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Abstract This paper studies the bipartite containment control problem for a network of wave equations.
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hull spanned by the leader trajectories and their opposites. A criterion for bipartite containment control

is derived by applying the constructed Lyapunov-Krasovskii functional. The well-posedness of the closed-

loop system is verified using the semigroup and induction methods. Furthermore, the effectiveness of the

theoretical results is demonstrated through numerical examples.
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1 Introduction

Recent decades have witnessed increasing research interest in cooperative control for multi-agent systems
(MASs), primarily due to its numerous advantages such as cost reduction, efficiency, robustness, and wide
applications ranging from engineering to social sciences [1–4]. In the case of multiple leaders, containment
control aims to steer all the follower states into a convex hull spanned by the leader trajectories [5, 6].
Additionally, it has provided a general method for applications such as multi-robot obstacle avoiding
and biological swarming networks [7–9], among several others. A common trait shared by these studies
involves the exclusive incorporation of cooperative interactions. Moreover, the (weighted) adjacency ma-
trix characterizing the communication topology among individuals contains only non-negative elements.
In the real world, however, the coexistence of cooperative and antagonistic interactions must also be con-
sidered. Here, a signed graph is used, which allows for both positive and negative adjacency weights [10].
This is referred to as the bipartite containment control when related to a structurally balanced signed
graph [11], in contrast to the traditional containment control formulation.

Extensive engineering applications, including attitude tracking for multiple flexible spacecraft and
cooperative control for flexible manipulators [12,13], have led to an increasing interest in the cooperative
control of MASs based on partial differential equations (PDEs) networks. The consensus problem for
networked parabolic PDEs under the undirected communication graph was solved in [14]. Boundary
control protocols were proposed in [15] to address the consensus issue for networked parabolic PDEs.
Refs. [16,17] considered the cooperative output regulation issue for parabolic agents. Recent advances also
include the leader-follower synchronization over networks of wave equations [18,19]. Bipartite consensus
for networked wave equations was studied when there exist competitive interactions [20, 21]. The scaled
consensus problem was further discussed in [22]. A general class of distributed parameter agents was
investigated using the abstract setting in [23, 24]. Additionally, Refs. [25–27] studied the networked
control of finite-dimensional MASs by employing the PDE theory. Unlike the aforementioned references,
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we primarily focus on the topic of containment control subject to antagonistic interactions from the PDE
perspective. This topic is both involving and challenging because of the complex dynamic phenomena
and abstruse theory involved. To the best of the authors’ knowledge, few results on this subject are
available in the literature.

One of the downsides uncovered in existing studies is the strong dependence of continuous input signals
on space or time. Sampled-data control that updates the signals in a discrete-time manner has been widely
implemented in some modern control systems, particularly in the finite-dimensional frameworks [28–30].
However, on the infinite-dimensional counterpart, little work on sampled-data control has been done owing
to technical difficulties. The main contributions to these results have focused on parabolic PDE systems
and sampled-data feedback controllers via matrix inequalities [31,32] and the backstepping approach [33].
Until recently, tangible progress has been made for hyperbolic systems [34,35]. In the context of abstract
infinite-dimensional systems, semigroup technology is often used for periodic sampling [36, 37]. It is
worthwhile to point out that the concept of sampled-data control has not yet been studied for cooperative
PDE-modeled MASs. The reasons can be summarized in three points: (1) An intuitive difficulty lies in the
PDE. Compared with traditional MASs, the dynamic systems described by PDEs may contain an infinite
number of eigenvalues [38], posing challenges to the problem at hand. (2) Another problem arises due to
the directed graph represented via an asymmetric Laplacian matrix. In particular, it does not satisfy the
invertible property, leading to some difficulties in analysis and synthesis. Furthermore, the eigenvalues of
the Laplacian matrix could be complex, resulting in a massive computational burden. (3) Many universal
techniques typically employed in continuous-time systems become invalid for the discrete-time case. New
tools are expected to address technical barriers in controller design and analysis caused by discrete inputs.

Consequently, we extend the concept of bipartite containment control to a network of wave equations
in the sequel. Unlike most existing studies, discrete state measurements sampled in both space and time
are used to construct the distributed control protocol with variable and bounded sampling intervals. It
should be noted that the extension is nontrivial and the introduced discontinuous input signals always
result in challenging analysis. To address this issue, a suitable Lyapunov-Krasovskii functional is proposed
to ensure the bipartite containment control of the underlying system. Subsequently, sufficient conditions
that ensure the goal and convergence rate are obtained simultaneously. Moreover, well-posedness is
guaranteed by the semigroup and induction methods. The contributions of this study are threefold:

(i) Competitive interactions are considered, and the bipartite containment control problem as well as
its well-posedness is solved within the PDE framework, thus extending the previous bipartite containment
control in a finite-dimensional setting.

(ii) A distributed sampled-data control scheme is provided to ensure bipartite containment control.
This strategy can operate feasibly and fulfill the digital signal requirement, whereas some continuous
inputs in [14, 15, 18, 19] rely on uninterrupted updates.

(iii) The directed communication topology used in this paper relaxes the undirected and connected
constraints in [15, 18]. Therefore, the derived results will be used in more general situations.

The remainder of this paper is organized as follows. Section 2 presents the studied problem and
discusses some of the preliminaries. The bipartite containment control is achieved using the proposed
distributed sampled-data protocol in Section 3. Moreover, the well-posedness analysis of the closed-loop
system is provided in Section 4. Several numerical simulations are presented in Section 5 to verify the
effectiveness of the theoretical results. Finally, Section 6 concludes this paper.

2 Preliminaries and problem description

2.1 Notations and useful lemma

Symbols 1N = (1, 1, . . . , 1)⊤ and 0N = (0, 0, . . . , 0)⊤ refer to the all-ones and all-zeros vectors, respec-
tively. RN stands for the N -dimensional real vector space. Space R

N×N includes all N ×N -dimensional
matrices with real elements.

The following inequality will be helpful.

Lemma 1 ([39], Halanay’s inequality). For 0 < α1 < α0 and an absolutely continuous function V :
[t0 − T,∞) → [0,∞), if

V̇ (t) + 2α0V (t)− 2α1 sup
−T6θ60

V (t+ θ) 6 0, t > t0,
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then

V (t) 6 e−2α(t−t0) sup
−T6θ60

V (t0 + θ), t > t0,

where α > 0 is the unique positive solution of α = α0 − α1e
2αT .

2.2 Problem statement

Consider a collection of N followers and M leaders, with notations vf (x, t) , (v1(x, t), . . . , vN (x, t))⊤ ∈
R

N and vl(x, t) , (vN+1(x, t), . . . , vN+M (x, t))⊤ ∈ R
M reflecting the transverse deflections of the followers

and leaders at position x ∈ (0, 1) and time t ∈ [0,∞), respectively. Then, the dynamics of networked
PDEs can be given by























vtt(x, t) = vxx(x, t) + U(x, t),

v(0, t) = 0N+M ,

vx(1, t) = −vt(1, t),

v(x, t0) = v0(x), vt(x, t0) = v1(x),

(1)

where v(x, t) , (vf⊤(x, t), vl⊤(x, t))⊤ ∈ R
N+M . Without loss of generality, vt (vx) and vtt (vxx) represent

the abbreviations for the first and second order derivatives of v with respect to time t (position x),
respectively. v0(x) and v1(x) are the initial deflection and velocity of N +M PDE agents. Let U(x, t) ,
(u⊤(x, t),0⊤

M )⊤, in which u(x, t) , (u1(x, t), . . . , uN(x, t))⊤ ∈ R
N corresponds to the control protocol

acting on the followers.
In this study, the interaction among PDE agents is described by a (weighted) signed digraph G , {V , E},

where V , {1, 2, . . . , N +M} is the set of agents and E ⊆ V ×V = {(i, j) : i, j ∈ V} refers to the edge set
such that (i, j) is a directed edge from j to i. The elements of adjacency matrix A , (aij)(N+M)×(N+M)

denotes signed weights: aij > 0 (aij < 0) if there exists friendly (adversarial) interaction between
the two agents. Otherwise, aij = 0. Furthermore, there is no self-loop in the graph, i.e., aii = 0.
The signed digraph is digon sign-symmetric if aijaji > 0 for any i, j ∈ V . Let the degree matrix

D , diag{D1, . . . ,DN+M} in which Di =
∑N+M

j=1 |aij |. Then, in the case of no information exchange
among the leaders, the corresponding Laplacian matrix can be represented by

L , D −A =

(

L1 L2

0M×N 0M×M

)

,

where L1 , Lf + diag
{
∑N+M

j=N+1 |a1j |, . . . ,
∑N+M

j=N+1 |aNj |
}

∈ R
N×N , L2 ∈ R

N×M , 0M×N and 0M×M

are real matrices with proper dimensions. Additionally, Lf is the Laplacian matrix associated with the

adjacency matrix of Ḡ , {V̄, Ē} which is composed of the followers set V̄ , {1, 2, . . . , N} and the edges
set Ē ⊆ V̄ × V̄. The signed subgraph Ḡ is structurally balanced if there is a bipartition {V̄1, V̄2} such that
V̄1 ∪ V̄2 = V̄ , V̄1 ∩ V̄2 = ∅, and

(i) aij > 0, i, j ∈ V̄p, p = 1, 2,
(ii) aij 6 0, i ∈ V̄p, and j ∈ V̄r, p 6= r.
Otherwise, the subgraph Ḡ is structurally unbalanced. Let σi = 1 for i ∈ V̄1 and σi = −1 for i ∈ V̄2.

In addition, let D , diag{σ1, σ2, . . . , σN}.
Our goal is to provide an appropriate distributed protocol such that the PDE multi-agent system (1)

achieves bipartite containment control. In such a case, the follower states of different subgroups converge
to a convex hull spanned by the leader orbits and their opposite trajectories. This case necessitates the
following assumptions.

Assumption 1. For each follower, there must be at least one leader transmitting information to the
follower.

Assumption 2. For subgraph Ḡ, the communication topology is structurally balanced.

In terms of Assumptions 1 and 2, the following lemmas can be derived.

Lemma 2 ([7, 11]). Matrix L1 is nonsingular, and all its eigenvalues have positive real parts.

Lemma 3 ([7]). DL1D is a nonsingular M -matrix. Additionally, each element of matrix −DL−1
1 DL2 is

non-negative, with all row sums being 1. Therefore, −DL−1
1 DL2Y is a convex hull spanned by multiple

leader states with Y , (Y1, Y2, . . . , YM )⊤.
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We are now in the position to formulate the definition of bipartite containment control in terms of
Lemma 3.

Definition 1 (Bipartite containment control). For system (1), if

lim
t→∞

∥

∥Dvf (·, t) +DL−1
1 DL2v

l(·, t)
∥

∥

L2 = 0,

we say that it achieves bipartite containment control in the sense of L2.

Remark 1. Note that the traditional graph associated with the non-negative adjacency weight matrices
can be regarded as a special case of a structurally balanced signed one. In this case, the MASs achieve
containment control.

3 Protocol design and bipartite containment control

In this section, a control protocol is developed using measurements obtained from sampled data in space
and time to ensure bipartite containment control.

Specifically, the sampling time instants are

0 = t0 < t1 < · · · < tk, lim
k→∞

tk = ∞.

The space segment [0, 1] is divided into m sampling intervals by m+1 points 0 = x0 < x1 < · · · < xm = 1.
Through the sensors placed at the center point x̄j =

xj+xj+1

2 of each space interval [xj , xj+1], output
information v(x̄j , tk), j = 0, 1, . . . ,m− 1, k = 0, 1, 2, . . . , is transmitted. Here, the sampling intervals in
terms of time and space are bounded by positive constants T and X , that is,

0 < tk+1 − tk 6 T, xj+1 − xj 6 X.

We propose the distributed protocol based on the sampling information as follows:

U(x, t) =

(

−κ
∑m−1

j=0 χj(x)L1ǫ(x̄j , tk)

0M

)

, (2)

where κ > 0 is the control gain and

ǫ(x, t) , Dvf (x, t) +DL−1
1 DL2v

l(x, t) (3)

is the error vector. Obviously, the error ǫ(x, t) satisfies














ǫtt(x, t) = ǫxx(x, t)− κ
∑m−1

j=0 χj(x)DL1ǫ(x̄j , tk),

ǫ(0, t) = 0N , ǫx(1, t) = −ǫt(1, t),

ǫ(x, 0) = ǫ0(x), ǫt(x, 0) = ǫ1(x).

(4)

Note that the multi-agent system (1) achieves bipartite containment control if the error system (4) is
asymptotically stable. For this purpose, let us introduce new variables

R(x, t) , ǫt(x, t)− ǫx(x, t),

Q(x, t) , ǫt(x, t) + ǫx(x, t). (5)

Following [40], system (4) can be transformed into a characteristic form in the Riemann coordinates














Rt(x, t) = −Rx(x, t) − κDL1ǫ(x, t) + σ,

Qt(x, t) = Qx(x, t)− κDL1ǫ(x, t) + σ,

R(0, t) = −Q(0, t), Q(1, t) = 0N ,

(6)

in which

σ = κ

m−1
∑

j=0

χj(x)DL1

[

(t− tk)w +

∫ x

x̄j

ǫξ(ξ, tk)dξ

]

,
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w =
1

t− tk

∫ t

tk

ǫs(x, s)ds. (7)

The following Lyapunov-Krasovskii functional is constructed to ensure that system (6), equivalently
the error system (4), is asymptotically stable:

V (t) = Vq(t) + Vγ(t), t ∈ [tk, tk+1), (8)

where

Vq(t) =

∫ 1

0

q1e
−µxR⊤(x, t)R(x, t) + q2e

µxQ⊤(x, t)Q(x, t)dx,

Vγ(t) = γ

∫ 1

0

[

(tk+1 − t)

∫ t

tk

e2α0(s−t)ǫ⊤s (ξ, s)ǫs(ξ, s)ds

]

dξ,

with positive parameters q1, q2, µ, γ, and α0.
The following theorem is derived as the main result of this section using Halanay’s inequality.

Theorem 1. Suppose that Assumptions 1 and 2 hold true. Subject to the conditions X > 0 and T > 0,
if the parameters in Lyapunov-Krasovskii functional (8) satisfy















0 6 q2 − q1,

q1 + q2 6 1,

0 < α1 < α0 < 1
2µ,

(9)

and

γ <
2(µ− 2α0)

T
min

{

q1e
−2µ, q2e

−µ
}

, (10)

then one can choose

0 < τ1 6 4α1min
{

q1e
−µ, q2

}

(11)

and

0 < κ < min

{

(µ− 2α0)q1 −
γ
2 (T − s)e2µ

2q1 + q1s+
2
π

2λmax(L⊤
1 L1)e2µ

,
(µ− 2α0)q2e

−µ − γ
2 (T − s)

2q2 + q2s+
2
π

2λmax(L⊤
1 L1)

,

τ1π
2

X2(q1 + q2)λmax(L⊤
1 L1)

,
γe−2α0T

(q1 + q2)λmax(L⊤
1 L1)

}

, s = 0, T, (12)

such that the PDEmulti-agent system (1) with control protocol (2) achieves bipartite containment control.

Proof. Differentiating Vq(t) along the trajectory of error system (6) and integrating by parts, one
obtains

V̇q(t) = 2

∫ 1

0

q1e
−µxR⊤(x, t)Rt(x, t)dx + 2

∫ 1

0

q2e
µxQ⊤(x, t)Qt(x, t)dx

= 2

∫ 1

0

[

q1e
−µxR⊤(x, t) + q2e

µxQ⊤(x, t)
][

− κDL1ǫ(x, t) + σ
]

dx

− 2

∫ 1

0

q1e
−µxR⊤(x, t)Rx(x, t)dx + 2

∫ 1

0

q2e
µxQ⊤(x, t)Qx(x, t)dx

= −

∫ 1

0

q1e
−µx ∂

∂x
(R⊤R)dx+

∫ 1

0

q2e
µx ∂

∂x
(Q⊤Q)dx

+ 2

∫ 1

0

[

q1e
−µxR⊤(x, t) + q2e

µxQ⊤(x, t)
][

− κDL1ǫ(x, t) + σ
]

dx

= − q1e
−µR⊤(1, t)R(1, t) + q1R

⊤(0, t)R(0, t) + q2e
µQ⊤(1, t)Q(1, t)− q2Q

⊤(0, t)Q(0, t)
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− µ

∫ 1

0

q1e
−µxR⊤(x, t)R(x, t)dx − µ

∫ 1

0

q2e
µxQ⊤(x, t)Q(x, t)dx

+ 2

∫ 1

0

[

q1e
−µxR⊤(x, t) + q2e

µxQ⊤(x, t)
][

− κDL1ǫ(x, t) + σ
]

dx.

Therefore, by substituting the boundary conditions, it is evident that

V̇q(t) = − q1e
−µR⊤(1, t)R(1, t)− (q2 − q1)R

⊤(0, t)R(0, t)− µVq(t)

+ 2

∫ 1

0

[

q1e
−µxR⊤(x, t) + q2e

µxQ⊤(x, t)
][

− κDL1ǫ(x, t) + σ
]

dx.

Analogously, by taking the derivative of Vγ(t), one derives

V̇γ(t) + 2α0Vγ(t)

6 −γ

∫ 1

0

[∫ t

tk

e2α0(s−t)ǫ⊤s (ξ, s)ǫs(ξ, s)ds

]

dξ + γ(tk+1 − t)

∫ 1

0

ǫ⊤t (x, t)ǫt(x, t)dx.

Combining the above inequalities, we arrive at

V̇ (t) + 2α0V (t)− 2α1 sup
−T6θ60

V (t+ θ)

6 V̇ (t) + 2α0V (t)

− 2α1

∫ 1

0

q1e
−µxR⊤(x, tk)R(x, tk)dx− 2α1

∫ 1

0

q2e
µxQ⊤(x, tk)Q(x, tk)dx

6 −q1e
−µR⊤(1, t)R(1, t)− (q2 − q1)R

⊤(0, t)R(0, t)− (µ− 2α0)Vq(t)

+ 2

∫ 1

0

[

q1e
−µxR⊤(x, t) + q2e

µxQ⊤(x, t)
][

− κDL1ǫ(x, t) + σ
]

dx

− γ

∫ 1

0

[ ∫ t

tk

e2α0(s−t)ǫ⊤s (ξ, s)ǫs(ξ, s)ds

]

dξ + γ(tk+1 − t)

∫ 1

0

ǫ⊤t (x, t)ǫt(x, t)dx

− 2α1

∫ 1

0

q1e
−µxR⊤(x, tk)R(x, tk)dx− 2α1

∫ 1

0

q2e
µxQ⊤(x, tk)Q(x, tk)dx. (13)

Applying Jensen’s inequality, we have

− γ

∫ 1

0

[ ∫ t

tk

e2α0(s−t)ǫ⊤s (ξ, s)ǫs(ξ, s)ds

]

dξ

6 −γe−2α0T

∫ 1

0

[ ∫ t

tk

ǫ⊤s (ξ, s)ǫs(ξ, s)ds

]

dξ

6 −γe−2α0T

∫ 1

0

1

t− tk

[ ∫ t

tk

ǫs(ξ, s)ds

]⊤[∫ t

tk

ǫs(ξ, s)ds

]

dξ

= −γe−2α0T (t− tk)

m−1
∑

j=0

∫ xj+1

xj

w⊤wdx. (14)

In addition, according to the definitions of R(x, t) and Q(x, t) in (5), one gets

γ(tk+1 − t)

∫ 1

0

ǫ⊤t (x, t)ǫt(x, t)dx

=
γ

4
(tk+1 − t)

m−1
∑

j=0

∫ xj+1

xj

[

Q⊤(x, t) +R⊤(x, t)
][

Q(x, t) +R(x, t)
]

dx. (15)

Therefore, substitute (14) and (15) into (13) to obtain

V̇ (t) + 2α0V (t)− 2α1 sup
−T6θ60

V (t+ θ)
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6 −q1e
−µR⊤(1, t)R(1, t)− (q2 − q1)R

⊤(0, t)R(0, t)

− (µ− 2α0)

m−1
∑

j=0

∫ xj+1

xj

q1e
−µxR⊤(x, t)R(x, t)dx − (µ− 2α0)

m−1
∑

j=0

∫ xj+1

xj

q2e
µxQ⊤(x, t)Q(x, t)dx

− 2κ

m−1
∑

j=0

∫ xj+1

xj

q1e
−µxR⊤(x, t)DL1ǫ(x, t)dx − 2κ

m−1
∑

j=0

∫ xj+1

xj

q2e
µxQ⊤(x, t)DL1ǫ(x, t)dx

+ 2κ

m−1
∑

j=0

∫ xj+1

xj

[

q1e
−µxR⊤(x, t) + q2e

µxQ⊤(x, t)
]

DL1

[

(t− tk)w +

∫ x

x̄j

ǫξ(ξ, tk)dξ

]

dx

− γe−2α0T (t− tk)

m−1
∑

j=0

∫ xj+1

xj

w⊤wdx

+
γ

4
(tk+1 − t)

m−1
∑

j=0

∫ xj+1

xj

[

Q⊤(x, t) +R⊤(x, t)
][

Q(x, t) +R(x, t)
]

dx

− 2α1

m−1
∑

j=0

∫ xj+1

xj

q1e
−µxR⊤(x, tk)R(x, tk)dx− 2α1

m−1
∑

j=0

∫ xj+1

xj

q2e
µxQ⊤(x, tk)Q(x, tk)dx. (16)

Moreover, by resorting to Wirtinger’s inequality in [41], it is revealed that

∫ 1

0

ǫ⊤(x, t)L⊤
1 L1ǫ(x, t)dx 6

λmax

(

L⊤
1 L1

)

π
2

∫ 1

0

[

Q⊤(x, t) −R⊤(x, t)
][

Q(x, t)−R(x, t)
]

dx

and

1

4

∫ xj+1

xj

[

ǫ(x, tk)− ǫ(x̄j , tk)
]⊤[

ǫ(x, tk)− ǫ(x̄j , tk)
]

dx

=
1

4

∫ x̄j

xj

[

ǫ(x, tk)− ǫ(x̄j , tk)
]⊤[

ǫ(x, tk)− ǫ(x̄j , tk)
]

dx

+
1

4

∫ xj+1

x̄j

[

ǫ(x, tk)− ǫ(x̄j , tk)
]⊤[

ǫ(x, tk)− ǫ(x̄j , tk)
]

dx

6
X2

4π2

∫ x̄j

xj

ǫ⊤x (x, tk)ǫx(x, tk)dx+
X2

4π2

∫ xj+1

x̄j

ǫ⊤x (x, tk)ǫx(x, tk)dx

=
X2

4π2

∫ xj+1

xj

ǫ⊤x (x, tk)ǫx(x, tk)dx.

Consequently, we have

κ

π
2

m−1
∑

j=0

∫ xj+1

xj

λmax

(

L⊤
1 L1

)

s
[

Q⊤(x, t) −R⊤(x, t)
][

Q(x, t)−R(x, t)
]

dx

− κ

m−1
∑

j=0

∫ xj+1

xj

ǫ⊤(x, t)L⊤
1 L1ǫ(x, t)dx > 0, (17)

and

τ1

4

m−1
∑

j=0

∫ xj+1

xj

[

Q(x, tk)−R(x, tk)
]⊤[

Q(x, tk)−R(x, tk)
]

dx

− τ1
π
2

X2

m−1
∑

j=0

∫ xj+1

xj

∫ x

x̄j

ǫ⊤ξ (ξ, tk)dξ

∫ x

x̄j

ǫξ(ξ, tk)dξdx > 0, (18)
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where τ1 > 0. To address the positive terms in (16), we introduce the non-negative items (17) and (18)
for (16) to obtain

V̇ (t) + 2α0V (t)− 2α1 sup
−T6θ60

V (t+ θ)

6 −q1e
−µR⊤(1, t)R(1, t)− (q2 − q1)R

⊤(0, t)R(0, t)

− (µ− 2α0)

m−1
∑

j=0

∫ xj+1

xj

q1e
−µxR⊤(x, t)R(x, t)dx − (µ− 2α0)

m−1
∑

j=0

∫ xj+1

xj

q2e
µxQ⊤(x, t)Q(x, t)dx

− 2κ

m−1
∑

j=0

∫ xj+1

xj

[

q1e
−µxR⊤(x, t) + q2e

µxQ⊤(x, t)
]

DL1ǫ(x, t)dx− γe−2α0T (t− tk)

m−1
∑

j=0

∫ xj+1

xj

w⊤wdx

+ 2κ
m−1
∑

j=0

∫ xj+1

xj

[

q1e
−µxR⊤(x, t) + q2e

µxQ⊤(x, t)
]

DL1

[

(t− tk)w +

∫ x

x̄j

ǫξ(ξ, tk)dξ

]

dx

+
γ

4
(tk+1 − t)

m−1
∑

j=0

∫ xj+1

xj

[

Q⊤(x, t) +R⊤(x, t)
][

Q(x, t) +R(x, t)
]

dx

− κ

m−1
∑

j=0

∫ xj+1

xj

ǫ⊤(x, t)L⊤
1 L1ǫ(x, t)dx

− 2α1

m−1
∑

j=0

∫ xj+1

xj

[

q1e
−µxR⊤(x, tk)R(x, tk) + q2e

µxQ⊤(x, tk)Q(x, tk)

]

dx

+
κ

π
2

m−1
∑

j=0

∫ xj+1

xj

λmax

(

L⊤
1 L1

)[

Q⊤(x, t)−R⊤(x, t)
][

Q(x, t)−R(x, t)
]

dx

+
τ1

4

m−1
∑

j=0

∫ xj+1

xj

[

Q(x, tk)−R(x, tk)
]⊤[

Q(x, tk)−R(x, tk)
]

dx

− τ1
π
2

X2

m−1
∑

j=0

∫ xj+1

xj

[ ∫ x

x̄j

ǫξ(ξ, tk)dξ

]⊤[ ∫ x

x̄j

ǫξ(ξ, tk)dξ

]

dx. (19)

Define vectors

Y1 =

[

e−µxR⊤(x, t), eµxQ⊤(x, t), w⊤,

∫ x

x̄j

ǫ⊤ξ (ξ, tk)dξ, ǫ
⊤(x, t)L⊤

1

]⊤

,

Y2 =
[

R⊤(x, tk), Q
⊤(x, tk)

]⊤
. (20)

Then Eq. (19) can be rewritten in the following form:

V̇ (t) + 2α0V (t)− 2α1 sup
−T6θ60

V (t+ θ) 6 −q1e
−µR⊤(1, t)R(1, t)− (q2 − q1)R

⊤(0, t)R(0, t)

+

m−1
∑

j=0

∫ xj+1

xj

Y ⊤
1 (Ξ1 ⊗ IN )Y1 + Y ⊤

2 (Ξ2 ⊗ IN )Y2dx, (21)

where

Ξ2 ,

(

−2α1q1e
−µx + τ1

2 0

0 −2α1q2e
µx + τ1

2

)
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and

Ξ1 ,



















Ξ11 0 0 0 0

0 Ξ22 0 0 0

0 0 Ξ33 0 0

0 0 0 Ξ44 0

0 0 0 0 −κ(1− q1 − q2)



















with the diagonal elements being

Ξ11 =− (µ− 2α0)q1e
µx + 2κq1 + κq1(t− tk) +

γ

2
(tk+1 − t)e2µx +

2κ

π
2
λmax

(

L⊤
1 L1

)

e2µx,

Ξ22 =− (µ− 2α0)q2e
−µx + 2κq2 + κq2(t− tk) +

γ

2
(tk+1 − t)e−2µx +

2κ

π
2
λmax

(

L⊤
1 L1

)

e−2µx,

Ξ33 =− γe−2α0T (t− tk) + κ(q1 + q2)(t− tk)λmax

(

L⊤
1 L1

)

,

Ξ44 =− τ1
π
2

X2
+ κ(q1 + q2)λmax(L

⊤
1 L1).

Let

Ξ̄11 =− (µ− 2α0)q1 + 2κq1 + κq1τ(t) +
γ

2
(T − τ(t))e2µ +

2κ

π
2
λmax

(

L⊤
1 L1

)

e2µ, (22)

Ξ̄22 =− (µ− 2α0)q2e
−µ + 2κq2 + κq2τ(t) +

γ

2
(T − τ(t)) +

2κ

π
2
λmax

(

L⊤
1 L1

)

, (23)

Ξ̄33 =− γe−2α0T τ(t) + κ(q1 + q2)τ(t)λmax

(

L⊤
1 L1

)

, (24)

Ξ̄44 =− τ1
π
2

X2
+ κ(q1 + q2)λmax(L

⊤
1 L1). (25)

Then, by upper bounding the diagonal elements in the matrices Ξ1 and Ξ2, one has

Ξ1 6 Ξ̄1 ,



















Ξ̄11 0 0 0 0

0 Ξ̄22 0 0 0

0 0 Ξ̄33 0 0

0 0 0 Ξ̄44 0

0 0 0 0 −κ(1− q1 − q2)



















, (26)

Ξ2 6 Ξ̄2 ,

(

−2α1q1e
−µ + τ1

2 0

0 −2α1q2 +
τ1
2

)

.

Note that Theorem 1 is verified once the matrices Ξ̄1 and Ξ̄2 are semi-negative definite and the following
conditions hold simultaneously:

{

0 6 q2 − q1,

0 < α1 < α0 < 1
2µ.

Furthermore, for proper parameters q1,2, µ, α0,1, and τ1 satisfying inequalities (9) and (11), Ξ̄2 6 0 is
easily obtained. Next, if Eq. (10) holds for sampling intervals in space X > 0 and time T > 0, the matrix
Ξ̄1 is semi-negative definite by (12) and (26). Therefore, it derives

V̇ (t) + 2α0V (t)− 2α1 sup
−T6θ60

V (t+ θ) 6 0.

Finally, the conclusion is verified according to Lemma 1.

Remark 2. Other types of the Lyapunov-Krasovskii functional can be chosen. However, it may also
increase computational complexity. In this paper, we choose the Lyapunov function Vq(t) following the
idea of [40], which can be viewed as the system energy. Furthermore, function Vγ(t) is the simplest
Lyapunov-Krasovskii term that treats sampled-data systems (see [42] for details).
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Remark 3. The scalars q1 and q2 are introduced to make parameter selection more flexible. It is obvious
from (10)–(12) that they will affect τ1, γ, and control gain κ directly. In particular, formulas (22)–(25)
imply that the control gain κ should not be so large that one can guarantee the bipartite containment
control.

4 Well-posedness

In this section, the well-posedness of the PDE multi-agent system (1) with control protocol (2) is es-
tablished. The induction method is used instead of the common techniques adopted by continuous-time
systems due to the introduction of discrete sampled-data control law.

Some preliminary knowledge is necessary for clarifying the main result in this part. For brevity, we use
the notation L2(0, 1) for the standard space of square-integrable scalar functions defined on the interval
(0, 1). The symbol Hk(0, 1) (k = 1, 2) refers to the Sobolev space containing all the functions in L2(0, 1)
with all its weak derivatives up to order k also belonging to L2(0, 1). Let H0 = H1

0 (0, 1)×L2(0, 1) where
H1

0 (0, 1) = {f(·) ∈ H1(0, 1)|f(0) = 0}. The induced norm for any (f, g) ∈ H0 is

‖(f, g)‖H0
=

∫ 1

0

[

|f ′(x)|2 + |g(x)|2
]

dx.

Furthermore, we employ HN+M
0 (0, 1) = H

1,N+M
0 (0, 1) × L2,N+M(0, 1), in which H

1,N+M
0 (0, 1) and

L2,N+M (0, 1) are utilized for the Cartesian product of N +M spaces H1
0 (0, 1) and L2(0, 1), respectively.

For any (f, g) ∈ HN+M
0 , the corresponding norm is

‖(f, g)‖HN+M
0

=

√

√

√

√

N+M
∑

i=1

‖(fi, gi)‖2H0
.

Theorem 2. For any initial values (v0(x), v1(x)) ∈ C
(

[0,+∞),HN+M
0 (0, 1)

)

, the closed-loop multi-agent
system consisting of (1) and sampled-data control protocol (2) has a unique solution (v(x, t), vt(x, t)) ∈
C
(

[0,+∞),HN+M
0 (0, 1)

)

.

Proof. Considering the control protocol (2), it is evident that the leader part is well-posed. As a result
of the definition (3), the theorem can be established once the error system (4) contains a unique solution.

To this end, the error system (4) is represented as an abstract differential equation

d

dt
(ǫi(·, t), ǫit(·, t)) = A(ǫi(·, t), ǫit(·, t)) + (0, F1(ǫi, ·, t)) (27)

with

F1(ǫi, ·, t) =− κ

m−1
∑

j=0

χj(x)σibii

[

ǫi(·, tk)−

∫ x

x̄j

ǫiξ(ξ, tk)dξ

]

+ κ

m−1
∑

j=0

χj(x)

N
∑

r=1,r 6=i

σibir

∫ x

x̄j

ǫrξ(ξ, tk)dξ − κ

m−1
∑

j=0

χj(x)

N
∑

r=1,r 6=i

σibirǫr(·, tk),

where bij , i, j ∈ {1, . . . , N} are the elements in matrix L1, t ∈ [tk, tk+1]. Besides, the operator A has the
following form:















A(f, g) = (g, f ′′), ∀(f, g) ∈ D(A),

D(A) =

{

(f, g) ∈

H2(0, 1)×H1(0, 1)

∣

∣

∣

∣

∣

f(0) = 0

f ′(1) = −g(1)

}

.

Simple calculations reveal that the operator A generates a C0-semigroup of contractions via the Lumer-
Phillips theorem [43].

First, let us focus on the initialization interval [0, t1] and prove that the unique solution of the closed-
loop system belongs to a functional space. For interval [0, t1], it has

F1(ǫi, ·, t) =− κ

m−1
∑

j=0

χj(x)σibii

[

ǫi(·, 0)−

∫ x

x̄j

ǫiξ(ξ, 0)dξ

]
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Figure 1 (Color online) Communication topology.

Table 1 Parameters for bipartite containment control

Name Parameter value

Space sampling interval X = 0.1

Time sampling interval T = 1 s

Followers’ initial values

v10(x) = sin(2πx), v11(x) = 0.5x

v20(x) = sin(2πx+ 1) − sin(1), v21(x) = −x

v30(x) = sin(2πx+ 2) − sin(2), v31(x) = 2x

v40(x) = sin(2πx+ 3) − sin(3), v41(x) = 4x

Leader’s initial values
v50(x) = 1 − cos(πx), v51(x) = arctan(x)

v60(x) = cos(2πx)− 1, v61(x) = sin(πx)

Control gain κ = 0.1 × 10−3

Parameters in Halanay’s inequality α0 = 0.5, α1 = 0.1

− κ

m−1
∑

j=0

χj(x)
N
∑

r=1,r 6=i

σibirǫr(·, 0) + κ

m−1
∑

j=0

χj(x)
N
∑

r=1,r 6=i

σibir

∫ x

x̄j

ǫrξ(ξ, 0)dξ.

The function F1 is continuous in t and uniformly Lipschitz continuous with respect to ǫi. In terms
of [43, Theorem 6.1.2], it can be seen that for any initial condition (ǫi(x, 0), ǫit(x, 0)) ∈ H0(0, 1), there
exists a unique solution (ǫi(x, t), ǫit(x, t)) ∈ C

(

[0, t1],H0(0, 1)
)

.
In case that a unique trajectory (ǫi(x, t), ǫit(x, t)) ∈ C([tk, tk+1],H0(0, 1)) persists for system (27) on

time interval [tk, tk+1]. Then, the initial state satisfies (ǫi(x, tk+1), ǫit(x, tk+1)) ∈ H0(0, 1) over time
interval [tk+1, tk+2], and one can find that

F1(ǫi, ·, t) =− κ

m−1
∑

j=0

χj(x)σibii

[

ǫi(·, tk+1)−

∫ x

x̄j

ǫiξ(ξ, tk+1)dξ

]

− κ

m−1
∑

j=0

χj(x)
N
∑

r=1,r 6=i

σibir

[

ǫr(·, tk+1)−

∫ x

x̄j

ǫrξ(ξ, tk+1)dξ

]

.

Applying [43, Theorem 6.1.2], (ǫi(x, t), ǫit(x, t)) ∈ C
(

[tk+1, tk+2],H0(0, 1)
)

is the unique solution of system
(27) over time interval t ∈ [tk+1, tk+2].

By induction, for any natural number k, we can ensure the existence and uniqueness of solution
(ǫi(x, t), ǫit(x, t)) ∈ C

(

[0,+∞),H0(0, 1)
)

for error system (27). Therefore, the theorem is fulfilled on
account of definition (3) and the leaders’ dynamic equations.

5 Numerical simulations

This section discusses some numerical results that verify the effectiveness of the proposed control protocol.
To proceed with the simulations clearly, the results are displayed at uniform sampling intervals, and the
Chebyshev method is used.

Figure 1 is the communication topology, where the agents indexed by 5, 6 are leaders and others
are followers. The followers can be divided into two opposing groups: V1 = {2, 3} and V2 = {1, 4}.
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Figure 2 (Color online) Evolution of the components of error ǫ(x, t) over position x and time t. (a) ǫ1(x, t); (b) ǫ2(x, t);

(c) ǫ3(x, t); (d) ǫ4(x, t).
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Figure 3 (Color online) Integration of error elements ǫi(x, t), i ∈ {1, . . . , 4}.

Moreover, communication among agents in the same group is positive (friendly), and it becomes negative
(unfavorable) for agents from different groups. Table 1 lists the parameters used in this simulation.

From Figure 2, the errors ǫi(x, t), i ∈ {1, . . . , 4} converge to zero eventually, which implies that bipartite
containment control is guaranteed under the designed sampled-data protocol. Furthermore, to illustrate
the results intuitively, Figure 3 exhibits the evolution of integration δi(t), i ∈ {1, . . . , 4} along with time t.

Here, the notation δi(t) is defined by δi(t) =
∫ 1

0 ǫi(x, t)dx. In terms of the simulation results, the proposed
distributed sampled-data protocol renders the PDE followers into a convex hull spanned by leader states
and their opposites. Thus, numerical simulations have verified the effectiveness of our proposed strategy.
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6 Conclusion

In this paper, the infinite-dimensional bipartite containment control problem has been addressed. A
sampled-data control protocol has been constructed to pursue the object. Subsequently, the well-
posedness issue of the closed-loop system was discussed via the semigroup and induction approach.
Finally, numerical simulations are provided to support our theoretical findings.
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