LN )|| 6
U−1
∑

j=1

||[PN+1
k ]

1,j−[PNk ]1,j||||qjk||+
N
∑

j=U

||[PN+1
k ]

1,j−[PNk ]1,j ||||qjk||

+ ||[PN+1
k ]1,N+1||||qN+1

k ||

6η̃N+1





U−1
∑

j=1

˜̄q
−1
r̃j(eψ̃N λ̃

N−U
N − 1) + 2c̃

N
∑

j=U

ι̃j + c̃ι̃N+1





6η̃N+1

(

˜̄q
−1

(eψ̃N λ̃
N−U
N − 1)

r̃U − r̃

r̃ − 1
+ 2c̃

ι̃U − ι̃N+2

1− ι̃

)

6η̃N+1

(

r̃U

(r̃ − 1)˜̄q
(eψ̃N λ̃

N−U
N − 1) +

2c̃

1− ι̃
ι̃U
)

.

6.2.2 Bound of the augmentation in an arbitrary graph

At time k and at the N -th iteration, the state estimation x̂1k|k(N) obtained by node 1 using Algorithm 1

on G is equivalent to the estimate x̂1k|k(AN ) acquired by the same algorithm on AN and x̂1k|k(LN ) obtained

by Algorithm 1 on LN . Hence, ||x̂1k|k(LN+1) − x̂1k|k(LN )|| = ||x̂1k|k(N + 1) − x̂1k|k(N)||. By employing

Lemma 6, we can derive a similar result as Lemma 27 in [24].

Lemma 7 ([24]). If γ̌ < 1, then, based on the definition of Theorem 2, at time k and step N ∈ N,

||x̂1k|k(N + 1)− x̂1k|k(N)|| 6 ˇ̄Ωγ̌N ,

with ˇ̄Ω = ψ̌η̌
(q̄−q)λ + 2η̌c

1−ι , γ̌ = max{ē
√
λ,

√
ēι1/ς̌}, where ψ̌ = (eξ̄

√
n̄(ē+1) − 1), η̌ =

ε̄z̄
√

8m̄(ē+1)

r + Σ̄ ˜̄X, ς̌ =

2 + log 1√
λ

(

q̄/q
)

, c =
q̄−q
2q̄qι , ξ̄ = maxj log ||I + (

∑

i∈Nj
BT
j,iR

−1
j,i Bj,i)(C

T
j R

−1
j Cj)

−1||.

6.2.3 Accuracy analysis

In this study, we introduce x̂M1 (k, n) as the suboptimal centralized MAP estimation of x1k (the state at
node 1) on the subgraph S1(n−1), which includes nodes within n−1 hops from node 1 in G. If Algorithm 1
is initialized in the acyclic graph, its output at node 1 will converge to the suboptimal centralized MAP
estimation, as demonstrated in [22]. Observing that for any n 6 f1 + 1, as defined by Notation 3 for the
acyclic depth f1,

x̂1k|k(n) = x̂M1 (k, n). (44)

Let τ̌n be the collection of nodes that are n − 1 steps from node 1 in the original cyclic graph G. By
consolidating all the nodes in τ̌n and their internal connections, we obtain a single node. Then we can
construct a linear graph similar to the process described in Subsection 3.2, but we omit a specific analysis
for simplicity. The number of nodes in the graph Ľ is expressed as

r1 = max
j6I

D1,j + 1,
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Figure 3 The cyclic network graph.

where D1,j represents the shortest path length between nodes 1 and j in the graph G.
Lemma 7 establishes an upper bound on the estimation increment. We apply the proof procedure of

this lemma for graph Ľ instead of LN , then we get the following result.

Lemma 8. With the notation introduced in Theorem 2 and Lemma 7, we can obtain that for n ∈ N,
if γ < 1 and at time k, the following inequality holds:

||x̂M1 (k, n+ 1)− x̂M1 (k, n)|| 6
{

Ω̄γn, n 6 r1,

0, n > r1,
(45)

with Ω̄ = ψ̄η̄
(q̄−q)φ + 2η̄c

1−ι , ψ̄ = eξ̄(ē+1)
√
n̄ − 1, η̄ = ε̄z̄(ē+ 1)

√
8m̄r−1 + Σ̄ ˜̄X.

By combining the above inequality with (44), Lemma 7, and Lemma 8, we can establish a proof for
Theorem 2.

Proof of Theorem 2.

||x̂1k|k(N)− x̂M1 (k)|| = ||x̂1k|k(N)− x̂1k|k(f1 + 1) + x̂M1 (k, f1 + 1)− x̂M1 (k, r1)||
6 ||x̂1k|k(N)− x̂1k|k(f1 + 1)||+ ||x̂M1 (k, r1)− x̂M1 (k, f1 + 1)||

6 ˇ̄Ω

N−1
∑

i=f1+1

γ̌i + Ω̄

r1−1
∑

i=f1+1

γi 6
ˇ̄Ω

1− γ̌
γ̌f1+1 +

Ω̄

1− γ
γf1+1.

We can observe that α1 > µ1, α2 > µ2, β1 6 υ1, β2 6 υ2 imply φ > λ, ς > ς̌ , and therefore γ > γ̌.
This enables us to derive an upper bound on the difference between x̂1k|k(N) and x̂M1 (k,N). ||x̂1k|k(N)−
x̂M1 (k,N)|| 6 (

ˇ̄Ω
1−γ̌ + Ω̄

1−γ )γ
f1+1, where (

ˇ̄Ω
1−γ̌ + Ω̄

1−γ ) depends on ē, n̄, Bi,j , Ci, Ri,j , Ri, Fi, and z̄. Thus,

we acquire the inequality (29).

7 Simulation

This section presents numerical examples to validate the theoretical analysis presented in this study.
The objective is to demonstrate the effectiveness of Algorithm 1, a distributed dynamic state estimation
algorithm, comparing its performance with the suboptimal centralized maximum a posteriori (SCMAP)
state estimator [22] and the distributed static state estimator (DSSE) [15].

The communication network graph under consideration consists of 13 nodes with multiple loops, as
depicted in Figure 3. All nodes in this network share identical state equations and measurement equations.
The system parameters are listed below. xik+1 = 0.98xik + ωik, z

i
k = xik + vik, z

i,j
k = 0.5xik+0.5xjk+v

i,j
k .

Fi = 0.01, Ri = Ri,j = 0.01, [x10, x
2
0, . . . , x

13
0 ]T = [2, 3, . . . , 13, 14]T, for all i = 1, 2, . . . , 13 and j ∈ Ni.

To ensure accurate results, 1000 Monte Carlo simulations are conducted to evaluate the performance
of Algorithm 1. The time horizon is set to 100, and there are 50 iterations between each time steps
t and t + 1. The root mean square error (RMSE) is employed as the performance metric, defined as

ek =
√

1
I

∑I
i=1 ||x̂ik|k − xik||2.
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Figure 4 (Color online) The state estimation x̂1
k|k and x̂3

k|k for different state estimation algorithms. (a) Estimation x̂1
k|k at

node 1; (b) estimation x̂3
k|k at node 3.
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Figure 5 (Color online) The state estimation x̂6
k|k and x̂11

k|k for different state estimation algorithms. (a) Estimation x̂6
k|k at

node 6; (b) estimation x̂11
k|k at node 11.
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Figure 6 (Color online) RMSE ek for different state estimation algorithms.

Figures 4 and 5 illustrate the dynamic estimation performance of nodes 1, 3, 6, and 11 for the SCMAP
algorithm, Algorithm 1, and the DSSE algorithm. The results show that the SCMAP algorithm out-
performs the DSSE algorithm and Algorithm 1 in terms of state estimation performance. Additionally,
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Algorithm 1 exhibits satisfactory dynamic performance.
Figure 6 displays the RMSE values generated by Algorithm 1, the SCMAP algorithm, and the DSSE al-

gorithm. Theorem 2 states that when the cyclic graph fulfills specific conditions, the results of Algorithm 1
converge asymptotically to those of the SCMAP algorithm. Figures 4–6 verify this result. Moreover, Al-
gorithm 1 exhibits superior performance compared with the DSSE algorithm, thereby demonstrating the
effectiveness of the proposed distributed dynamic state estimator.

8 Conclusion

In this study, we have investigated a distributed state estimation algorithm suitable for large-scale inter-
connected systems characterized by a cyclic network graph. The algorithm is based on the MAP state
estimation, which employs local measurements and boundary information from neighboring nodes. We
have provided the accuracy analysis by deriving bounds on the differences in estimation error covariance
and state estimation between the proposed distributed algorithm and the suboptimal centralized MAP
method, respectively, for a specific class of systems satisfying certain conditions, including cyclic topol-
ogy and sparse connections. We have demonstrated that the results of the distributed dynamic estimator
converge asymptotically to that of the suboptimal centralized MAP method, with the convergence rate
depending on the loop-free depth. To validate the effectiveness of the proposed algorithm, we have pre-
sented simulation results. In future research, we will evaluate the effectiveness of the distributed state
estimation algorithm by actual power system data. Moreover, future research directions will address
challenges such as correlated measurement noises and transmission failures between nodes.
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Appendix A Proof of Lemma 1

We focus on the line graph LN derived from the original cyclic graph G. We define Q̃i
k(n,Ok) as the information matrix acquired

by node i at time k and step n while implementing Algorithm 1 on the line graph LN with the initial set Ok. Similarly, we

utilize Q̃i→i−1

k (n,Ok) and Q̃i→i+1

k (n,Ok) to represent the information matrices sent from node i to its left and right neighbors,

respectively. Furthermore, we define Q̃i→i−1,i
k (n,Ok)

∆
= Q̃i

k(n,Ok) − Q̃i−1→i
k (n − 1, Ok) as the message transmitted from node i

to left neighbor i− 1 without using the information from its left neighbor in the previous time step.

Using Proposition 1, we can calculate the Riemannian distance between Q1
k(N,O

1
k) and Q1

k(N,O
2
k) as follows:

δ(Q̃
1

k(N,O
1

k) − Q̃
1

k(N,O
2

k))

= δ(C̃
T

1 R̃
−1

1 C̃1 + (Σ
1

k|k−1)
−1

+ B̃
T

1,2[R̃1,2 + B̃2,1(Q̃
2→1,2
k (N − 1, O

1

k))
−1 · B̃T

2,1]
−1
B̃1,2, C̃

T

1 R̃
−1

1 C̃1

+ (Σ1
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1,2[R̃1,2 + B̃2,1(Q̃
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−1B̃T
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6
µ̃1,N

µ̃1,N + υ̃1,N

δ(R̃1,2 + B̃2,1(Q̃
2→1,2
k (N − 1, O1

k))
−1B̃T

2,1, R̃1,2 + B̃2,1(Q̃
2→1,2
k (N − 1, O2

k))
−1B̃T

2,1)

6
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where

µ̃1,N = max
i6N

||B̃T
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i C̃T
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i6N
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By using (24) and (25), we can establish µ̃1,N 6 µ1, υ̃1,N > υ1. From this, we can derive

δ(Q̃1
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For any initial condition Ok, the following equality holds: Q̃N→N−1,N
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From the findings in Subsection 3.2, it is evident that |τn| denotes the number of nodes in layer n of the graph AN . Considering

that |τn| 6 (ē + 1)ēn−1, we can infer
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Appendix B Proof of Lemma 3

We begin by considering the expression for Σ̃i
k|k−1, which is given by Σ̃i

k|k−1 = ÃiΣ̃
i
k−1|k−1(N)ÃT

i + F̃i. By applying the

matrix inversion lemma, we can derive (Σ̃i
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i Ãi((Σ̃
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i F̃
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i Ãi)
−1ÃT

i F̃
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i . It follows that

||(Σ̃i
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−1|| < ||F̃−1

i ||. Moreover, Σ̌N
k|k−1 = diag{Σ̃1

k|k−1, . . . , Σ̃
N
k|k−1}. Finally, we can demonstrate that Eq. (38) holds.

Appendix C Proof of Lemma 4

||x̂N
k|k−1|| = [(ˆ̃x1

k|k−1)
T, . . . , (ˆ̃xN

k|k−1)
T]T. By utilizing (6), (7), and (30), we can derive the following inequality:
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This implies that the inequality (39) holds when k = 1.

Assume the existence of a positive scalar σ̄ such that

||x̂N
n|n−1|| 6 σ̄. (C1)

It is necessary to prove that Eq. (39) holds at k = n+ 1. By using (30), we obtain ||x̂N
n+1|n|| = ||AN x̂N

n|n||. Then, we have
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By substituting (38) and (C1) into the above inequality, it reveals the existence of an upper bound that satisfies (39). This bound

is determined by ē, n̄, Bi,j , Ci, Ri,j , Ri, Fi, and z̄.
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