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Abstract This paper addresses an optimal, cooperative output regulation problem for multi-agent sys-

tems with distributed denial of service attacks and unknown system dynamics. Unlike existing studies, the

proposed solution is essentially a learning-based control strategy such that one can obtain a distributed con-

trol policy with internal models through online data and analyze the resilience of closed-loop systems, both

without the precise knowledge of system dynamics in the state-space model. The efficiency of the proposed

methodology is validated using computer simulations.
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1 Introduction

Cooperative output regulation is concerned with enabling multiple autonomous systems to track some
reference signals and reject some disturbances, where references and disturbances are generated by an
autonomous system named the exosystem or the leader [1–5]. The problem itself, therefore, includes the
leader-follower consensus problem of multi-agent systems as a special case. Moreover, some communica-
tion constraints are usually found in the cooperative output regulation problem, such that some agents
cannot directly communicate with the leader, making the problem more challenging.

To address cooperative output regulation problems, distributed control techniques [6, 7] have been
introduced and combined with either feedback-feedforward control or the internal model principle, which
are popular strategies for solving traditional output regulation problems. When the leader’s system
dynamics is unavailable for all other agents, a distributed adaptive internal model may be used [8],
which comprises an adaptive distributed observer [9] and a distributed internal model. However, most
of the present studies on cooperative output regulation problems have neglected the optimality of the
closed-loop system with unknown system dynamics.

Adaptive dynamic programming (ADP) is a learning-based adaptive optimal control method that can
be applied to learn toward the optimal control policy through online collections with unknown or uncertain
system dynamics [10–14]. Therefore, it is a good candidate for addressing the cooperative optimal output
regulation problem in a data-driven manner; see [8, 15, 16]. Nevertheless, most learning-based solutions
to cooperative (optimal) output regulation problems assume that the system is not under cyberattacks.
The purpose of this paper is to investigate when multi-agent systems in a closed loop with learned control
policies are sufficiently resilient against malicious cyberattacks.
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Denial of service (DoS) attacks are very common in modern control and communication systems, and
they usually prevent single-agent systems or multi-agent systems as a whole from sensing or actuating
information through network communication, which, for instance, has been studied in [17, 18]. As an
enhancement of DoS attacks, distributed DoS (DDoS) attacks, which have been reported since the 1990s,
leverage coordinated DoS attacks to disrupt an agent’s connectivity in multi-agent systems; see [19, 20].
Unlike DoS attacks, DDoS attacks characterize the duration and frequency of attacks under a specific
agent or a communication edge between agents.

To ensure the cybersecurity of control systems with respect to DDoS attacks, the event-triggered
mechanism [21] and adaptive distributed resilient observers [22] were developed under the assumption
that the system dynamics is known exactly.

In this paper, we aim to solve the cooperative optimal output regulation problems of multi-agent
systems under DDoS attacks and unknown system dynamics. The technical difficulties and main con-
tributions are summarized as follows. First, as we considered the onslaught of malicious DDoS attacks,
traditional optimal controller design methods may not apply to achieving cooperative output regulation.
To address this conundrum, we developed a learning-based control strategy based on ADP such that
the optimal control gains can be learned in terms of online data with DDoS attacks. Second, analyzing
the resilience of closed-loop systems against DDoS attacks is challenging, particularly when the system
dynamics is not known exactly. To address this challenge, we applied the notion of input-to-state stabil-
ity, Lyapunov stability theory, and comparison functions to propose a novel resilience analysis method
for estimating the upper bound of DDoS attack duration that the closed-loop system can endure. Note
that this analysis does not rely on the knowledge of any system matrices in the state equations. Third,
the assumptions of DDoS attacks in this paper are made with respect to each agent, not the entire net-
work [22] or the communication edges [21,23]. This approach is more explicit if the designer is interested
in observing the performance of specific agents.

The remainder of this paper is organized as follows. In Section 2, we formulate the control problem
and recall preliminaries regarding the internal model principle and cooperative optimal output regulation.
In Section 3, we include the data-driven controller design and resilience analysis with respect to DDoS
attacks. To illustrate the efficiency of the proposed research, simulations and discussions are provided in
Section 4. The conclusion is presented in Section 5.

Notations. Throughout this paper, R denotes the set of real numbers, R+ the set of nonnegative
real numbers, Z+ the set of nonnegative integers, and N+ the set of positive integers. The operator
| · | represents the Euclidean norm for vectors and the induced norm for matrices. ⊗ indicates the
Kronecker product operator, and vec(A) = [aT1 , a

T
2 , . . . , a

T
m]T, where ai ∈ R

n, for i = 1, . . . ,m, are
the first through last columns of A ∈ R

n×m. For an arbitrary column vector v ∈ R
n, vecv(v) =

[v21 , v1v2, . . . , v1vn, v
2
2 , v2v3, . . . , vn−1vn, v

2
n]

T ∈ R
1
2n(n+1). vecs(P ) = [p11, 2p12, . . . , 2p1m, p22, 2p23, . . . ,

2pm−1,m, pmm]T ∈ R
1
2m(m+1) for a symmetric matrix P ∈ R

m×m, and λM (P ) and λm(P ) denote the
maximum and minimum eigenvalue of a real symmetric matrix P , respectively. P ≻ 0 means that the
matrix P is positive definite, i.e., xTPx > 0 for all nonzero vectors x ∈ R

m. For any piecewise continuous
function u : R+ → R

m, ‖u‖ represents supt>0 |u(t)|.

2 Problem formulation and preliminaries

2.1 Problem formulation

Consider a class of multi-agent systems whose dynamics can be described by

ẋi(t) = Aixi(t) +Biui(t) +Div(t), (1)

ei(t) = Cixi(t) + Fv(t), (2)

yi(t) = Cixi(t), i ∈ N , (3)

where the set N = {1, 2, . . . , N} with N ∈ N+. Signals yi(t) ∈ R, ui(t) ∈ R, xi(t) ∈ R
ni and ei(t) ∈ R

represent the output, the input, the state, and the tracking error of the agent i. The dimensions of system
matrices are A ∈ R

ni×ni , Bi ∈ R
ni , Ci ∈ R

1×ni , Di ∈ R
ni×q and F ∈ R

1×q, for i ∈ N . The signal
v(t) ∈ R

q is the state of the following exosystem:

v̇(t) = Sv(t), (4)
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where S ∈ R
q×q.

Define an acyclic digraph G = {V , E} with respect to systems (1)–(4), where V = {0,N} is a set
of nodes with the node 0 representing the leader (agent 0) modeled via the exosystem (4) and other
nodes being followers characterized by systems (1) and (2). E ⊂ V × V is a set of edges. The adjacency
matrix is A = [aij ] ∈ R

(N+1)×(N+1) wherein its element aij > 0 if (j, i) ∈ E and otherwise aij = 0. The
diagonal element of A satisfies aii = 0 for any i ∈ V . Ni defines a set of neighbors of the ith agent, and
N+

i := Ni/{0}.
In this paper, the following mild assumptions are made on systems (1)–(4), which have been introduced

in the existing studies on cooperative output regulation problems; see [1, 24, 25].

Assumption 1. The pair (Ai, Bi) is stabilizable, ∀i ∈ N .

Assumption 2. rank[ Ai − λI Bi

Ci 0
] = ni + 1, ∀λ ∈ σ(S), i ∈ N .

Assumption 3 ([24]). The node 0 of graph G is globally reachable.

Given the systems (1)–(4) and the graph G, the cooperative output regulation problem [1] is solved
if one can develop a distributed control policy such that (i) the systems (1) and (2) is asymptotically
stable when v ≡ 0, and (ii) the tracking error of all the followers asymptotically converges to zero
(limt→∞ ei(t) = 0, ∀i ∈ N ) with respect to any initial conditions xi(0) and v(0).

2.2 Internal model principle

Select a vector G ∈ R
q such that the pair (S,G) is controllable; then the following equation

żi(t) =Szi(t) +Gêi(t), i ∈ N

formulates a distributed internal model of the multi-agent systems (1)–(4), where zi ∈ R
q and

êi(t) =
∑

j∈Ni

aij(yi(t)− yj(t))
∑N

j=0 aij
, i ∈ N , (5)

and the reference signal is y0(t) = −Fv(t). The internal model principle discloses the fact that the
output regulation problem can be converted to a stabilization problem for an augmented system. The
next lemma shows that this fact holds for the cooperative output regulation of multi-agent systems as
well.

Lemma 1. Under Assumptions 1–3, the multi-agent systems (1)–(4) in closed-loop with (5) and a
distributed controller in the form of

ui(t) =−Kxixi(t)−Kzizi(t), (6)

żi(t) =Szi(t) +Gêi(t), i ∈ N , (7)

achieve cooperative output regulation if the matrix

Aci =

[

Ai −BiKxi −BiKzi

GCi S

]

, i ∈ N ,

is Hurwitz.

Proof. From [26, Lemma 1.27], there exists uniquely a triple (Xi, Ui, Zi) solving the following equations
under Assumptions 1 and 2:

XiS = AiXi +BiUi +Di, (8)

XiS = (Ai −BKx)Xi −BiKziZi +Di, (9)

ZiS = SZi, (10)

0 = CiXi + F, i ∈ N , (11)

which indicates that

Ui = −KxiXi −KziZi.
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Through the following definitions:

x̃i = xi −Xiv, z̃i = zi − Ziv, ũi = ui − Uiv,

Ki =
[

Kxi Kzi

]

, ξ̃i =
[

x̃T
i z̃Ti

]T

, C̄i =
[

Ci 01×q

]

,

Āi =

[

Ai 0ni×q

GCi S

]

, B̄i =

[

Bi

0q×1

]

,

one can rewrite the closed-loop systems (1)–(7) as

˙̃xi = Aixi +Biui +Div −XiSv

= Aixi +Bi(−Kxixi −Kzizi) +Div −XiSv

= (Ai −BiKxi)xi −BiKzizi +Div −XiSv

= (Ai −BiKxi)xi −BiKzizi +Div

− ((Ai −BiKxi)Xiv −BiKziZiv +Div)

= (Ai −BiKxi)x̃i −BiKziz̃i, (12)

˙̃zi = Szi +Gêi − ZiSv

= Szi +
∑

j∈Ni

G
aij(yi − yj)
∑N

j=0 aij
− ZiSv

= Szi +GCixi −
∑

j∈Ni

G
aijCjxj
∑N

j=0 aij
− ZiSv

= Szi +GCixi −
∑

j∈Ni

G
aijCjxj
∑N

j=0 aij
− SZiv

= Sz̃i +G(Cix̃i − Fv)−
∑

j∈Ni

G
aij(Cj x̃j − Fv)
∑N

j=0 aij

= Sz̃i +GCix̃i −
∑

j∈Ni

G
aijCj x̃j
∑N

j=0 aij
, (13)

where x0 = v, x̃0 = 0, and C0 = −F .
We can convert (13) into a more compact form,

˙̃ξi = Aciξ̃i −
∑

j∈Ni

aij
∑N

j=0 aij

[

0

GC̄j

]

ξ̃j ,

ei = C̄iξ̃i, i ∈ N , (14)

where Aci = Āi − B̄iKi.
Based on Assumption 3, we can always label all the followers such that i < j if (i, j) ∈ E . In this way,

one can represent the overall multi-agent systems via

˙̃
ξ = Acξ̃, (15)

where

ξ̃ = [ξ̃T1 , ξ̃
T
2 , . . . , ξ̃

T
N ]T,

and Ac is a block lower-triangular matrix with submatrices Aci on the diagonal, for any i ∈ N . All
nonzero aij appear in the lower left of the matrix Ac. Because Ac is Hurwitz, we conclude the system

(15) is asymptotically stable at the origin, implying that limt→∞ ξ̃(t) = 0 and limt→∞ ei(t) = 0 for any
i ∈ N . The proof is thus completed.

Remark 1. Compared with existing studies [1, 16], the distributed controller (6)–(7) does not depend
on any observers of the exostate, which is suitable for the case that only the reference but not the full
exostate is accessible by some followers.
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2.3 Cooperative optimal output regulation

Define the following vectors and matrices to lump the control inputs and system matrices:

ũ = [ũ1, ũ2, . . . , ũN ]T,

Ā = blockdiag(Ā1, Ā2, . . . , ĀN ),

B̄ = blockdiag(B̄1, B̄2, . . . , B̄N ),

Q = blockdiag(Q1, Q2, . . . , QN ),

where, for i ∈ N , ũi = ui − Uiv, Qi = QT
i ≻ 0.

If all the followers are neighbors of the leader, i.e., N0 = N , one can develop a decentralized internal
model as follows:

żi(t) =Szi(t) +Gei(t), i ∈ N . (16)

Multi-agent systems (1)–(4) along with decentralized internal model (16) can be converted to

˙̃ξ = Āξ̃ + B̄ũ. (17)

Besides the steady-state tracking performance, the cooperative optimal output regulation problem is
formulated as follows by taking the transient performance of the closed-loop system into consideration.

Problem 1. The cooperative optimal output regulation problem is solved if one can develop a state-
feedback controller in the form of (5)–(7) such that the multi-agent systems (1)–(4) achieve cooperative
output regulation. Moreover, the zero-error constrained control ũ minimizes the cost functional (18)
subject to (17).

min
ũ

∫ ∞

0

(

ξ̃TQξ̃ + ũTũ
)

dt (18)

subject to (17).

Based on the linear optimal control theory, the optimal control policy that minimizes the cost (18)
subject to (17) is

ũ∗ = −K∗ξ̃. (19)

Since Ā, B̄ and Q are block diagonal matrices, we can observe that K∗ = blockdiag(K∗1 ,K
∗
2 , . . . ,K

∗
N),

where the optimal control gain for the ith follower is

K∗i = B̄T
i P
∗
i :=

[

K∗xi K∗zi

]

. (20)

The matrix P ∗i ≻ 0 is the unique solution to the algebraic Riccati equation as below:

ĀT
i P
∗
i + P ∗i Āi +Qi − P ∗i B̄iB̄

T
i P
∗
i = 0. (21)

Furthermore, Eq. (19) is equivalent to

u∗i = ũ∗i + Uiv

= −K∗i ξ̃i + Uiv

= −K∗xix̃i −K∗ziz̃i + Uiv

= −K∗xixi −K∗zizi,

żi(t) = Szi(t) +Gêi(t), i ∈ N . (22)

As the pair (Āi, B̄i) is stabilizable [26], it is easy to see that the matrix
[

Ai −BiK
∗
xi −BiK

∗
zi

GCi S

]

is Hurwitz for all i ∈ N . Based on Lemma 1, the developed controller (22) can be used to solve Problem 1.
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3 Main results

In this section, we will first introduce the DDoS attacks that we consider in this paper. Then, we will
develop a learning-based control approach to approximate the optimal control policy despite the presence
of DDoS attacks. Finally, we will explore the a priori knowledge on the upper bound of DDoS attacks to
guarantee that the closed-loop system remains operational. Note that both the learning-based controller
design and the exploration do not rely on the knowledge of any system matrices in the state equation (1).

3.1 DDoS attacks

In this paper, we consider the case that DDoS attackers use multiple computers to launch coordinated
DoS attacks to prevent targeted agents from exchanging information with their neighbors. In the worst
case, all the agents in the network could lose their communications during some intervals, which may
affect the cybersecurity of multi-agent systems more significantly compared with traditional DoS attacks.

For any i ∈ N , an agent i is said to be isolated if this agent cannot receive information from any other
agents in the whole network, i.e,

∑N
j=0 aij = 0. Let Ii

s = [hi
s, h

i
s + τ is) represent the interval of the s-th

(s ∈ N+) launched DDoS attack such that the agent i is isolated. Time instants hi
s, h

i
s + τ is, and τ is refer

to the start time, the end time, and the duration of the s-th DDoS attack for the agent i.
The following assumptions are made with respect to the DDoS frequency and DDoS duration.

Assumption 4 (DDoS frequency). There exist constants ηi > 1 and τ iD > 0 such that

ni(ta, tb) 6 ηi +
tb − ta
τ iD

, ∀ tb > ta > 0, i ∈ N , (23)

where ni(ta, tb) denotes the number of DDoS off/on transitions occurring on the interval [ta, tb].

Assumption 5 (DDoS duration). There exist constants Ti > 1 and κi > 0 such that

∣

∣Πi
D(ta, tb)

∣

∣ 6 κi +
tb − ta
Ti

, ∀ tb > ta > 0, i ∈ N , (24)

where Πi
D(ta, tb) := (ta, tb)

⋂⋃∞
s=1 Is is the time set when the agent i is isolated due to DDoS attacks

during [ta, tb], and |Πi
D(ta, tb)| is the Lebesgue measure of the set Πi

D(ta, tb).

Moreover, for any i ∈ N , we use Πi
N (ta, tb) := [ta, tb] \ Πi

D(ta, tb) to denote the set when the agent i
can receive information from at least one of its neighbors. It is checkable that, due to the consideration
of DDoS attacks, the digraph G and its adjacency matrix A of the multi-agent systems (1)–(4) will be
time-varying. We define them as G(t) and A(t) := [aij(t)], respectively.

Remark 2. Assumptions 4 and 5 are similar to existing ones of (distributed) DoS attacks that have
been made in [21, 22, 27] to characterize the frequencies and duration of attacks. However, since our
assumptions quantify the isolation of agents (nodes), different from [21, 22], Assumptions 4 and 5 allow
some channels in the network to be attacked at all time.

3.2 Value iteration

Value iteration (VI), a non-model-based ADP approach, has been applied to approximate the optimal
control policy even if an admissible control policy is unavailable [28–30]. Given the DDoS attacks con-
sidered in this paper, we will develop a VI strategy to learn the optimal values P ∗i and K∗i .

Essentially, VI updates the value matrix and control gain by

P
(k+1)
i = ǫk

(

ĀT
i P

(k)
i + P

(k)
i Āi − P

(k)
i B̄iB

T
i P

(k)
i +Qi

)

+ P
(k)
i ,

K
(k)
i = B̄T

i P
(k)
i , i ∈ N , (25)

where ǫk is the step size satisfying

ǫk > 0,

∞
∑

k=0

ǫk = ∞,

∞
∑

k=0

ǫ2k < ∞.
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It has been shown in [28] that the sequences {P
(k)
i }∞k=0 and {K

(k)
i }∞k=0 converge to the optimal values

P ∗i and K∗i . However, Eq. (25) depends on the knowledge of system matrices Āi and B̄i. In this paper,
we will focus on learning these optimal values in terms of online state and input data.

Note that if the agent i is under DDoS attacks such that it is isolated at t, one can observe that
∑N

j=0 aij(t) = 0. We see from (5) that êi(t) does not make sense at t since its denominator equals zero,
which renders the control policies (6) and (22) depending on the signal êi(t) to be no longer applicable
in the presence of DDoS attacks. To avoid this contradiction, we modify the distributed internal model
(7) by

żi(t) = Szi(t) +Gēi(t), i ∈ N , (26)

where

ēi(t) =







∑

j∈Ni

aij(t)(yi(t)−yj(t))∑
N
j=0 aij(t)

, t ∈ Πi
N (0,∞),

0, t ∈ Πi
D(0,∞).

The modified internal model (26) can be rewritten as

żi = Szi +Gēi

= Szi +
∑

j∈Ni

G
aij(t)(yi − yj)
∑N

j=0 aij(t)
,

= Szi +GCixi −
∑

j∈Ni

G
aijCjxj

∑N
j=0 aij(t)

, t ∈ Πi
N (0,∞). (27)

By combining (1) and (27), we have

ξ̇i(t) = Āiξi(t) + B̄iui(t) +

[

Di

αi0(t)GF

]

v(t)

−
∑

j∈N+
i

αij(t)

[

0

GC̄j

]

ξj(t)

= Āiξi(t) + B̄iui(t) + (D̄i +Θi0)(t)v(t)

+
∑

j∈N+
i

Θij(t)ξj(t), t ∈ Πi
N (0,∞), (28)

where

ξi =
[

xT
i zTi

]T

,

αij(t) =
aij(t)

∑N
j=0 aij(t)

,

D̄i =

[

Di

0

]

,

Θi0(t) =

[

0

αi0(t)GF

]

,

Θij(t) = αij(t)

[

0

GC̄j

]

, i ∈ N , j ∈ Ni, t ∈ Πi
N (0,∞).

Select a quadratic function Wi = ξTi P
(k)
i ξi. By taking its derivative along the trajectories of system

(28), we have

d

dt
(ξTi P

(k)
i ξi) =



Āiξi + B̄iui + (D̄i +Θi0)v −
∑

j∈N+
i

Θijξj





T

P
(k)
i ξi
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+ ξTi P
(k)
i



Āiξi + B̄iui + (D̄i +Θi0)v −
∑

j∈N+
i

Θijξj





= ξTi H
(k)
i ξi + 2uiK

(k)
i ξi + 2vTD̄T

i P
(k)
i ξi + 2vTΘT

i0P
(k)
i ξi

− 2
∑

j∈N+
i

ξTj Θ
T
ijP

(k)
i ξi, i ∈ N , t ∈ Πi

N (0,∞), (29)

where H
(k)
i = ĀT

i P
(k)
i + P

(k)
i Āi.

Based on Assumption 5, there always exists a sequence {til}
∞
l=0 such that the agent i is not isolated in

all the following intervals [ti0, t
i
1], [t

i
2, t

i
3], [t

i
4, t

i
5], . . .. By integrating both sides of (29) during the interval

[ti0, t
i
1], we have

ξTi (t
i
1)P

(k)
i ξi(t

i
1)− ξTi (t

i
0)P

(k)
i ξi(t

i
0)

=

∫ ti1

ti0

ξTi H
(k)
i ξi + 2uiK

(k)
i ξi + 2vTD̄T

i P
(k)
i ξidτ

+

∫ ti1

ti0

2vTΘT
i0P

(k)
i ξi − 2

∑

j∈N+
i

ξTj Θ
T
ijP

(k)
i ξidτ

=

(

∫ ti1

ti0

vecv(ξi(τ))dτ

)T

vecs
(

H
(k)
i

)

+ 2

(

∫ ti1

ti0

ξTi ⊗ uidτ

)

vec
(

K
(k)
i

)

+ 2

(

∫ ti1

ti0

ξTi ⊗ vTdτ

)

vec
(

D̄T
i P

(k)
i

)

+ 2

(

∫ ti1

ti0

ξTi ⊗ vTdτ

)

vec
(

ΘT
i0P

(k)
i

)

− 2
∑

j∈N+
i

(

∫ ti1

ti0

ξTi ⊗ ξTj dτ

)

vec
(

ΘT
ijP

(k)
i

)

. (30)

For any two vectors a, b and a sufficiently large number Li > 0, define

δia =

[

a⊗ a|
ti1
ti0
, a⊗ a|

ti3
ti2
, . . . , a⊗ a|

ti
2Li+1

ti
2Li

]T

,

Γi
a,b =

[

∫ ti1

ti0

a⊗ bdτ,

∫ ti3

ti2

a⊗ bdτ, . . . ,

∫ ti
2Li+1

ti
2Li

a⊗ bdτ

]T

,

Γi
a =

[

∫ ti1

ti0

vecv(a)dτ,

∫ ti3

ti2

vecv(a)dτ, . . . ,

∫ ti
2Li+1

ti
2Li

vecv(a)dτ

]T

.

Eqs. (29) and (30) imply the following equation:

Ψi









vecs(H
(k)
i )

vec(K
(k)
i )

vec(D̄T
i P

(k)
i )









= Φ
(k)
i , (31)

where

Ψi = [Γi
ξi , 2Γ

i
ξiui

, 2Γi
ξiv],
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Algorithm 1 VI algorithm

1: Select a c > 0. Apply any locally essentially bounded input ui on [t0, tL] s.t. Eq. (32) holds ∀i ∈ N ;

2: i← 1;

3: repeat

4: k← 0, p← 0. Pick a P
(0)
i ≻ 0;

5: loop

6: Solve H
(k)
i and K

(k)
i from (31);

7: P̃
(k+1)
i ← P

(k)
i + ǫk(H

(k)
i + Qi − (K

(k)
i )TK

(k)
i );

8: if P̃
(k+1)
i /∈ Bp then

9: P
(k+1)
i ← P

(0)
i , p← p + 1;

10: else if |P
(k)
i − P

(k−1)
i |/ǫk < c then

11: return (P
(k)
i ,K

(k)
i );

12: else P
(k+1)
i ← P̃

(k+1)
i ;

13: end if

14: k← k + 1;

15: end loop

16: i← i+ 1;

17: until i = N + 1.

Φ
(k)
i = δiξivec

(

P
(k)
i

)

− 2Γi
ξivvec

(

ΘT
i0P

(k)
i

)

+ 2
∑

j∈N+
i

Γi
ξiξj

(

ΘT
ijP

(k)
i

)

.

The uniqueness of the solution to (31) is guaranteed under some rank conditions as shown in Lemma 2
below. We omit the proof as it is similar to the proofs in [28, 31].

Lemma 2. If there exists a L ∈ Z+ such that for all Li > L, i ∈ N ,

rank([Γi
ξi,ξi ,Γ

i
ξi,ui

,Γi
ξi,v]) =

(n+ q)(n+ 3q + 3)

2
, (32)

then the matrix Ψi has full column rank.

By defining a collection of bounded sets {Bp}
∞
p=0 as follows:

Bp ⊂ Bp+1, p ∈ Z+, lim
p→∞

Bp = Pn.

The VI algorithm is proposed in Algorithm 1. From [28, Theorem 5.1], under the rank condition (32),

one can show that limk→∞ P
(k)
i = P ∗i and limk→∞K

(k)
i = P ∗i where sequences {P

(k)
i }∞k=0 and {K

(k)
i }∞k=0

are obtained from Algorithm 1, for any i ∈ N .

Remark 3. By applying Algorithm 1, one can learn towards the control policy (19), which is optimal
with respect to the cost (18) if N0 = N and the multi-agent systems are attack-free. The learned control
policy will be suboptimal under communication constraints and DDoS attacks described in Assump-
tions 3–5.

3.3 Resilience analysis under DDoS attacks

Considering the effect of DDoS attacks, the control input and internal model applied to the process can
be expressed as

ui(t) = −K∗i ξi(t), (33)

żi(t) = Szi(t) +Gēi(t). (34)

By observing the system (1) in closed-loop with the controller (33) and internal model (34), Eq. (12)
holds. Moreover, when the agent i is not isolated, we have

˙̃zi = Szi +Gêi − ZiSv

= Szi +
∑

j∈Ni

G
aij(yi − yj)
∑N

j=0 aij
− ZiSv
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= Szi +GCixi −
∑

j∈Ni

G
aijCjxj
∑N

j=0 aij
− ZiSv

= Szi +GCixi −
∑

j∈Ni

G
aijCjxj
∑N

j=0 aij
− SZiv

= Sz̃i +GCix̃i −
∑

j∈Ni

G
aijCj x̃j
∑N

j=0 aij
, t ∈ Πi

N (0,∞). (35)

When the agent i is under a DDoS attack such that it is isolated, we have

˙̃zi = Szi − ZiSv

= Szi − SZiv

= Sz̃i, t ∈ Πi
D(0,∞). (36)

One can rewrite (12), (35)–(36) in a more compact form:

˙̃ξi(t) = Aciξ̃i(t) + Ḡǫi,

ei(t) = C̄iξ̃i(t), i ∈ N , (37)

where

ǫi(t) =

{

ǫNi, t ∈ Πi
N (0,∞),

−C̄iξ̃i, t ∈ Πi
D(0,∞),

ǫNi(t) =







−
∑

j∈Ni

aij(t)(C̄j ξ̃j)∑
N
j=0 aij(t)

, t ∈ Πi
N (0,∞),

0, t ∈ Πi
D(0,∞),

Ḡ =

[

0n×1

G

]

. (38)

Before analyzing the resilience, we give the following Lemma to explore the output regulation property
of multi-agent systems if each agent is input-to-state stable (ISS) [32].

Lemma 3. Under Assumption 3, if, for any i ∈ N , the system (37) is ISS regarding ǫNi defined in (38)
as an input, then the multi-agent systems (1)–(4) with (33)–(34) achieve cooperative output regulation.

Proof. Based on Assumption 3, we label all the followers such that j /∈ Ni for any integer j > i. We
will prove this lemma by induction.

(1) When i = 1, we have ǫN1 ≡ 0. If the system (37) is input-to-state stable regarding ǫN1, then there
exist a function σ1 of class KL such that

|ξ̃1(t)| 6 σ1(|ξ̃1(0)|, t). (39)

(2) When i = j > 1, suppose we have

|ζj(t)| 6 σ2(|ζj(0)|, t), (40)

where σ2 is a function of class KL, and

ζj =
[

ξ̃T1 , . . . , ξ̃
T
j

]T

.

The input-to-state stability of the system (37) for i = j + 1 implies that

|ξ̃j+1(t)| 6 σ3(|ξ̃j+1(0)|, t) + γ1(‖ǫN,j+1‖),

where σ3 is a function of class KL and γ1 is a function of class K. From (38), there always exists a
function γ2 of class K such that ‖ǫN,j+1‖ 6 γ2(‖ζj‖). Thus, we have

|ξ̃j+1(t)| 6 σ3(|ξ̃j+1(0)|, t) + γ3(‖ζj‖), (41)
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where γ3 = γ1 ◦ γ2.
From [33, Lemma 4.7], we have the following inequality:

|ζj+1(t)| 6 σ4(|ζj+1(0)|, t),

where σ4 is a function of class KL defined as follows:

σ4(r, t) = σ3

(

σ3

(

r,
t

2

)

+ γ3(σ2(r, 0)),
t

2

)

+ γ3

(

σ2

(

r,
t

2

))

+ σ2(r, t).

Therefore, we conclude that the multi-agent system (37) with all i ∈ N is asymptotically stable at
the origin. And the tracking error ei(t) asymptotically converges to zero as t goes to infinity. This is
sufficient to show that the cooperative output regulation of multi-agent systems (1)–(4) with (33)–(34)
has achieved. The proof is thus completed.

We develop the following theorem to seek a bound of DDoS duration parameter Ti to ensure the
cooperative output regulation under DDoS attacks.

Theorem 1. Under Assumptions 1–5, the multi-agent systems (1)–(4) in closed-loop with the controller
(33) and internal model (34) under DDoS attacks achieve cooperative output regulation if the DDoS
duration criterion Ti satisfies

Ti > 1 +
λM (P ∗i )max

{

0, 2|P ∗i ḠC̄i| − λm(Qi + (K∗i )
TK∗i )

}

λm(P ∗i )λm(Qi + (K∗i )
TK∗i )

:= T ∗i , ∀i ∈ N . (42)

Proof. By taking Vi = ξ̃Ti P
∗
i ξ̃i as a Lyapunov function, along the closed-loop system (37), we have that

d

dt
Vi = ξ̃Ti (A

T
ciP
∗
i + P ∗i Aci)ξ̃i + 2ξ̃Ti P

∗
i Ḡǫi

= −ξ̃Ti (Qi + (K∗i )
TK∗i )ξ̃i + 2ξ̃Ti P

∗
i Ḡǫi. (43)

Considering the internal t ∈ [hi
s + τ is, h

i
s+1) where the agent i is not isolated and ǫi(t) = ǫNi(t). By

Young’s inequality the fact that λm(P ∗i )|ξ̃i|
2 6 Vi 6 λM (P ∗i )|ξ̃i|

2, we have

d

dt
Vi 6− ξ̃Ti (Qi + (K∗i )

TK∗i )ξ̃i +
1

δi
ξ̃Ti P

∗
i ḠḠTP ∗i ξ̃i + δiǫ

T
NiǫNi

6− λm(Qi + (K∗i )
TK∗i )|ξ̃i|

2 +
1

δi
|P ∗i Ḡ|2|ξ̃i|

2 + δi|ǫNi|
2

6−
λm(Qi + (K∗i )

TK∗i )−
1
δi
|P ∗i Ḡ|2

λM (P ∗i )
Vi + δi|ǫNi|

2 (44)

for any δi >
|P∗

i Ḡ|2

λm(Qi+(K∗

i )
TK∗

i )
.

One can further have

Vi(ξ̃i(t)) 6 e−wi1(t−h
i
s−τ

i
s)Vi(ξ̃i(h

i
s + τ is)) +

δi
wi1

|ǫNi|
2, (45)

where

wi1 =
λm(Qi + (K∗i )

TK∗i )−
1
δi
|P ∗i Ḡ|2

λM (P ∗i )
.

During the interval [hi
s, h

i
s + τ is) that the agent i is isolated, we derive from (43) that

d

dt
Vi = −ξ̃Ti (Qi + (K∗i )

TK∗i )ξ̃i + 2ξ̃Ti P
∗
i ḠC̄iξ̃i

6 ξ̃Ti
(

2|P ∗i ḠC̄i| − λm(Qi + (K∗i )
TK∗i )

)

ξ̃i
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6 wi2Vi, (46)

where

wi2 =
max

{

0, 2|P ∗i ḠC̄i| − λm(Qi + (K∗i )
TK∗i )

}

λm(P ∗i )
.

Then, for any t ∈ [hi
s, h

i
s + τ is), we have

Vi(ξ̃i(t)) 6 ewi2(t−h
i
s)Vi(ξ̃i(h

i
s)). (47)

By [27, Lemma 3], for all t > 0, the Lyapunov function satisfies

Vi(ξ̃i(t)) 6 e−wi1|Π
i
N (0,t)|ewi2|Π

i
D(0,t)|Vi(ξ̃i(0))

+
δi
wi1



1 + 2
∑

s∈N+;hs6t

e−wi1|Π
i
N (hi

s+τ i
s,t)|ewi2|Π

i
D(hi

s,t)|



 ‖ǫNi‖
2. (48)

Based on Assumption 5, we have |Πi
D(hi

s, t)| 6 κi +
t−hi

s

Ti
, ∀t > hi

s. We further have |Πi
N (hi

s + τ is, t)| =

t− hi
s − |Πi

D(hi
s, t)|, ∀t > hi

s. Therefore, one can observe that

∑

s∈N+;hs6t

e−wi1|Π
i
N (hi

s+τ i
s,t)|ewi2|Π

i
D(hi

s,t)| 6 ewi3κi

∑

s∈N+;hi
s6t

e−β(t−h
i
s), (49)

where

wi3 = wi1 + wi2

=
λm(Qi + (K∗i )

TK∗i − 1
δi
|P ∗i Ḡ|2)λm(P ∗i )

λM (P ∗)λm(P ∗)

+
λM (P ∗)|2|P ∗i ḠC̄i| − λm(Qi + (K∗i )

TK∗i )|

λM (P ∗)λm(P ∗)
,

β = wi1 −
wi3

Ti
.

Note that T ∗i defined in (42) is exactly T ∗i = wi3/wi1. By [27, Lemma 4] and Assumption 4, we have

∑

s∈N+;hi
s6t

e−β(t−h
i
s) 6

e−βτ
i
Dηi

1− e−βτ
i
D

.

Finally, we have the Lyapunov function Vi along the trajectory of the closed-loop system satisfying

Vi(ξ̃i(t)) 6 eκiwi3−βtVi(ξ̃i(0))

+ γ3

(

1 + 2eκiwi3
eβτ

i
Dηi

1− e−βτ
i
D

)

‖ǫNi‖
2. (50)

which immediately indicates that the existence of a function σ5 of class KL, and a function γ4 > 0 of
class K such that

|ξ̃i(t)| 6 σ5(|ξ̃i(0)|, t) + γ4(‖ǫNi‖), i ∈ N .

From (50), we see that a sufficient condition to ensure the system (37) to be ISS is letting the DDoS
duration criterion Ti satisfy the inequality (42) such that β > 0. Moreover, based on Lemma 3, we
conclude that multi-agent systems (1)–(4) in closed-loop with the controller (33) and internal model (34)
under DDoS attacks achieve cooperative output regulation. The proof is thus completed.
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Figure 1 (Color online) Communication topology and DDoS attacks.
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Figure 2 (Color online) Comparison P∗

i and P
(k)
i learned at the iteration k via Algorithm 1 for agents i = 1, 2, 3, 4.

4 Simulation and discussions

To evaluate the efficiency of the proposed learning Algorithm 1 and the resilience of the closed-loop system,
we consider the example of a 5-agent system where agent 0 is the leader modeled by the exosystem (4),
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Table 1 Comparison of K
(k)
i and K∗

i when the convergence is achieved

Control gain Value

K∗

1 [1.4180, 1.7567, −0.7008, 0.0941]

K
(605)
1 [1.4167, 1.7558, −0.6996, 0.0947]

K∗

2 [1.3313, 1.2575, −0.6141, 0.3505]

K
(221)
2 [1.3317, 1.2574, −0.6140, 0.3515]

K∗

3 [1.2589, 1.0437, −0.5418, 0.4544]

K
(391)
3 [1.2580, 1.0433, −0.5407, 0.4542]

K∗

4 [1.2083, 0.9242, −0.4911, 0.5087]

K
(149)
4 [1.2076, 0.9239, −0.4902, 0.5087]
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Figure 3 (Color online) The DDoS attack profile for agents

i = 1, 2, 3, 4. The DDoS attack signal Attacki(t) = i if the

agent i is isolated, and Attacki(t) = 0 otherwise.

Figure 4 (Color online) The trajectories of control inputs

ui(t) for agents i = 1, 2, 3, 4.

the remaining agents i = 1, 2, 3, 4 are followers modeled by (1)–(3), and the system matrices are

Ai =

[

0 1

0.01× i 0

]

, Bi =

[

0

i

]

, Di =

[

0 0

0 0.5× i

]

,

Ci =

[

1

0

]T

, F =

[

−1

0

]T

, E =

[

0 1

−1 0

]

.

We choose the vector G = [0 1]T, and it is apparent that the pair (E,G) is controllable.

Figure 1 depicts the communication topology of the 5-agent system. Note that its communications are
subject to DDoS attacks, which include four distributed attacks, each of which can isolate an agent. For
instance, if the system is under attack #1, then agent 1 is isolated. If attack #4 is active, then agent 4
becomes isolated. The system possibly may also be under multiple attacks simultaneously. In the worst
case, where all attacks are active, all the agents in the system are isolated. First, we choose the initial

control policy as K
(0)
i = [0 0 0 0], which is not an admissible control policy for any i = 1, 2, 3, 4. Since

the proposed algorithm is a VI algorithm, we can start from an arbitrary control policy, not necessarily
admissible. During the time interval t ∈ [0, 3] s, the control input ui(t) is selected using a combination
of sinusoidal signals with angular frequencies ranging from 0.5 to 1000 Hz such that the rank condition
(32) holds for i = 1, 2, 3, 4. After applying Algorithm 1, we approach the optimal control gains K∗i and

optimal values P ∗i by successive approximations. For comparison, we show the difference between P
(k)
i

and P ∗i at iteration k in Figure 2. We also illustrate K
(k)
i and K∗i in Table 1. One can check from

Figure 2 and Table 1 that convergence can be achieved, although each agent has different dynamics.
We further compute the upper bound of the DDoS duration criterion through (42), obtaining T ∗1 = 230,

T ∗2 = 149, T ∗3 = 128, and T ∗4 = 125. Note that the system can endure stronger DDoS attacks than the
computed upper bound. As a test, we applied the DDoS attack profile depicted in Figure 3, which
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Figure 5 (Color online) The trajectories of outputs yi(t) for

agents i = 1, 2, 3, 4 and the reference y0(t) generated by the

agent 0.

Figure 6 (Color online) The trajectories of outputs yi(t)

for agents i = 1, 2, 3, 4 and the reference y0(t) generated

by the agent 0 using feedback-feedforward control method

in [1].

includes different DDoS attacks isolating one or multiple agent(s). The inputs and outputs of the multi-
agent system are shown in Figures 4 and 5, respectively. As depicted in Figure 3, agent 3 is under DDoS
attacks such that it is isolated when t ∈ [20, 25] s, and agent 4 is isolated when t ∈ [30, 35] s. These
attacks cause the outputs y2(t) and y4(t) of agents 2 and 4 to temporarily deviate from the reference
y0(t); see Figure 5. To make DDoS attacks more challenging, let all agents be isolated at t ∈ [40, 41] s.
One can observe from Figure 5 that although the transient performance of multi-agent systems is affected
by DDoS attacks, all the agents can asymptotically track the desired reference signal.

As a comparison, we assumed that the system dynamics was exactly known and developed a controller
with a distributed observer using the method proposed in [1]. Figure 6 depicts the simulation result.
One can see that the DDoS attacks have a stronger effect on the transient performance therein compared
with Figure 5.

5 Conclusion

This paper bridged the gap between ADP, the internal model principle, and distributed control theory
to solve the data-driven cooperative output regulation problems of linear multi-agent systems. New
results in the resilience to DDoS attacks and the robustness to unknown system dynamics are obtained.
Our future work will be directed at solving the data-driven cooperative output regulation problems of
nonlinear multi-agent systems.
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