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Quantum key distribution (QKD) allows two legitimate par-

ties, Alice and Bob, to share a series of random bits that

are secured by the laws of quantum mechanics. As a re-

markable theoretical progress towards longer distances, the

proposal of twin-field QKD (TF-QKD) [1] shows the ca-

pability to break a repeaterless bound and provides a key

rate in the square-root scale of channel transmittance (i.e.,

R ∼
√
η), promising preponderant transmission distance.

However, TF-QKD implementation requires the precise ac-

quisition of a global phase drift, which rapidly fluctuates due

to long fibers. Typically, the phase scan method via time-

divisional modulation [2] is adopted for phase compensation,

where a brighter reference light should be implemented for

scanning the phase drift. Therefore, a very limited trans-

mission efficiency which refers to the ratio of the time of the

quantum part to the whole cycle, is obtained.

To address this problem, we develop a phase-drift fore-

casting technique that can overcome the efficiency limit of

the current phase calibration. This technique can achieve ac-

curate predictions and active feedback control on the phase

drift of TF-QKD with a fiber distance of over 500 km, dras-

tically accelerating the transmission efficiency.

Data processing. A phase drift caused by ambient dis-

turbances on optical fiber is particularly significant in TF-

QKD systems. As a phase drift shows correlations with

time and environment dependence, we consider it as a time

series. Time series forecasting involves analyzing the dy-

namics and correlations between historical data for predict-

ing future behavior. Deep neural networks excel in han-

dling these tasks [3] due to their excellent performance in

modeling non-linear temporal patterns, identifying complex

structures across time series, and constructing a mapping

relationship by learning from known data. Here, we de-

sign appropriate features and labels for supervised learning.

The feature comprises the count matrix, temperature, and

humidity. Meanwhile, the label includes the phase modula-

tor’s zero-phase voltage that reflects the global phase drift,

and is obtained via a two-phase scan (2PS). The detailed

data structure is presented in Figure 1(a). Due to the ex-

tremely limited counting time and light intensity, the count

matrix containing shot noise and systematic errors results in

inaccurate voltage labels. Thus, we further introduce a real-

time denoising procedure via the filter matrix, which can be

physically represented by a wiener filtering algorithm or a

feed-forward neural network. Using this procedure, the con-

fidence coefficient of supervised learning is restored, and the

clean count matrix during training and predictions can be

derived.

Network structure. As shown in Figure 1(b), we im-

plemented the sequence-to-sequence (S2S) model [4], which

comprises an encoder and decoder, for mapping history se-

quences to future ones. The encoder is one long short-term

memory (LSTM) network [5] that reads the input feature

vector from the observation horizon, and each timestep ob-

tains fixed six-dimensional vector representations. Before

the input, an attention layer was placed to assign weights

to ten timesteps. The attention weights indicate the impor-

tance of each observation for the current input sequence, by

which the outlier detection is also provided. Conversely, the

decoder is another LSTM network for directly extracting

output predictions of a zero-phase voltage.

In our design, each cycle contains one-timestep observa-

tion and four-timestep forecasting, corresponding to trans-

mitting strong reference light and weak quantum light, re-

spectively. The interval of one timestep T is determined

based on the number of phase slices and our measured max-
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Figure 1 (Color online) Data and network structure for forecasting. (a) Tt: temperature; Ht: humidity; St: count matrix; ~xt

and Vt: feature vector and zero-phase voltage at timestep t, respectively; Ñ (M̃): noisy counts of detector D0 (D1); N (M): the

clean counts. Subscript 0 (1) denotes the phase difference of 0 (π/2). The filter matrix filters out the noise and error of the count

matrix so that the zero-phase voltage estimated by 2PS has higher confidence. (b) Each sample comprises ten feature vectors in

the observation horizon and one voltage vector of the subsequent four timesteps in the forecasting horizon.

imum phase drift velocity at a fiber distance of 500 km

(21.12 rad ms−1). The forecasting strategy is illustrated

in Figure 1(b). Apparently, there exists a 5T time interval

between two adjacent observation timesteps and a 1T time

interval between two contiguous forecasting timesteps. Un-

like other time series forecasting tasks [3], any ground-truth

features or labels of these timesteps in the forecasting hori-

zon cannot be replenished. This is because the forecasting

horizon belongs to the quantum part, which only allows the

transmission of weak quantum light and the detection of un-

exposed quantum bits. To address the mismatch of the time

interval between the model’s input and output, we propose

a simplified time-aware long short-term memory (T-LSTM)

unit on the encoder and decoder. This architecture can not

only avoid accumulative errors during rolling predictions but

also settle the mismatch between the input and output se-

ries, achieving a drastic low root-mean-square-error (RMSE)

of less than 0.2. The detailed descriptions and evaluations

of the model are presented in Appendices A and B, respec-

tively. The model is evaluated on our personal computer,

and then deployed to a proper field programmable gate ar-

ray (FPGA) for high-speed parallel computing during sys-

tem running. The FPGA working at a clock rate of 200 MHz

(Xilinx Zynq UltraScale+ MPSoCs EV series) is sufficient

to actively predict fast global phase drifts.

Experiments and results. Appendix C presents the ex-

perimental setup. In our experiment, the interference visi-

bility of the S2S model is concentrated around 95.13% with

a standard deviation of 0.55% at a fiber distance of 500 km.

Accordingly, a transmission efficiency of up to 84.86% can

be obtained by using the proposed method. We compared

the transmission efficiencies between our present work and

previous TF-QKD experiments. Appendix D presents the

detailed results.

Conclusion. We proposed a neural network augmented

TF-QKD scheme and performed the corresponding experi-

mental demonstration. By incorporating the proposed S2S

network with a commercial FPGA, we realize the proof-of-

principle demonstration of TF-QKD with excellent perfor-

mance. Improving the efficiency of TF-QKD can not only

boost the key rate but also help reduce Rayleigh scattering

noise. These results represent a further step towards the

realization of highly efficient TF-QKD and may play a role

in practical applications.
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