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Abstract This paper proposes a new fixed-time sliding mode (FSM) control, where the settling time for

reaching the system origin is bounded to a constant independent of the initial condition; this is in contrast

to the initial condition-dependent constants used in the traditional linear sliding mode (LSM) and terminal

sliding mode (TSM) controls. First, a new sliding mode control with a single power term is discussed, where

the power term can have any nonnegative value. Except for the traditional LSM and TSM controls, a new

sliding mode control called power sliding mode (PSM) is proposed, whose power term is larger than 1. Then,

a new FSM control with two power terms is investigated, whose design is based on the combination of TSM

and PSM. In particular, the two power terms on the plane in the first quadrant are carefully discussed, and

a detailed classification is provided. Here, the first quadrant can be classified into six categories, including

LSM, generalized LSM, TSM, fast TSM (FTSM), PSM, and FSM. Furthermore, the analytical settling time

is calculated, and three different estimation bounds of the settling time are given for reaching the origin

under any initial condition. It is also interesting to derive the lowest bound for the settling time. Finally,

FSM control design for general nonlinear dynamical systems with the relative degree from the control input

to the output is also discussed.
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1 Introduction

Sliding mode control has received significant attention recently [1–10] due to its robustness against pa-
rameter variations and uncertain disturbances. The key to sliding mode control lies in its two-step design
process: sliding mode controller and surface. The controller is designed to drive the system to reach
and then remain at the intersection of a set of prescribed switching manifolds. Then, the system states
remaining on the prescribed surface can finally reach the origin. Asymptotic stable linear switching
hyper-planes are commonly selected as the sliding mode surfaces.

However, in order to get higher performance, finite-time convergence is considered [5]. For reaching
finite-time convergence, the terminal sliding mode (TSM) control is designed by [11], where nonlinear
switching manifolds are designed for reaching the origin within a finite time [12]. Compared with the
linear sliding mode (LSM) control based on linear switching hyperplanes, TSM cannot have the same
convergence rate when the system state is far away from the origin. Hence, the fast TSM (FTSM)
control is developed to combine the advantages of LSM and TSM controls [13]. The continuous-time
sliding mode control is designed [14] to overcome the problem that some states in TSM may not be
real. Modified super-twisting and integral sliding mode controls are discussed by [15, 16]. However, two
additional challenges persist with TSM: singularity and chattering behavior. Nonsingular TSM control
is proposed by [17, 18] to address the issue of singularity in TSM. The common chattering behaviors are
addressed by [19–21], and practical implementation issues are addressed by [22–24].
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In the conventional sliding mode control design, the guaranteed convergence time depends on the initial
state, which is unbounded and can be sufficiently large because the initial state is very large. Recently, a
class of second-order fixed-time sliding mode (FSM) controller [25] was proposed where the convergence
time was upper bounded by a finite value regardless of the initial conditions. It should be pointed out
that the proposed FSM controller applies only to a class of specific second-order dynamical systems and
that the upper bound estimate is conservative. The design of a new sliding mode surface called the
FSM surface is presented in this paper using fixed-time stability in [26–30], where the convergence time
is independent of the initial conditions and is uniformly bounded with respect to the initial conditions.
Thus, irrespective of the initial state, one can design the FSM such that the controller can first drive the
system into the FSM surface and remain on it, reaching the origin within a fixed time.

The main contributions of this paper can be summarized as follows. First, a unified framework for
sliding mode control with two power terms is proposed. These two power terms on the plane in the
first quadrant are discussed, and a detailed classification is presented, where the first quadrant can be
classified into six categories, including three widely studied sliding mode controls (SMCs) (LSM, TSM,
and FTSM), one generalized LSM, and two newly proposed SMCs in this paper, namely FSM control and
power sliding mode (PSM) control. Second, the analytical settling time is calculated for FSM control,
and three different estimation bounds of the settling time for reaching the origin are established for any
initial condition. The lowest bound for the settling time is derived, which is essential for future research
on fixed-time stability. Third, a new recursive design of FSM control is proposed in detail for a class of
higher-order nonlinear systems, which is transferred from a general nonlinear dynamical system according
to the relative degree.

The rest of this paper is organized as follows. Some preliminary descriptions of the sliding mode
control and new concepts for fixed-time stability are discussed in Section 2. In Section 3, a new sliding
mode control, PSM, with a single power term is discussed. In Section 4, a new sliding mode control with
two power terms is investigated. In particular, the first quadrant on the plane can be classified into six
categories, including LSM, generalized LSM, TSM, FTSM, PSM, and FSM. In addition, FSM control
design for nonlinear dynamical systems is studied in Section 5. Section 6 provides a numerical example
to verify the effectiveness of FSM control design proposed in this paper. Finally, Section 7 concludes this
paper.

2 Preliminaries

In this section, some literature reviews for SMC and new concepts for fixed-time stability are first intro-
duced, which are very important for presenting the main results of this paper.

Sliding mode control has been widely discussed in the literature [12], which can be designed through
a two-step process. First, the sliding mode surface is designed on which the control objective is solved.
Then, sliding mode control is applied to drive the states of the system into the designed sliding mode
surface. Thus, the states of the system are first forced to drive on the sliding mode surface and then the
control objective can finally be solved on this surface.

Suppose z ∈ R is the system state. For simplicity, the LSM surface is briefly introduced as follows:

s(t) = ż + αz, (1)

where α > 0 is a constant.
In order to reach finite-time convergence, the TSM surface is designed by [11]

s(t) = ż + βzq/p, (2)

where β > 0 is a constant, and p and q are positive odd integers satisfying p > q. Note that for z < 0,
the fractional power p/q may cause that xq/p /∈ R if p is even. Thus, p is simply assumed to be an odd
number.

By combining the above LSM and TSM control advantages, the following FTSM surface is designed
to reach a faster sliding mode control objective [13]:

s(t) = ż + αz + βzq/p, (3)

where α > 0 and β > 0 are constants, and p and q are positive odd integers satisfying p > q.
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Let

y[γ] = sign(y)|y|γ , (4)

where y ∈ R and sign(y) is the sign function.
To avoid the above problem that z or ż may not be real, the following modified TSM and FTSM

surfaces are designed [14] by

s(t) = ż + βz[η], (5)

and

s(t) = ż + αz + βz[η], (6)

respectively, where z ∈ R, α, β > 0, and 0 < η < 1.
In the modified TSM in (5) and FTSM in (6), the equilibrium point z = 0 is globally finite-time stable,

which indicates that for any given initial condition z0, the system state can reach the origin within finite
time,

T (z0) =
|z0|1−η

β(1 − η)
, (7)

and

T (z0) =
1

α(1− η)
ln

α|z0|1−η + β

β
, (8)

respectively, and stay at z = 0 for all t > T .
For a general nonlinear system,

ẋ(t) = f(x(t)) + u(t), x(0) = x0, (9)

where x = (x1, x2, . . . , xN )T ∈ R
n is the state, f(·) is a nonlinear function, u is the control input, and x0

is the initial state. The following definitions are needed to present the main results.

Definition 1 ([31]). The origin of system (9) is said to be globally finite-time stable if it is globally
asymptotically stable and any solution x(t, x0) of (9) reaches the equilibria at some finite time moment,
i.e., x(t, x0) = 0, ∀t > T (x0), where T : RN → R+ ∪ {0} is called the settling-time function.

For simplicity, the modified TSM in (5) and FTSM in (6) are discussed instead of TSM in (2) and
FTSM in (3), whose results can similarly be obtained. In order to solve the singularity problem, a
nonsingular TSM surface is also proposed by [17].

Note that for the above TSM in (5) and FTSM in (6), the time for reaching the origin of the system
depends on the initial conditions. For example, on the TSM surface in (5) (s = ż+βz[η] = 0), the settling

time for reaching the origin within finite time is |z0|1−η

β(1−η) in (7), which depends on the initial condition z0
and can be sufficiently large as z0 → ∞. In order to design a new fixed-time sliding mode control, the
following definition of fixed-time stability is revisited.

Definition 2 ([26]). The origin of system (9) is said to be fixed-time stable if it is globally finite-time
stable and the settling-time function T (x0) for reaching the origin is bounded, i.e., ∃ T

max
> 0 : T (x0) 6

Tmax, ∀x0 ∈ R
N .

In this paper, by using fixed-time stability in [26], the following new sliding mode surface called the
FSM surface is designed:

s(t) = ż + αz[ξ] + βz[η], (10)

where ξ > 1 > η > 0, α > 0, and β > 0.
Then, on the FSM surface s = ż+αz[ξ] +βz[η] = 0, one has (|z|)′ +α|z|ξ + β|z|η = 0. By invoking the

following Lemma 1 in which the continuous positive definite function V (z) = |z| is considered, one can
obtain that the settling time T (z0) for reaching the origin within finite time satisfies

T (z0) 6
1

α(ξ − 1)
+

1

β(1− η)
, (11)

which is independent of the initial condition z0.
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Lemma 1 ([26]). Consider the following system of differential equation:

ẋ(t) = f(x(t)), x(0) = x0,

where x = (x1, x2, . . . , xn)
T ∈ R

n, f(x) : Rn → R
n is continuous on R

n, and f(0) = 0. Suppose there
exists a continuous positive definite function V (x) : Rn → R such that for real numbers a > 0, b > 0,
p > 1, and q ∈ (0, 1),

V̇ (x) + a(V (x))p + b(V (x))q 6 0, x ∈ R
N\{0}. (12)

Then, the origin is a globally fixed-time stable equilibrium and the settling time T satisfies

T (x0) 6
1

a(p− 1)
+

1

b(1− q)
. (13)

3 New sliding mode control with one power term

In this section, a unified framework for SMC with one power term as in (1) and (5) is analyzed, based
on which the above new sliding mode called TSM in (10) is proposed.

First, a general sliding mode control surface is given as follows:

s(t) = ż + βz[η], (14)

where η is a constant. The above sliding mode surface can include the LSM in (1) with η = 1 and TSM
in (2) with 0 < η < 1 as special cases. Next, some simple analysis for the general sliding mode control
surface is proposed.

Theorem 1. On the general sliding mode surface s = 0 in (14), the state z can be stable. In addition,
the following properties are satisfied:

(1) If η = 1, the state z is globally exponentially stable, and |z(t)| = |z0(t)| exp−βt;

(2) If 0 6 η < 1, the state z is globally finite-time stable, and |z(t)| = (|z0|1−η − (1 − η)βt)
1

1−η for

t 6 T (z0), where the settling time T (z0) for reaching origin is given in (7) where T (z0) =
|z0|1−η

β(1−η) ;

(3) If η > 1, the state z is globally stable with power − 1
η−1 , and |z(t)| = ( 1

1

|z0|η−1 +(η−1)βt
)

1
η−1 .

Proof. Suppose that the initial time t0 = 0. |z(t)| at z = 0 is not differentiable. One can disregard this
trivial condition since the goal for reaching the origin z = 0 has already been achieved. On the general
sliding mode surface s = 0 in (14), one has ż = −βz[η], which yields that

d(|z|)/dt = −β|z|η. (15)

The analysis can be decomposed into several cases.
Case 1: η = 1. By integrating both sides of (15), one has

|z(t)| = |z0(t)| exp−βt . (16)

Case 2: 0 6 η < 1. Similarly, one obtains

d(|z(t)|1−η) = −(1− η)βdt.

Then, one finally has

|z(t)|1−η − |z0|1−η = −(1− η)βt, (17)

which yields that

|z(t)| = (|z0|1−η − (1− η)βt)
1

1−η . (18)

After time T (z0) =
|z0|1−η

β(1−η) , z(t) reaches the origin and will stay at the origin for all t > T (z0).
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Figure 1 (Color online) State z(t) on the sliding mode surface where η = 1, 0.5, and 1.5.

Case 3: η > 1. According to (17), one simply has

1

|z(t)|η−1
=

1

|z0|η−1
+ (η − 1)βt. (19)

Then, one finally has

|z(t)| =
(

1
1

|z0|η−1 + (η − 1)βt

)
1

η−1

. (20)

Note that as t → ∞, |z(t)| ∼ ( 1
β(η−1) )

1
η−1 t−

1
η−1 → 0.

Next, an illustrative example is given to show the convergence of the above results where η is chosen
with different parameters. To simplify the description, set β = 1 and η = 1, 0.5, 1.5 for the corresponding
three cases in Theorem 1. The initial condition is z0 = 5. On the sliding mode surface s = 0, the state
of z for different parameters η is illustrated in Figure 1.

One can observe that for Case 2 with η = 0.5, the convergence to z = 1 from z0 = 5 is achieved in the
longest time, while the convergence to z = 0 from z = 5 takes the shortest time. This implies that when
z > 1, Case 2 exhibits a minimum decay rate, whereas when 0 < z < 1, it demonstrates a maximum
decay rate. Similar observations can be summarized for Case 3. Generally, it can be shown that if z > 1,
Case 3 with η > 1 decreases faster than the other two cases. However, if z < 1, Case 2 with 0 6 η < 1
decreases in the fastest way among these three cases. The most important factor is that only in Case
2 with 0 6 η < 1, finite-time stability can be reached according to Theorem 1. This motivates a lot of
interesting studies in the recent literature, based on which TSM control is proposed [11, 17].

Next, several definitions for some sliding mode control surfaces in (14) are given.

Definition 3. For a constant β > 0,
(1) If η = 1, the sliding mode surface in (14) is called LSM surface;
(2) If 0 6 η < 1, the sliding mode surface in (14) is called TSM surface;
(3) If η > 1, the sliding mode surface in (14) is called PSM surface.

Here, the first two kinds of sliding mode control (LSM and TSM) have been widely discussed recently.
In this paper, a new sliding mode surface called the PSM surface is proposed, which is also be very helpful
for the FSM control discussed later.

4 Fixed-time sliding mode control

In this section, a unified framework for SMC with two power terms as in (6) is analyzed, based on which
the above new sliding mode called the FSM in (10) is proposed.

First, a general sliding mode control surface with two power terms is given as follows:

s(t) = ż + αz[ξ] + βz[η], (21)
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Figure 2 Parametric region for the classification of sliding mode surface.

where ξ > η > 0 for generality, α > 0, and β > 0.
Since on the sliding mode surface s(t) = 0 of (21), one has

d(|z|)/dt = −α|z|ξ − β|z|η. (22)

From the analysis in Theorem 1 and Definition 3, η = 1 in the sliding mode control with one power term
(14) can be considered as a bifurcation parameter. Then, for the sliding mode control with two power
terms (22), there are totally 6 cases listed in the following.

Case 1: ξ = η = 1. The sliding mode surface in (21) is the LSM surface.
Case 2: 1 > ξ > η > 0. The sliding mode surface in (21) is the TSM surface.
Case 3: ξ > η > 1. The sliding mode surface in (21) is the PSM surface.
The above three cases are directly satisfied since the same properties are kept when the two parameters

are in the same region discussed in Theorem 1.
Case 4: ξ > η = 1. The sliding mode surface in (21) is a generalized LSM surface.
Even though the term −α|z|ξ can induce a faster decrease than the other term −β|z|η if z > 1, as time

tends to infinity, the term −β|z|η dominates the derivative on the right side of (22). Thus, such kind of
sliding mode surface can be taken as a generalization of LSM surface, termed as generalized LSM surface.

Case 5: ξ = 1 > η > 0. The sliding mode surface in (21) is the FTSM surface. The settling time for
reaching the origin is given by (8).

For the case of ξ = 1 and 1 > η > 0, FTSM control (6) is discussed in [13], which can achieve terminal
sliding mode control objective with a faster settling time compared with the conventional terminal sliding
mode control in (5) under the same condition. This is intuitive since an additional linear term −αz[1] is
applied, which can induce a faster decrease when z > 1.

Case 6: ξ > 1 > η > 0. The sliding mode surface in (21) is the newly defined FSM surface.
Next, a definition as well as a detailed analysis of FSM is given.

Definition 4. The sliding mode surface in (21) is called the FSM surface if z is fixed-time stable.

Theorem 2. The sliding mode surface in (21) with ξ > 1 > η > 0 is the FSM surface and the settling
time T (z0) for reaching the origin is bounded by

T (z0) 6
1

α(ξ − 1)
+

1

β(1 − η)
= T1.

Proof. The proof can be directly completed by using Lemma 1 and Definition 4.
Note that under Case 6 with ξ > 1 > η > 0, finite-time stable can be reached since −β|z|η dominates

if z < 1. However, if z > 1, by adding the term −β|z|ξ, a faster convergence can be reached. Thus,
this new FSM control is different from the FTSM control. The key factor is that the settling time for
reaching the origin in FSM is bounded by a constant independent of the initial condition as given T1 in
Theorem 2 compared with initial-dependent one (8) in FTSM, where the settling time can be sufficiently
large if z0 is very large.

The parametric region for ξ and η discussed in six cases is illustrated in Figure 2.
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Under η ∈ [0, 1), finite-time stable for the state z(t) in (21) can be reached as discussed in Cases 2, 5,
and 6, which correspond to ξ < 1 for TSM, ξ = 1 for FTSM, and ξ > 1 for FSM, respectively.

If η=1, the sliding mode surface in (21) is LSM surface if ξ > 1 as discussed in Cases 1 and 4. The
other case is that if ξ > η > 1, the new PSM surface is proposed for (21).

Next, some analysis is given to have a better bound for FSM in Case 6.

Theorem 3. The sliding mode surface in (21) with ξ > 1 > η > 0 is the FSM surface and the settling
time T (z0) for reaching the origin is bounded by

T (z0) 6
1

|z∗|ξ−1α(ξ − 1)
+

|z∗|1−η

β(1 − η)
= T2, (23)

where z∗ is an arbitrarily chosen constant. In addition, T can obtain its minimal value when |z∗|ξ−η = β
α .

Proof. Suppose the initial state is z0. One can calculate the time t1 from z0 to z∗ along the trajectory
of (22). One has that d(|z|)/dt < −α|z|ξ if z 6= 0. Similar to the analysis (19) in Theorem 1, one can
obtain that 1/|z∗|ξ−1 > 1/|z0|ξ−1 + (ξ − 1)αt > (ξ − 1)αt. Hence,

t1 6
1

|z∗|ξα(ξ − 1)
. (24)

Next, one can calculate the time t2 from z∗ to the origin z = 0. Similarly, one has d(|z|)/dt < −β|z|η if
z 6= 0. Then, it follows from (18) in Theorem 1 that

t2 6
|z∗|1−η

β(1 − η)
. (25)

Thus, the settling time for reaching the origin satisfies

T (z0) = t1 + t2 6
1

|z∗|ξ−1α(ξ − 1)
+

|z∗|1−η

β(1− η)
, (26)

which obtains its minimal value when |z∗|ξ+1−η = βξ
α(ξ−1) to reach the origin.

It is quite easy to see that the result in Theorem 2 is a special case of that in Theorem 3 if z∗ = 1. By
carefully choosing an appropriate z∗ which depends on ξ, η, α, and β, one can get a better lower bound
for the settling time. It is important to note that a lower bound generally leads to less conservative
parameter selection.

In order to get a lower bound, a detailed analysis is given.

Theorem 4. The sliding mode surface in (21) with ξ > 1 > η > 0 is the FSM surface and the settling
time T (z0) for reaching the origin is given by

T (z0) =
|z0|1−η

β(1 − η)
F

(

1,
1− η

ξ − η
; 1 +

1− η

ξ − η
;−αβ−1|z0|ξ−η

)

, (27)

where F (·) is the hypergeomnetric function defined in [32]:

F (a, b; c; z) =
1

B(b, c− b)

∫ 1

0

tb−1(1− t)c−b−1(1 − tz)−adt

with B(x, y) =
∫ 1

0 tx−1(1− t)y−1dt being the Beta function. In addition, T (z0) is monotonically increas-
ing with respect to |z0| and is bounded by T1 in Theorem 2 or T2 in Theorem 3. T (z0) reaches the

maximum value Tmax =
∫ +∞
0

1
αxξ+βxη dx as |z0| → +∞.

Proof. Consider from the sliding mode surface in (21) that

T (z0) =

∫ |z0|

0

1

αxξ + βxη
dx. (28)

According to (28), T (z0) is monotonically increasing with respect to |z0|. From Theorems 2 and 3, one
knows that the settling time T (z0) for reaching the origin is bounded by T1 in Theorem 2 or T2 in

Theorem 3. Obviously, T (z0) converges and reaches the maximum value Tmax =
∫ +∞
0

1
αxξ+βxη dx.
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Let x = |z0|s; then dx = |z0|ds. It follows that

T (z0) =

∫ 1

0

|z0|
α|z0|ξsξ + β|z0|ηsη

ds

=
|z0|

β|z0|η
∫ 1

0

1

sη
1

αβ−1|z0|ξ−ηsξ−η + 1
ds

=
|z0|

(1− η)β|z0|η
∫ 1

0

1

αβ−1|z0|ξ−ηsξ−η + 1
ds1−η. (29)

Let t = sξ−η; then

T (z0) =
|z0|

(1− η)β|z0|η
∫ 1

0

1

1 + αβ−1|z0|ξ−ηt
dt

1−η
ξ−η

=
|z0|

(1− η)β|z0|η
∫ 1

0

1−η
ξ−η t

1−η
ξ−η

−1

1 + αβ−1|z0|ξ−ηt
dt

=
|z0|

(ξ − η)β|z0|η
∫ 1

0

t
1−η
ξ−η

−1 1

1 + αβ−1|z0|ξ−ηt
dt. (30)

Now, consider the integral representation formula [32, 33]:

F (a, b; c; z) =
1

B(b, c− b)

∫ 1

0

tb−1(1 − t)c−b−1(1− tz)−adt, (31)

where B(x, y) =
∫ 1

0
tx−1(1− t)y−1dt is the Beta function and F (·) is the hypergeomnetric function defined

in [32].
Choose parameters as follows: a = 1, b = 1−η

ξ−η , c = a + b, and z = −αβ−1|z0|ξ−η. Then it follows by

(31) that

F

(

1,
1− η

ξ − η
; 1 +

1− η

ξ − η
;−αβ−1|z0|ξ−η

)

B

(

1− η

ξ − η
, 1

)

=

∫ 1

0

t
1−η
ξ−η

−1 1

1 + αβ−1|z0|ξ−ηt
dt. (32)

Furthermore, it is easy to calculate that

B

(

1− η

ξ − η
, 1

)

=

∫ 1

0

t
1−η
ξ−η

−1dt =
ξ − η

1− η
. (33)

Combining (31) and (32), and noticing (33), one can conclude that

T (z0) =
|z0|1−η

β(1 − η)
F

(

1,
1− η

ξ − η
; 1 +

1− η

ξ − η
;−αβ−1|z0|ξ−η

)

. (34)

The analytical settling time T (z0) in Theorem 4 is given by a hypergeometric function and it is not
intuitive to see that the righthand side of (27) is bounded under any initial condition z0. However, under
some special cases, the analytical settling time T (z0) can be calculated. For example, if ξ − η = 2(1− η)
or ξ + η = 2, then the settling time T (z0) can be simplified by

T (z0) =
|z0|

(1− η)β|z0|η
∫ 1

0

1

1 + αβ−1|z0|ξ−ηt
dt

1−η
ξ−η

=
1

(1− η)
√
αβ

arctan

√
α|z0|1−η

√
β

.

As |z0| → +∞, Tmax = π

(ξ−η)
√
αβ

.

Next, the analytical function of Tmax will be given, which is independent of the initial condition z0.
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Corollary 1. The sliding mode surface in (21) with ξ > 1 > η > 0 is the FSM surface and the settling
time Tmax = lim|z0|→+∞ T (z0) under any initial condition z0 for reaching the origin is given by

Tmax = lim
|z0|→+∞

T (z0) =
1

(ξ − η)α
1−η
ξ−η β

ξ−1

ξ−η

π

sin(1−η
ξ−ηπ)

. (35)

Proof. From (28), one has

T (z0) =

∫ |z0|

0

1

αxξ + βxη
dx =

1

β

∫ |z0|

0

1

xη

1

αβ−1xξ−η + 1
dx.

(36)

Let t =
α

β
xξ−η; then

T (z0) =
1

β(1 − η)

∫ α
β
|z0|ξ−η

0

1

1 + t
d

(

βt

α

)
1−η
ξ−η

=
1

(ξ − η)α
1−η
ξ−η β

ξ−1

ξ−η

∫ α
β
|z0|ξ−η

0

t
1−η
ξ−η

−1

1 + t
dt. (37)

Since B(x, y) =
∫ 1

0
tx−1(1− t)y−1dt =

∫ +∞
0

ty−1

(1+t)x+y dt and Γ(s) =
∫ +∞
0

ts−1e−tdt, one has

T (∞) =
1

(ξ − η)α
1−η
ξ−η β

ξ−1

ξ−η

∫ +∞

0

t
1−η
ξ−η

−1

1 + t
dt

=
1

(ξ − η)α
1−η
ξ−η β

ξ−1

ξ−η

B

(

ξ − 1

ξ − η
,
1− η

ξ − η

)

=
1

(ξ − η)α
1−η
ξ−η β

ξ−1

ξ−η

Γ

(

ξ − 1

ξ − η

)

Γ

(

1− η

ξ − η

)

=
1

(ξ − η)α
1−η
ξ−η β

ξ−1

ξ−η

π

sin(1−η
ξ−ηπ)

. (38)

Remark 1. In Theorems 2 and 3, and Corollary 1, three different estimation bounds of the settling
time T (z0) in Theorem 4 for reaching the origin in the sliding mode surface (21) are given. It is easy to
see that T (z0) 6 Tmax 6 T2 6 T1, where T1, T2, and Tmax are all independent of the initial condition z0.
This indicates the fixed-time stability of the system. Notice that Tmax = lim|z0|→+∞ T (z0). Thus, the
lowest bound Tmax for fixed-time stability is analytically given in Corollary 1 under any initial condition
z0.

5 Fixed-time sliding mode control design for nonlinear dynamical systems

In this section, the new FSM control for a general nonlinear dynamical system is discussed. Consider the
following general nonlinear system:

ẋ(t) = f(x(t)) + g(x(t))u(t), x(0) = x0,

y = h(x), (39)

where x = (x1, x2, . . . , xN )T ∈ R
n is the state, f(·) and h(·) are nonlinear functions, u ∈ R is the control

input, y ∈ R is the output state, and x0 is the initial state.

Definition 5 ([34]). The nonlinear system (39) is said to have relative degree ρ, 1 6 ρ 6 n, in a region
D0 ⊂ R

n, if

LgLk
fh(x) = 0, k < ρ− 1,

LgLρ−1
f h(x) 6= 0, (40)

for all x ∈ D0.
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Here, we mainly focus on the FSM control design. Hence, the above single-input single-output (SISO)
system (39) is assumed to have relative degree n and D0 in Definition 5 is set as Rn.

In order to transform the system (39) into a standard one, the Lie derivative is introduced. In particular,
the Lie derivative of output function h with respect to function f is defined as the directional derivative
Lfh = (∇h)f , where ∇h = ∂h/∂x is the gradient of h. The higher-order Lie derivative can be recursively
defined as Li

fh = ∇(Li−1
f h)f for i = 1, 2, . . . , n. In particular, L0

fh = h.

Let y = (h(x),Lfh(x), . . . ,Ln−1
f h(x))T = (y1, y2, . . . , yn)

T. Then, one can transform the system (39)
into

ẏi(t) = yi+1, i = 1, 2, . . . , n− 1,

ẏn(t) = a(y) + b(y)u,

where a(y) = Ln
fh(x) and b(y) = LgLn−1

f h(x). The above system can be rewritten into a matrix form:

ẏ(t) = f̂(y(t)) + ĝ(y(t))u(t), (41)

where f̂(y(t)) = (y2, y3, . . . , yn−1, a(y))
T and ĝ(y(t)) = (0, . . . , 0, b(y))T.

Then, the following new recursive procedure for FSM control of a higher-order system (41) is designed:

s1(t) = ṡ0 + α0s
[ξ0]
0 + β0s

[η0]
0 ,

s2(t) = ṡ1 + α1s
[ξ1]
1 + β1s

[η1]
1 ,

...

sn−1(t) = ṡn−2 + αn−2s
[ξn−2]
n−2 + βn−2s

[ηn−2]
n−2 , (42)

where s0 = y1, αi > 0, βi > 0, ξi > 1, 1 > ηi > 0, i = 0, 2, . . . , n − 2. By designing the control input
u, sn−1 = 0 is first reached in fixed time, then sn−2 = 0 can be reached in fixed time, and so will
sn−3, . . . , s0. Thus, fixed-time stability for the system (39) can be solved. According to Theorem 2, the
settling time for reaching the origin can be bounded by

T (y(0)) 6

n−2
∑

i=0

1

αi(ξi − 1)
+

1

βi(1 − ηi)
,

which is independent of the initial condition. Thus, if si → 0 sequentially from i = n− 2 to i = 0, then
fixed-time stability for the system (39) can be reached.

Next, a theorem is given for the FSM control of a higher-order system (39).

Lemma 2. For the general nonlinear dynamical system (39), if the control input u is designed by

u(t) = ueq(t) + û(t), (43)

where

ueq(t) = −b−1(y)

(

a(y) +

n−2
∑

k=0

(

αkLn−1−k

f̂+ĝu
s
[ξk]
k + βkLn−1−k

f̂+ĝu
s
[ηk]
k

)

)

,

û(t) = −b−1(y)(αs
[ξ]
n−1 + βs

[η]
n−1),

with α, β > 0 and ξ > 1 > η > 0, then system (39) can reach the FSM sn−1 = 0 within fixed time.

Proof. Taking the derivative of sn−1, one has

ṡn−1(t) = s̈n−2 + αn−2Lf̂+ĝus
[ξn−2]
n−2 + βn−2Lf̂+ĝus

[ηn−2]
n−2 .

(44)

Since

ṡn−2(t) = s̈n−3 + αn−3Lf̂+ĝus
[ξn−3]
n−3 + βn−3Lf̂+ĝus

[ηn−3]
n−3 , (45)
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one furthermore has

ṡn−1(t) =
...
s n−3 + αn−3L2

f̂+ĝu
s
[ξn−3]
n−3 + βn−3L2

f̂+ĝu
s
[ηn−3]
n−3

+αn−2Lf̂+ĝus
[ξn−2]
n−2 + βn−2Lf̂+ĝus

[ηn−2]
n−2 . (46)

The above process can be done recursively. Then, one finally has

ṡn−1(t) = s
(n)
0 +

n−2
∑

k=0

(

αkLn−1−k

f̂+ĝu
s
[ξk]
k + βkLn−1−k

f̂+ĝu
s
[ηk]
k

)

= a(y) + b(y)u+

n−2
∑

k=0

(

αkLn−1−k

f̂+ĝu
s
[ξk]
k + βkLn−1−k

f̂+ĝu
s
[ηk]
k

)

. (47)

Substituting the designed control input (43) into (47) yields

ṡn−1(t) = −αs
[ξ]
n−1 − βs

[η]
n−1. (48)

From the discussions in Theorems 2 and 3, one knows that system (39) can reach the FSM sn−1 = 0

within fixed time, where the settling time is bounded by 1
|s∗|ξ−1α(ξ−1)

+ |s∗|1−η

β(1−η) with s∗ being an arbitrarily

chosen value.

To solve the fixed-time stability for the states in system (39), one should show that two terms

αkLn−1−k

f̂+ĝu
s
[ξk]
k and βkLn−1−k

f̂+ĝu
s
[ηk]
k are independent of the control input u and u is bounded, k = 0, 1, . . . , n−

2. Next, a theorem is provided to show this result.

Theorem 5. For the general nonlinear dynamical system (39), if the control input u is designed by
(43) under the condition that

ηk >
n− k − 1

n− k
, (49)

and sk → 0 sequentially from k = n− 2 to k = 0, then system (39) will first reach the FSM sk = 0 and
then reach the origin within fixed time as well for k = 0, 1, . . . , n− 2.

Proof. From the discussions in Lemma 2, system (39) will first reach the FSM sk = 0, k = 0, 1, . . . , n−2.

Next, one aims to prove that the two terms Ln−1−k

f̂+ĝu
s
[ξk]
k and Ln−1−k

f̂+ĝu
s
[ηk]
k are independent of the control

input u and u is bounded, k = 0, 1, . . . , n− 2.

First, one proves that Ln−1−k

f̂+ĝu
s
[ξk]
k = Fk(y) and Ln−1−k

f̂+ĝu
s
[ηk]
k = Gk(y), where Fk(y) and Gk(y) are

continuous functions. Let k = 0; it is easy to see that Ln−1

f̂+ĝu
s
[ξ0]
0 = Ln−1

f̂+ĝu
y
[ξ0]
1 = F0(y) and Ln−1

f̂+ĝu
s
[η0]
0 =

Ln−1

f̂+ĝu
y
[η0]
1 = G0(y). If k = 1, then Ln−2

f̂+ĝu
s
[ξ1]
1 = Ln−2

f̂+ĝu
(ẏ1 + α0y

[ξ1]
1 + β0y

[η0]
1 )[ξ0] = F1(y) and so is that

Ln−2

f̂+ĝu
s
[η1]
1 = G1(y).

Assume that k = k0, Ln−1−k0

f̂+ĝu
s
[ξk0 ]

k0
= Fk0

(y) and Ln−1−k0

f̂+ĝu
s
[ηk0

]

k0
= Gk0

(y). Then, one will prove that

k = k0 + 1 is also satisfied. For k = k0 + 1 and based on (42),

Ln−1−(k0+1)

f̂+ĝu
s
[ξk0+1]

k0+1 = Ln−1−(k0+1)

f̂+ĝu

(

ṡk0
+ αn−2s

[ξk0 ]

k0
+ βk0

s
[ηk0

]

k0

)[ξk0+1]

= Fk0+1(y). (50)

Similarly, one can obtain that Ln−1−(k0+1)

f̂+ĝu
s
[ηk0+1]

k0+1 = Gk0+1(y).

Next, one aims to prove that the control input u is bounded using similar analog in [13]. From the
rule for the higher-order derivative of a composite function, one has that for a function H(s):

dr

dtr
H(s) =

∑ r!

i1!i2! · · · il!
∂mH

∂sm

(

ṡ

1!

)i1( s̈

2!

)i2

· · ·
(

s(l)

l!

)il

, (51)

where the nonnegative integers satisfy i1 + 2i2 + · · ·+ lil = r and m = i1 + i2 + · · ·+ il.
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On the fixed-time sliding mode surface sk+1 = 0, one has

ṡk = −αks
[ξk]
k − βks

[ηk]
k . (52)

Then, one knows that ṡk = O(sηk

k ) as sk → 0, where O(sηk

k ) has the same order infinitesimal as sηk

k . It

follows that s
(d)
k = ṡ

(d−1)
k = O(sdηk−(d−1)). From (41) and (51), one has

Ln−1−k

f̂+ĝu
s
[ηk]
k =

dn−1−k

dtn−1−k
s
[ηk]
k

=
∑

O(sηk−m
k )O(sηk

k )i1O(s2ηk−1
k )i2 · · · O(s

lηk−(l−1)
k )il

=
∑

O(sηk−m
k )O(s

ηk(i1+2i2+···+lil)−i2−2i3−···−(l−1)il
k )

=
∑

O(sηk−m
k )O(s

ηk(n−1−k)+m−(n−1−k)
k )

= O(s
ηk(n−k)−(n−1−k)
k ). (53)

Similarly, one obtains

Ln−1−k

f̂+ĝu
s
[ξk]
k =

∑

O(sξk−m
k )O(s

ηk(n−1−k)+m−(n−1−k)
k )

= O(s
ηk(n−k−1)−(n−k−1)+ξk
k ). (54)

If ηk > n−k−1
n−k in condition (49), then ηk(n−k)−(n−1−k)> 0 and ηk(n−k−1)−(n−k−1)+ξk > 0.

Thus, the control input u in (43) is bounded.

From Lemma 2, one can first design the control input in (43) to reach FSM sn−1 = 0 within the fixed
time. If sk → 0 sequentially from k = n − 2 to k = 0 under the condition (49), system (14) state will
first reach the FSM surface (42) within fixed time and then reach the origin in fixed time according to
Theorem 5.

6 Simulation example

In this section, one numerical simulation is provided to verify the effectiveness of the theoretical analysis.
Consider the following 3rd-order nonlinear dynamics:

ẋ = f(x) + g(x)u =









0

x1 +
x3
2

3

x1 − x2









+









ex2

ex2

0









u,

y = h(x) = x3, (55)

where x = (x1, x2, x3)
T. Let z = (z1, z2, z3)

T = (h(x), Lfh(x), L
2
fh(x))

T. With simple calculation,

one has that Lgh(x) = 0, LgLfh(x) = 0, b(z) = LgL
2
fh(x) = −(1 + x2

2)e
x2 , z2 = Lfh(x) = x1 − x2,

z3 = L2
fh(x) = −x1 − x3

2

3 , and a(z) = L3
fh(x) = −x2

2(x1 +
x3
2

3 ). The dynamics of z can be written as











ż1 = z2,

ż2 = z3,

ż3 = a(z) + b(z)u.

(56)

Let f̂(z) = (z2, z3, a(z))
T and ĝ(z) = (0, 0, b(z))T.

Choose α = 1, β = 1, ξ = 5
3 , η = 1

3 , αk = 1, βk = 1, ξk = 5
3 , and ηk = 2−k

3−k + 1
4 , k = 0, 1.

For simplicity, let w(z, u) = f̂(z) + ĝ(z)u(t). Notice that s0 = z1 and s1 = z2 + α0z
[ξ0]
1 + β0z

[η0]
1 . In

the control design (31), critical terms should be clarified:

L2
ws

[ 5
3
]

0 = Lw

(

5

3
|z1|

2
3 z2

)

=
10

9
z
[ 1
3
]

1 z22 +
5

3
|z1|

2
3 z3,
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Figure 3 Trajectories of xi. Figure 4 Trajectories of zi.

L2
ws

[ 11
12

]
0 = Lw

(

11

12
|z1|−

1
12 z2

)

= − 11

144
z
[− 13

12
]

1 z22 +
11

12
|z1|−

1
12 z3,

Lws
[ 5
3
]

1 = Lw(z2 + α0z
[ 5
3
]

1 + β0z
[ 11
12

]
1 )[

5
3
] =

5

3
|s1|

2
3

(

5

3
α0|z1|

2
3 z2 +

11

12
β0|z1|−

1
12 z2 + z3

)

,

Lws
[ 3
4
]

1 = Lw(z2 + α0z
[ 5
3
]

1 + β0z
[ 11
12

]
1 )[

3
4
] =

3

4
|s1|−

1
4

(

5

3
α0|z1|

2
3 z2 +

11

12
β0|z1|−

1
12 z2 + z3

)

.

The trajectories of x and z are depicted in Figures 3 and 4, respectively. One can observe that x
reaches zero in fixed time.

7 Conclusion

In this paper, we have presented the novel FSM control as a valuable approach for real-world applications,
offering the significant advantage that the settling time for reaching the system origin is bounded to a
constant independent of the initial condition. First, a new sliding mode control with one power term
was introduced, allowing for the power term to take any nonnegative value. Additionally, a new sliding
mode control called PSM has been proposed, whose power term is larger than 1, complementing the
traditional LSM and TSM controls. Subsequently, a new sliding mode control with two power terms was
discussed, where the new FSM control was first designed. In particular, the two power terms on the
plane in the first quadrant were discussed, and a comprehensive classification of the first quadrant into
six categories was provided, including LSM, TSM, FTSM, and PSM. Furthermore, the analytical settling
time was calculated, and three different estimation bounds of the settling time for reaching the origin
were established for any initial condition. Particularly intriguing is the derivation of the lowest bound for
the settling time, as a lower bound offers the potential for a less conservative control parameter selection,
which is a critical aspect for future research on fixed-time stability. Finally, the fixed-time sliding mode
control design for general nonlinear dynamical systems with the relative degree from the control input to
the output was also discussed, which highlights the significance and applicability of the proposed FSM
control.

Recently, sliding mode control has gained significant attention due to its superior performance and
robustness against parameter variations and disturbances. The newly proposed FSM control exhibits
more advantages in scenarios where the settling time is independent of the initial condition. Future
work will focus on exploring practical implementations of FSM control. In addition, more complicated
FSM controls will be investigated, such as FSM in multi-input multi-output (MIMO) systems, FSM in
systems with disturbances, FSM in manipulators, and other intricate cases. Thus, these studies on FSM
will certainly deserve future investigations. These would benefit the theoretical studies on sliding mode
control and its real-world applications.
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