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Appendix A Neural network model
Utilizing long short-term memory (LSTM) or gated recurrent unit (GRU) as the recurrent neural network (RNN) block outperforms

multi-layer perceptron (MLP) and other models in most of all datasets [1]. There are two popular architectures in constituting an

RNN. One is the stacked architecture, in which the same RNN unit repeats for every timestep, sharing the same weights and biases.

Multiple LSTM layers are stacking on top of one another. The other is sequence-to-sequence (S2S) architecture, inside of which

two different RNNs act on input and output time series in the form of an encoder and decoder [2]. In this task, we face the dual

challenges of multi-variable input and multi-step output. The recursive strategy and multi-input multi-output (MIMO) strategy [3]

of stacked architecture in multi-step forecasting are unable to avoid accumulative errors in rolling predictions. Therefore, we select

S2S architecture as our prediction model after evaluation. Given the output horizon size 4 and considering sequential execution

time of field programmable gate array (FPGA), we make the input horizon size slightly bigger than the output one which is 10.

The resulting S2S network fS2S can be expressed as:

[V̂t+1, V̂t+2, V̂t+3, V̂t+4] = fS2S(xt−45, ..., xt−10, xt−5, xt), (A1)

where xt = [St, Tt, Ht]
T ∈ Rm, St is the count matrix after denoising, Tt is the temperature and Ht is the humidity at timestep t.

To address time interval mismatch of input observations (5T ) and output predictions (T ), we propose a simplified time-aware

LSTM (T-LSTM) unit as basis encoder block and decoder block. Connecting with peepholes, the states are updated as follows:

it = σ(Wi · ht−1 + Ui · xt + Pi · Ct−1 + bi), (A2)

ot = σ(Wo · ht−1 + Uo · xt + Po · Ct + bo), (A3)

ft = σ(Wf · ht−1 + Uf · xt + Pf · Ct−1 + bf ), (A4)

C̃t = tanh(Wc · ht−1 + Uc · xt + bc), (A5)

Ct = it ⊙ C̃t + ft ⊙ [Ct−1 · g(∆t)], (A6)

ht = ot ⊙ tanh(Ct), (A7)

where W ∈ Rd×d, U ∈ Rd×m, P ∈ Rd×d denotes the weight matrices, b ∈ Rd denotes the corresponding bias vector. The subscript

i, o, f ,c denotes input gate it, output gate ot, forget gate ft, and cell state Ct ∈ Rd of current state respectively. C̃t ∈ Rd is the

candidate cell state at time step t. ht−1, ht ∈ Rd are hidden state of last time step and current step. σ of the gates denotes sigmoid

activation function which outputs values in the range [0, 1], and tanh denotes tangent function that outputs in the range [−1, 1]. ⊙
denotes the element-wise multiplication. The time interval is imported into encoder and decoder through g(∆t) = 1/∆t× 10−6 [4].

Appendix B Evaluations
For evaluation purposes, the datasets are divided into 80% training and 20% test sets. By scrolling through time, the test set

consists of the last part of each individual time series within the dataset, and the former part of time series is the training set. This

division has been applied equally to all datasets, obtaining 50 time series at every fiber length, and each time series contains 3, 100

time steps. We then transform the time series into training instances to be fed to the model. Table. B1 lists the parameter settings

that are used throughout the training. Adam optimiser is used during training on our computer (CPU, Intel Core i7 9700@ 3.6

GHz; GPU, NVIDIA GeForce RTX 2080; RAM, DDR4 8 GBytes). In particular, since time interval is implanted into the T-LSTM

cell, data of different fiber lengths can be trained together in principle. Here, we give priority to ensure the accuracy and train the

model separately for each lengths.
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Table B1 Parameter settings during the training.

Hyperparameter value (range)

cell − dimension 128

maximal − epochs 300

minibatch− size 50

Learning − rates (10−4, 10−2)

Gaussian− noise 0.001

We adopt the distortion Loss including shape and Time (DILATE) loss function [5] which is designed for sudden changes and

multi-step forecasting. The loss is defined as:

LDI(V̂, V
∗
) =

1

2
Ls(V̂ , V

∗
) +

1

2
Lt(V̂ , V

∗
), (B1)

where V ∗ denotes the ground truth target and V̂ denotes the predicted counterpart. Ls(V̂ , V ∗) is shape loss function which

describes the dissimilarity of vector shape and Lt(V̂ , V ∗) is the temporal term which penalizes temporal distortions between V̂ and

V ∗. The shape loss is based on dynamic time warping (DTW) [6] and can be calculated by:

Ls(V̂ , V
∗
) = −γlog(

∑
A∈A4,4

exp(−
⟨A,∆(V̂ , V ∗)⟩

γ
)), (B2)

where γ > 0, A ⊂ {0, 1}4, 4 is the warping path and A4,4 is the set of all valid warping paths, ∆(V̂ , V ∗) := [δ(V̂ , V ∗)]i,j denotes

the distance matrix defined as euclidean distance. And the temporal loss is the smooth approximation of time distortion index

(TDI) [7],
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)
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γ
), (B3)

where Ω = (i, j)2/k2 is the squared penalization for any i ̸= j. After batch training, the corresponding DILATE loss is 2.65± 1.03.

Appendix C Setup
The setup is a large symmetric Mach-Zehnder interferometer (MZI) with one 50 MHz discrete laser pulses at the center wavelength

of 1550.51 nm. To be noted, the laser sources of Alice and Bob should be independent from each other in a practical TF-QKD

setup. However, considering the obstacle arising from the frequency difference of the laser sources has been successfully removed

by either the optical phase-locked loop method [8–10], or the frequency locking approach with ultra-stable cavity [11, 12], here

we focus our attention on dealing with the phase drift arising from transmission channels. Therefore, what we carried out is a

proof-of-principle demonstration of TF-QKD. At the detection side, the light pulses from Alice’s and Bob’s sides are meet at a

50/50 BS and are further detected by two superconducting nanowire single-photon detectors (SNSPDs), each corresponding to the

constructive or destructive result of single-photon interference. Before the BS, a PM is immediately positioned for real-time phase

drift compensations, which is controlled by the FPGA.

Appendix D Experimental results
In the TF-QKD, it is necessary to keep the phase drift lying within the same phase slice in a coding cycle [13]. By referring [8,12,14],

we reasonably set it less than 0.3 rad (17 ◦) per maintenance period T . Based on the measured maximum phase drift velocity, we

can determine the unit maintenance period T . Each cycle of traditional two-phase scan (2PS) method [15] contains a classical part

and a quantum part, and the former is mainly composed of transmitting reference light and the recovery time of SNSPD, consuming

times are 10 µs and 600 ns respectively in our experiment, which can not be used for quantum key transmission. Differently, each

cycle of S2S contains 1-timestep observation and 4-timestep forecasting, corresponding to transmitting strong reference light and

the weak quantum light respectively. In Table. D1, we show the maintenance period T and transmission efficiency η at different

fiber distance based on our measurements. The efficiency of 2PS is measured as η2PS = (T − 10 − 0.6)/T , while the efficiency of

S2S is measured as ηS2S = (5T − 10 − 0.6)/(5T ).

We do comparisons on the transmission efficiencies between our present work and previous TF-QKD experiments, see Fig. D1.

Moreover, considering direct comparisons are not a complete account of superiority, we also plot the efficiency of 2PS (crosses)

without any redundancy. In every sense, the prediction method based on our S2S model (stars) greatly boosts the transmission

efficiency at various distances.

To illustrate the practical performance of our prediction method, we further characterize the interference visibility at 500 km

fiber distance in Fig. D2. The visibility distribution of 2PS with filter matrix is concentrated around 95.27% with a standard

deviation of 0.56%, and the visibility distribution of S2S model is concentrated around 95.13% with a standard deviation of 0.55%.

Similar visibility results show that the S2S model can suppress prediction errors well and facilitate stable interference control. We

highlight that the visibility statistics of S2S model are not all lower than those of 2PS. It can provide a 0.1% higher mean value

of visibility at 0 km fiber length. Additionally, the long term stability of S2S method over 3 hours is demonstrated. We test the

interference visibility of 2PS without filter matrix, and it can only provide less than 95% visibility at all fiber lengths.
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Table D1 Transmission efficiency of traditional 2-phase scan with filter matrix η2PS and the S2S prediction model ηS2S under

different fiber length. Along with its maintenance periods of voltage (T ).

Distance T η2ps ηS2S

0km 200µs 94.7% 98.9%

100km 80µs 86.75% 97.35%

200km 50µs 78.8% 95.8%

300km 40µs 73.5% 94.7%

400km 20µs 47.0% 89.4%

500km 14µs 24.29% 84.86%
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Figure D1 Characteristics of phase drift at 500 km fiber distance. (a) Free phase drift without feedback loop. (b) Compensating

by 2PS with filter matrix. (c) Predicting by the S2S model.
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Figure D2 Interference visibility at a 500 km fiber length. MA 2PS: moving averages of 2PS; MA S2S: moving averages of S2S.

Each point is calculated with 1 ms cumulative counts.
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